Chronic Pain and Comorbid Emotional Disorders: Neural Circuitry and Neuroimmunity Pathways
Abstract
:1. Introduction
2. Neurobiological Mechanisms of Pain-Induced Emotional Disorders
2.1. Neurotransmitter Dysfunction
2.1.1. Monoaminergic Neurotransmitters
2.1.2. Gamma-Aminobutyric Acid
2.1.3. Glutamate
2.1.4. Corticotropin-Releasing Hormone
2.1.5. Oxytocin
2.2. Functional Remodeling of Neural Circuits
2.2.1. Anterior Cingulate Cortex and Its Related Circuits
2.2.2. Prefrontal Cortex and Its Related Circuits
2.2.3. Insular Cortex and Its Related Circuits
2.2.4. Amygdala and Its Related Circuits
2.2.5. Hypothalamic and Its Related Circuits
2.2.6. Hippocampal and Its Related Circuits
2.2.7. Lateral Septal Nucleus and Its Related Circuits
2.2.8. VTA and Its Related Circuits
3. Neuroimmunity
4. Existing Treatment Strategies
5. Future Research Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Trewern, L.; Jackman, J.; McCartney, D.; Soni, A. Chronic pain: Definitions and diagnosis. BMJ 2023, 381, e076036. [Google Scholar] [CrossRef] [PubMed]
- Patel, R. The circuit basis for chronic pain and its comorbidities. Curr. Opin. Support. Palliat. Care 2023, 17, 156–160. [Google Scholar] [CrossRef]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic pain: An update on burden, best practices, and new advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef] [PubMed]
- Meda, R.T.; Nuguru, S.P.; Rachakonda, S.; Sripathi, S.; Khan, M.I.; Patel, N. Chronic Pain-Induced Depression: A Review of Prevalence and Management. Cureus 2022, 14, e28416. [Google Scholar] [CrossRef] [PubMed]
- McCarron, R.M.; Shapiro, B.; Rawles, J.; Luo, J. Depression. Ann. Intern. Med. 2021, 174, ITC65–ITC80. [Google Scholar] [CrossRef] [PubMed]
- Bair, M.J.; Robinson, R.L.; Katon, W.; Kroenke, K. Depression and pain comorbidity: A literature review. Arch. Intern. Med. 2003, 163, 2433–2445. [Google Scholar] [CrossRef]
- Borsook, D.; Linnman, C.; Faria, V.; Strassman, A.M.; Becerra, L.; Elman, I. Reward deficiency and anti-reward in pain chronification. Neurosci. Biobehav. Rev. 2016, 68, 282–297. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Pan, X.; Zhou, Y.; Wu, Z.; Ren, K.; Liu, H.; Huang, C.; Yu, Y.; He, T.; Zhang, X.; et al. Lateral septum-lateral hypothalamus circuit dysfunction in comorbid pain and anxiety. Mol. Psychiatry 2023, 28, 1090–1100. [Google Scholar] [CrossRef]
- Luo, A.; Wu, Z.; Li, S.; McReynolds, C.B.; Wang, D.; Liu, H.; Huang, C.; He, T.; Zhang, X.; Wang, Y.; et al. The soluble epoxide hydrolase inhibitor TPPU improves comorbidity of chronic pain and depression via the AHR and TSPO signaling. J. Transl. Med. 2023, 21, 71. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Liu, Y.Y.; Shao, S.; Song, W.; Chen, X.H.; Dong, Y.T.; Zhang, Y.M. The microglial innate immune receptors TREM-1 and TREM-2 in the anterior cingulate cortex (ACC) drive visceral hypersensitivity and depressive-like behaviors following DSS-induced colitis. Brain Behav. Immun. 2023, 112, 96–117. [Google Scholar] [CrossRef]
- Serafini, R.A.; Pryce, K.D.; Zachariou, V. The Mesolimbic Dopamine System in Chronic Pain and Associated Affective Comorbidities. Biol. Psychiatry 2020, 87, 64–73. [Google Scholar] [CrossRef]
- Fields, H.L.; Heinricher, M.M.; Mason, P. Neurotransmitters in nociceptive modulatory circuits. Annu. Rev. Neurosci. 1991, 14, 219–245. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Y.Z.; O’Malley, J.J.; De Preter, C.C.; Penzo, M.; Hoon, M.A. Neurons in the caudal ventrolateral medulla mediate descending pain control. Nat. Neurosci. 2023, 26, 594–605. [Google Scholar] [CrossRef]
- Suarez-Pereira, I.; Llorca-Torralba, M.; Bravo, L.; Camarena-Delgado, C.; Soriano-Mas, C.; Berrocoso, E. The Role of the Locus Coeruleus in Pain and Associated Stress-Related Disorders. Biol. Psychiatry 2022, 91, 786–797. [Google Scholar] [CrossRef]
- Zhou, W.; Jin, Y.; Meng, Q.; Zhu, X.; Bai, T.; Tian, Y.; Mao, Y.; Wang, L.; Xie, W.; Zhong, H.; et al. A neural circuit for comorbid depressive symptoms in chronic pain. Nat. Neurosci. 2019, 22, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Jia, W.B.; Xu, X.; Chen, R.; Wang, L.B.; Su, X.J.; Xu, P.F.; Liu, X.Q.; Wen, J.; Song, X.Y.; et al. A glutamatergic DRN-VTA pathway modulates neuropathic pain and comorbid anhedonia-like behavior in mice. Nat. Commun. 2023, 14, 5124. [Google Scholar] [CrossRef]
- Mohler, H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 2012, 62, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Pehrson, A.L.; Sanchez, C. Altered gamma-aminobutyric acid neurotransmission in major depressive disorder: A critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des. Devel Ther. 2015, 9, 603–624. [Google Scholar] [CrossRef] [PubMed]
- Goffer, Y.; Xu, D.; Eberle, S.E.; D’Amour, J.; Lee, M.; Tukey, D.; Froemke, R.C.; Ziff, E.B.; Wang, J. Calcium-permeable AMPA receptors in the nucleus accumbens regulate depression-like behaviors in the chronic neuropathic pain state. J. Neurosci. 2013, 33, 19034–19044. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cui, Y.; Sang, K.; Dong, Y.; Ni, Z.; Ma, S.; Hu, H. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 2018, 554, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Guida, F.; Luongo, L.; Marmo, F.; Romano, R.; Iannotta, M.; Napolitano, F.; Belardo, C.; Marabese, I.; D’Aniello, A.; De Gregorio, D.; et al. Palmitoylethanolamide reduces pain-related behaviors and restores glutamatergic synapses homeostasis in the medial prefrontal cortex of neuropathic mice. Mol. Brain 2015, 8, 47. [Google Scholar] [CrossRef]
- Tang, W.; Zhou, D.; Wang, S.; Hao, S.; Wang, X.; Helmy, M.; Zhu, J.; Wang, H. CRH Neurons in the Laterodorsal Tegmentum Mediate Acute Stress-induced Anxiety. Neurosci. Bull. 2021, 37, 999–1004. [Google Scholar] [CrossRef]
- Deussing, J.M.; Chen, A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol. Rev. 2018, 98, 2225–2286. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, A.V.; Rivier, C. Corticotropin-releasing factor (CRF) and endocrine responses to stress: CRF receptors, binding protein, and related peptides. Proc. Soc. Exp. Biol. Med. 1997, 215, 1–10. [Google Scholar] [CrossRef]
- Lv, S.S.; Lv, X.J.; Cai, Y.Q.; Hou, X.Y.; Zhang, Z.Z.; Wang, G.H.; Chen, L.Q.; Lv, N.; Zhang, Y.Q. Corticotropin-releasing hormone neurons control trigeminal neuralgia-induced anxiodepression via a hippocampus-to-prefrontal circuit. Sci. Adv. 2024, 10, eadj4196. [Google Scholar] [CrossRef] [PubMed]
- Neeck, G. Neuroendocrine and hormonal perturbations and relations to the serotonergic system in fibromyalgia patients. Scand. J. Rheumatol. Suppl. 2000, 113, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Matsuura, T.; Xue, M.; Chen, Q.Y.; Liu, R.H.; Lu, J.S.; Shi, W.; Fan, K.; Zhou, Z.; Miao, Z.; et al. Oxytocin in the anterior cingulate cortex attenuates neuropathic pain and emotional anxiety by inhibiting presynaptic long-term potentiation. Cell Rep. 2021, 36, 109411. [Google Scholar] [CrossRef]
- Messing, R.B.; Lytle, L.D. Serotonin-containing neurons: Their possible role in pain and analgesia. Pain 1977, 4, 1–21. [Google Scholar] [CrossRef]
- Bravo, L.; Torres-Sanchez, S.; Alba-Delgado, C.; Mico, J.A.; Berrocoso, E. Pain exacerbates chronic mild stress-induced changes in noradrenergic transmission in rats. Eur. Neuropsychopharmacol. 2014, 24, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Gaztelumendi, A.; Rojo, M.L.; Pazos, A.; Diaz, A. An altered spinal serotonergic system contributes to increased thermal nociception in an animal model of depression. Exp. Brain Res. 2014, 232, 1793–1803. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Jaime, H.; Sanchez-Salcedo, J.A.; Estevez-Cabrera, M.M.; Molina-Jimenez, T.; Cortes-Altamirano, J.L.; Alfaro-Rodriguez, A. Depression and Pain: Use of Antidepressants. Curr. Neuropharmacol. 2022, 20, 384–402. [Google Scholar] [CrossRef]
- Baudat, M.; de Kort, A.R.; van den Hove, D.L.A.; Joosten, E.A. Early-life exposure to selective serotonin reuptake inhibitors: Long-term effects on pain and affective comorbidities. Eur. J. Neurosci. 2022, 55, 295–317. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Lin, Y.; Chen, C.; Yan, B.; Liu, Q.; Zheng, H.; Wu, Y.; Zhou, C. DNMT1 Mediates Chronic Pain-Related Depression by Inhibiting GABAergic Neuronal Activation in the Central Amygdala. Biol. Psychiatry 2023, 94, 672–684. [Google Scholar] [CrossRef]
- Legarreta, M.D.; Sheth, C.; Prescot, A.P.; Renshaw, P.F.; McGlade, E.C.; Yurgelun-Todd, D.A. An exploratory proton MRS examination of gamma-aminobutyric acid, glutamate, and glutamine and their relationship to affective aspects of chronic pain. Neurosci. Res. 2021, 163, 10–17. [Google Scholar] [CrossRef]
- Ellerbrock, I.; Sandstrom, A.; Tour, J.; Fanton, S.; Kadetoff, D.; Schalling, M.; Jensen, K.B.; Sitnikov, R.; Kosek, E. Serotonergic gene-to-gene interaction is associated with mood and GABA concentrations but not with pain-related cerebral processing in fibromyalgia subjects and healthy controls. Mol. Brain 2021, 14, 81. [Google Scholar] [CrossRef]
- Henter, I.D.; de Sousa, R.T.; Zarate, C.A., Jr. Glutamatergic Modulators in Depression. Harv. Rev. Psychiatry 2018, 26, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Mitani, H.; Shirayama, Y.; Yamada, T.; Maeda, K.; Ashby, C.R., Jr.; Kawahara, R. Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2006, 30, 1155–1158. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, L.; Chen, Z.Y.; Zhu, J.S.; Hua, R.; Qin, X.; Cao, J.L.; Zhang, Y.M. Activation of corticotropin-releasing factor neurons and microglia in paraventricular nucleus precipitates visceral hypersensitivity induced by colorectal distension in rats. Brain Behav. Immun. 2016, 55, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Wang, Y.; Qi, X.H.; Shan, Q.H.; Huang, Z.H.; Chen, P.; Ma, X.; Yang, Y.P.; Swaab, D.F.; Samuels, B.A.; et al. SIRT1 in the BNST modulates chronic stress-induced anxiety of male mice via FKBP5 and corticotropin-releasing factor signaling. Mol. Psychiatry 2023, 28, 5101–5117. [Google Scholar] [CrossRef] [PubMed]
- Vachon-Presseau, E.; Roy, M.; Martel, M.O.; Caron, E.; Marin, M.F.; Chen, J.; Albouy, G.; Plante, I.; Sullivan, M.J.; Lupien, S.J.; et al. The stress model of chronic pain: Evidence from basal cortisol and hippocampal structure and function in humans. Brain 2013, 136, 815–827. [Google Scholar] [CrossRef]
- Liu, N.; Yang, H.; Han, L.; Ma, M. Oxytocin in Women’s Health and Disease. Front. Endocrinol. 2022, 13, 786271. [Google Scholar] [CrossRef]
- Xin, Q.; Bai, B.; Liu, W. The analgesic effects of oxytocin in the peripheral and central nervous system. Neurochem. Int. 2017, 103, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Gorka, S.M.; Fitzgerald, D.A.; Labuschagne, I.; Hosanagar, A.; Wood, A.G.; Nathan, P.J.; Phan, K.L. Oxytocin modulation of amygdala functional connectivity to fearful faces in generalized social anxiety disorder. Neuropsychopharmacology 2015, 40, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Sun, D.; Xing, X.; Chen, Q.; Lu, B.; Meng, B.; Yuan, H.; Mo, L.; Sheng, L.; Zheng, J.; et al. Intranasal oxytocin alleviates comorbid depressive symptoms in neuropathic pain via elevating hippocampal BDNF production in both female and male mice. Neuropharmacology 2024, 242, 109769. [Google Scholar] [CrossRef] [PubMed]
- Grieb, Z.A.; Lonstein, J.S. Oxytocin interactions with central dopamine and serotonin systems regulate different components of motherhood. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210062. [Google Scholar] [CrossRef]
- Li, L.F.; Yuan, W.; He, Z.X.; Ma, H.; Xun, Y.F.; Meng, L.R.; Zhu, S.J.; Wang, L.M.; Zhang, J.; Cai, W.Q.; et al. Reduced Consolation Behaviors in Physically Stressed Mandarin Voles: Involvement of Oxytocin, Dopamine D2, and Serotonin 1A Receptors Within the Anterior Cingulate Cortex. Int. J. Neuropsychopharmacol. 2020, 23, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Schweinhardt, P.; Bushnell, M.C. Neuroimaging of pain: Insights into normal and pathological pain mechanisms. Neurosci. Lett. 2012, 520, 129–130. [Google Scholar] [CrossRef]
- Bushnell, M.C.; Ceko, M.; Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013, 14, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, J.A.; Baliki, M.N.; Huang, L.; Baria, A.T.; Torbey, S.; Hermann, K.M.; Schnitzer, T.J.; Apkarian, A.V. Shape shifting pain: Chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 2013, 136, 2751–2768. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, M.J.; Ilarraz, C.; Kasanetz, F. Plasticity of Cortico-striatal Neurons of the Caudal Anterior Cingulate Cortex During Experimental Neuropathic Pain. Neuroscience 2023, 523, 91–104. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Wang, J.; Xia, S.H.; Gutstein, H.B.; Huang, Y.H.; Schluter, O.M.; Cao, J.L.; Dong, Y. Neuropathic pain generates silent synapses in thalamic projection to anterior cingulate cortex. Pain 2021, 162, 1322–1333. [Google Scholar] [CrossRef]
- Song, Q.; Wei, A.; Xu, H.; Gu, Y.; Jiang, Y.; Dong, N.; Zheng, C.; Wang, Q.; Gao, M.; Sun, S.; et al. An ACC-VTA-ACC positive-feedback loop mediates the persistence of neuropathic pain and emotional consequences. Nat. Neurosci. 2024, 27, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Becker, L.J.; Fillinger, C.; Waegaert, R.; Journee, S.H.; Hener, P.; Ayazgok, B.; Humo, M.; Karatas, M.; Thouaye, M.; Gaikwad, M.; et al. The basolateral amygdala-anterior cingulate pathway contributes to depression-like behaviors and comorbidity with chronic pain behaviors in male mice. Nat. Commun. 2023, 14, 2198. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.D.; Bao, S.T.; Gao, Y.; Chen, J.; Jia, T.; Yin, C.; Cao, J.L.; Xiao, C.; Zhou, C. The anterior cingulate cortex controls the hyperactivity in subthalamic neurons in male mice with comorbid chronic pain and depression. PLoS Biol. 2024, 22, e3002518. [Google Scholar] [CrossRef]
- Bagot, R.C.; Parise, E.M.; Pena, C.J.; Zhang, H.X.; Maze, I.; Chaudhury, D.; Persaud, B.; Cachope, R.; Bolanos-Guzman, C.A.; Cheer, J.F.; et al. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat. Commun. 2015, 6, 7062. [Google Scholar] [CrossRef] [PubMed]
- Chaudhury, D.; Walsh, J.J.; Friedman, A.K.; Juarez, B.; Ku, S.M.; Koo, J.W.; Ferguson, D.; Tsai, H.C.; Pomeranz, L.; Christoffel, D.J.; et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 2013, 493, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.B.; Liang, S.H.; Li, F.; Zhao, W.J.; Bai, Y.; Sun, Y.; Wu, Z.Y.; Ding, T.; Sun, Y.; Liu, H.X.; et al. dmPFC-vlPAG projection neurons contribute to pain threshold maintenance and antianxiety behaviors. J. Clin. Investig. 2020, 130, 6555–6570. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.Y.; Chen, Z.J.; Xiao, H.; Lin, Y.H.; Hu, Y.Y.; Chang, L.; Wu, H.Y.; Wang, P.; Lu, W.; Zhu, D.Y.; et al. nNOS-expressing neurons in the vmPFC transform pPVT-derived chronic pain signals into anxiety behaviors. Nat. Commun. 2020, 11, 2501. [Google Scholar] [CrossRef]
- Meng, X.; Yue, L.; Liu, A.; Tao, W.; Shi, L.; Zhao, W.; Wu, Z.; Zhang, Z.; Wang, L.; Zhang, X.; et al. Distinct basolateral amygdala excitatory inputs mediate the somatosensory and aversive-affective components of pain. J. Biol. Chem. 2022, 298, 102207. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Y.; Bao, S.T.; Wang, Y.D.; Jia, T.; Yin, C.; Xiao, C.; Zhou, C. Insula→Amygdala and Insula→Thalamus Pathways Are Involved in Comorbid Chronic Pain and Depression-Like Behavior in Mice. J. Neurosci. 2024, 44, e2062232024. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Huang, J.; Huang, G.B.; You, Q.L.; Yao, S.; Zhao, S.T.; Liu, J.; Wu, C.H.; Chen, G.F.; Liu, S.M.; et al. Elevated prelimbic cortex-to-basolateral amygdala circuit activity mediates comorbid anxiety-like behaviors associated with chronic pain. J. Clin. Investig. 2023, 133, e166356. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.Q.; Wu, Y.; Tao, Q.; Shen, Y.; An, X.; Liu, D.; Xu, Z. Direct paraventricular thalamus-basolateral amygdala circuit modulates neuropathic pain and emotional anxiety. Neuropsychopharmacology 2024, 49, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhou, W.; Jin, Y.; Tang, H.; Cao, P.; Mao, Y.; Xie, W.; Zhang, X.; Zhao, F.; Luo, M.H.; et al. A Central Amygdala Input to the Parafascicular Nucleus Controls Comorbid Pain in Depression. Cell Rep. 2019, 29, 3847–3858.e5. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Huang, X.; Zheng, J.; Zhang, Y.; Ruan, X. An NTS-CeA projection modulates depression-like behaviors in a mouse model of chronic pain. Neurobiol. Dis. 2022, 174, 105893. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, A.; Bair-Marshall, C.; Xu, H.; Jee, H.J.; Zhu, E.; Sun, M.; Zhang, Q.; Lefevre, A.; Chen, Z.S.; et al. Oxytocin promotes prefrontal population activity via the PVN-PFC pathway to regulate pain. Neuron 2023, 111, 1795–1811.e7. [Google Scholar] [CrossRef]
- Li, Y.J.; Du, W.J.; Liu, R.; Zan, G.Y.; Ye, B.L.; Li, Q.; Sheng, Z.H.; Yuan, Y.W.; Song, Y.J.; Liu, J.G.; et al. Paraventricular nucleus-central amygdala oxytocinergic projection modulates pain-related anxiety-like behaviors in mice. CNS Neurosci. Ther. 2023, 29, 3493–3506. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Lefevre, A.; Althammer, F.; Clauss Creusot, E.; Lapies, O.; Petitjean, H.; Hilfiger, L.; Kerspern, D.; Melchior, M.; Kuppers, S.; et al. An analgesic pathway from parvocellular oxytocin neurons to the periaqueductal gray in rats. Nat. Commun. 2023, 14, 1066. [Google Scholar] [CrossRef]
- Gu, H.W.; Zhang, G.F.; Liu, P.M.; Pan, W.T.; Tao, Y.X.; Zhou, Z.Q.; Yang, J.J. Contribution of activating lateral hypothalamus-lateral habenula circuit to nerve trauma-induced neuropathic pain in mice. Neurobiol. Dis. 2023, 182, 106155. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, W.; Chen, D.; Zhou, D.; Gao, Y.; Bian, Y.; Xu, Y.; Xia, S.H.; Fang, T.; Yang, J.X.; et al. Disinhibition of Mesolimbic Dopamine Circuit by the Lateral Hypothalamus Regulates Pain Sensation. J. Neurosci. 2023, 43, 4525–4540. [Google Scholar] [CrossRef]
- Yamauchi, N.; Sato, K.; Sato, K.; Murakawa, S.; Hamasaki, Y.; Nomura, H.; Amano, T.; Minami, M. Chronic pain-induced neuronal plasticity in the bed nucleus of the stria terminalis causes maladaptive anxiety. Sci. Adv. 2022, 8, eabj5586. [Google Scholar] [CrossRef]
- Anthony, T.E.; Dee, N.; Bernard, A.; Lerchner, W.; Heintz, N.; Anderson, D.J. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 2014, 156, 522–536. [Google Scholar] [CrossRef]
- Chen, Y.H.; Wu, J.L.; Hu, N.Y.; Zhuang, J.P.; Li, W.P.; Zhang, S.R.; Li, X.W.; Yang, J.M.; Gao, T.M. Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J. Clin. Investig. 2021, 131, e145692. [Google Scholar] [CrossRef] [PubMed]
- Sellmeijer, J.; Mathis, V.; Hugel, S.; Li, X.H.; Song, Q.; Chen, Q.Y.; Barthas, F.; Lutz, P.E.; Karatas, M.; Luthi, A.; et al. Hyperactivity of Anterior Cingulate Cortex Areas 24a/24b Drives Chronic Pain-Induced Anxiodepressive-like Consequences. J. Neurosci. 2018, 38, 3102–3115. [Google Scholar] [CrossRef] [PubMed]
- Bliss, T.V.; Collingridge, G.L.; Kaang, B.K.; Zhuo, M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat. Rev. Neurosci. 2016, 17, 485–496. [Google Scholar] [CrossRef]
- Ru, Q.; Lu, Y.; Saifullah, A.B.; Blanco, F.A.; Yao, C.; Cata, J.P.; Li, D.P.; Tolias, K.F.; Li, L. TIAM1-mediated synaptic plasticity underlies comorbid depression-like and ketamine antidepressant-like actions in chronic pain. J. Clin. Investig. 2022, 132, e158545. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.D.; MacCallum, C.; Margolese, S.; Walsh, Z.; Wright, P.; Daeninck, P.J.; Mandarino, E.; Lacasse, G.; Kaur Deol, J.; de Freitas, L.; et al. Clinical Practice Guidelines for Cannabis and Cannabinoid-Based Medicines in the Management of Chronic Pain and Co-Occurring Conditions. Cannabis Cannabinoid Res. 2024, 9, 669–687. [Google Scholar] [CrossRef] [PubMed]
- Buffington, A.L.; Hanlon, C.A.; McKeown, M.J. Acute and persistent pain modulation of attention-related anterior cingulate fMRI activations. Pain 2005, 113, 172–184. [Google Scholar] [CrossRef]
- Phelps, C.E.; Navratilova, E.; Porreca, F. Cognition in the Chronic Pain Experience: Preclinical Insights. Trends Cogn. Sci. 2021, 25, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Raecke, R.; Niemeier, A.; Ihle, K.; Ruether, W.; May, A. Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J. Neurosci. 2009, 29, 13746–13750. [Google Scholar] [CrossRef] [PubMed]
- Fritz, H.C.; McAuley, J.H.; Wittfeld, K.; Hegenscheid, K.; Schmidt, C.O.; Langner, S.; Lotze, M. Chronic Back Pain Is Associated With Decreased Prefrontal and Anterior Insular Gray Matter: Results From a Population-Based Cohort Study. J. Pain 2016, 17, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Kummer, K.K.; Mitric, M.; Kalpachidou, T.; Kress, M. The Medial Prefrontal Cortex as a Central Hub for Mental Comorbidities Associated with Chronic Pain. Int. J. Mol. Sci. 2020, 21, 3440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gadotti, V.M.; Chen, L.; Souza, I.A.; Stemkowski, P.L.; Zamponi, G.W. Role of Prelimbic GABAergic Circuits in Sensory and Emotional Aspects of Neuropathic Pain. Cell Rep. 2015, 12, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.J.; Huang, M.; Meltzer, H.; Martina, M. Reduced Glutamatergic Currents and Dendritic Branching of Layer 5 Pyramidal Cells Contribute to Medial Prefrontal Cortex Deactivation in a Rat Model of Neuropathic Pain. Front. Cell. Neurosci. 2016, 10, 133. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, T.; Kelly, C.J.; Martina, M. Differential Rearrangement of Excitatory Inputs to the Medial Prefrontal Cortex in Chronic Pain Models. Front. Neural Circuits 2021, 15, 791043. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.Z.; Zhang, W.H.; Zheng, Z.H.; Zou, J.X.; Liu, X.X.; Huang, S.H.; You, W.J.; He, Y.; Zhang, J.Y.; Wang, X.D.; et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat. Commun. 2020, 11, 2221. [Google Scholar] [CrossRef]
- Cai, Y.; Ge, J.; Pan, Z.Z. The projection from dorsal medial prefrontal cortex to basolateral amygdala promotes behaviors of negative emotion in rats. Front. Neurosci. 2024, 18, 1331864. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, C.M.; Schrepf, A.; Vatansever, D.; Larkin, T.E.; Mawla, I.; Ichesco, E.; Kochlefl, L.; Harte, S.E.; Clauw, D.J.; Mashour, G.A.; et al. Functional and neurochemical disruptions of brain hub topology in chronic pain. Pain 2019, 160, 973–983. [Google Scholar] [CrossRef]
- Zhu, H.; Tao, Y.; Wang, S.; Zhu, X.; Lin, K.; Zheng, N.; Chen, L.M.; Xu, F.; Wu, R. fMRI, LFP, and anatomical evidence for hierarchical nociceptive routing pathway between somatosensory and insular cortices. Neuroimage 2024, 289, 120549. [Google Scholar] [CrossRef] [PubMed]
- Mutschler, I.; Ball, T.; Wankerl, J.; Strigo, I.A. Pain and emotion in the insular cortex: Evidence for functional reorganization in major depression. Neurosci. Lett. 2012, 520, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Beldarrain, M.; Oroz, I.; Zapirain, B.G.; Ruanova, B.F.; Fernandez, Y.G.; Cabrera, A.; Anton-Ladislao, A.; Aguirre-Larracoechea, U.; Garcia-Monco, J.C. Right fronto-insular white matter tracts link cognitive reserve and pain in migraine patients. J. Headache Pain 2015, 17, 4. [Google Scholar] [CrossRef]
- Deng, H.; Xiao, X.; Yang, T.; Ritola, K.; Hantman, A.; Li, Y.; Huang, Z.J.; Li, B. A genetically defined insula-brainstem circuit selectively controls motivational vigor. Cell 2021, 184, 6344–6360.e18. [Google Scholar] [CrossRef]
- Tesic, I.; Pigoni, A.; Moltrasio, C.; Brambilla, P.; Delvecchio, G. How does feeling pain look like in depression: A review of functional neuroimaging studies. J. Affect. Disord. 2023, 339, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Quide, Y.; Norman-Nott, N.; Hesam-Shariati, N.; McAuley, J.H.; Gustin, S.M. Depressive symptoms moderate functional connectivity within the emotional brain in chronic pain. BJPsych Open 2023, 9, e80. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, A.N.; Greer, S.M.; Saletin, J.M.; Harvey, A.G.; Nitschke, J.B.; Walker, M.P. Tired and apprehensive: Anxiety amplifies the impact of sleep loss on aversive brain anticipation. J. Neurosci. 2013, 33, 10607–10615. [Google Scholar] [CrossRef] [PubMed]
- Blackburn-Munro, G. Hypothalamo-pituitary-adrenal axis dysfunction as a contributory factor to chronic pain and depression. Curr. Pain Headache Rep. 2004, 8, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Mutso, A.A.; Radzicki, D.; Baliki, M.N.; Huang, L.; Banisadr, G.; Centeno, M.V.; Radulovic, J.; Martina, M.; Miller, R.J.; Apkarian, A.V. Abnormalities in hippocampal functioning with persistent pain. J. Neurosci. 2012, 32, 5747–5756. [Google Scholar] [CrossRef]
- Reckziegel, D.; Abdullah, T.; Wu, B.; Wu, B.; Huang, L.; Schnitzer, T.J.; Apkarian, A.V. Hippocampus shape deformation: A potential diagnostic biomarker for chronic back pain in women. Pain 2021, 162, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Wu, X.; Chen, Y.; Liang, Z.; Jiang, J.; Misrani, A.; Su, Y.; Peng, Y.; Chen, J.; Tang, B.; et al. Pelvic Pain Alters Functional Connectivity Between Anterior Cingulate Cortex and Hippocampus in Both Humans and a Rat Model. Front. Syst. Neurosci. 2021, 15, 642349. [Google Scholar] [CrossRef] [PubMed]
- Noorani, A.; Hung, P.S.; Zhang, J.Y.; Sohng, K.; Laperriere, N.; Moayedi, M.; Hodaie, M. Pain Relief Reverses Hippocampal Abnormalities in Trigeminal Neuralgia. J. Pain 2022, 23, 141–155. [Google Scholar] [CrossRef]
- Ploghaus, A.; Narain, C.; Beckmann, C.F.; Clare, S.; Bantick, S.; Wise, R.; Matthews, P.M.; Rawlins, J.N.; Tracey, I. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J. Neurosci. 2001, 21, 9896–9903. [Google Scholar] [CrossRef]
- Fasick, V.; Spengler, R.N.; Samankan, S.; Nader, N.D.; Ignatowski, T.A. The hippocampus and TNF: Common links between chronic pain and depression. Neurosci. Biobehav. Rev. 2015, 53, 139–159. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zou, Y.; Liu, B.; Yang, R.; Yang, J.; Sun, M.; Li, Z.; Xu, X.; Li, G.; Liu, S.; et al. Contribution of the P2X4 Receptor in Rat Hippocampus to the Comorbidity of Chronic Pain and Depression. ACS Chem. Neurosci. 2020, 11, 4387–4397. [Google Scholar] [CrossRef]
- Yang, R.; Yang, J.; Li, Z.; Su, R.; Zou, L.; Li, L.; Xu, X.; Li, G.; Liu, S.; Liang, S.; et al. Pinocembrin Inhibits P2X4 Receptor-Mediated Pyroptosis in Hippocampus to Alleviate the Behaviours of Chronic Pain and Depression Comorbidity in Rats. Mol. Neurobiol. 2022, 59, 7119–7133. [Google Scholar] [CrossRef] [PubMed]
- Mahadevia, D.; Saha, R.; Manganaro, A.; Chuhma, N.; Ziolkowski-Blake, A.; Morgan, A.A.; Dumitriu, D.; Rayport, S.; Ansorge, M.S. Dopamine promotes aggression in mice via ventral tegmental area to lateral septum projections. Nat. Commun. 2021, 12, 6796. [Google Scholar] [CrossRef]
- Wirtshafter, H.S.; Wilson, M.A. Lateral septum as a nexus for mood, motivation, and movement. Neurosci. Biobehav. Rev. 2021, 126, 544–559. [Google Scholar] [CrossRef]
- Pantazis, C.B.; Aston-Jones, G. Lateral septum inhibition reduces motivation for cocaine: Reversal by diazepam. Addict. Biol. 2020, 25, e12742. [Google Scholar] [CrossRef] [PubMed]
- Zahm, D.S.; Grosu, S.; Williams, E.A.; Qin, S.; Berod, A. Neurons of origin of the neurotensinergic plexus enmeshing the ventral tegmental area in rat: Retrograde labeling and in situ hybridization combined. Neuroscience 2001, 104, 841–851. [Google Scholar] [CrossRef]
- Hagiwara, H.; Kimura, F.; Mitsushima, D.; Funabashi, T. Formalin-induced nociceptive behavior and c-Fos expression in middle-aged female rats. Physiol. Behav. 2010, 100, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Xu, J.; Lin, L.; Jia, M.; Xue, X.; Wang, Q.; Chen, D.; Huang, Z.; Wang, Y. Chemotherapeutic drug elemene induces pain and anxiety-like behaviors by activating GABAergic neurons in the lateral septum of mice. Biochem. Biophys. Res. Commun. 2024, 699, 149548. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, G.M.; Nguyen, R.; Bang, J.Y.; Aqrabawi, A.J.; Tran, M.M.; Seo, D.K.; Richards, B.A.; Kim, J.C. Bidirectional Control of Anxiety-Related Behaviors in Mice: Role of Inputs Arising from the Ventral Hippocampus to the Lateral Septum and Medial Prefrontal Cortex. Neuropsychopharmacology 2017, 42, 1715–1728. [Google Scholar] [CrossRef] [PubMed]
- Yadin, E.; Thomas, E.; Grishkat, H.L.; Strickland, C.E. The role of the lateral septum in anxiolysis. Physiol. Behav. 1993, 53, 1077–1083. [Google Scholar] [CrossRef]
- Sheehan, T.P.; Chambers, R.A.; Russell, D.S. Regulation of affect by the lateral septum: Implications for neuropsychiatry. Brain Res. Rev. 2004, 46, 71–117. [Google Scholar] [CrossRef] [PubMed]
- Markovic, T.; Pedersen, C.E.; Massaly, N.; Vachez, Y.M.; Ruyle, B.; Murphy, C.A.; Abiraman, K.; Shin, J.H.; Garcia, J.J.; Yoon, H.J.; et al. Pain induces adaptations in ventral tegmental area dopamine neurons to drive anhedonia-like behavior. Nat. Neurosci. 2021, 24, 1601–1613. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Tang, Q.Q.; Yin, C.; Song, Y.; Liu, Y.; Yang, J.X.; Liu, H.; Zhang, Y.M.; Wu, S.Y.; Song, Y.; et al. Brain-derived neurotrophic factor-mediated projection-specific regulation of depressive-like and nociceptive behaviors in the mesolimbic reward circuitry. Pain 2018, 159, 175. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, D.; Asaoka, Y.; Kimura, K.; Hara, R.; Arakaki, S.; Sakasai, K.; Suzuki, H.; Yamauchi, N.; Nomura, H.; Amano, T.; et al. Tonic Suppression of the Mesolimbic Dopaminergic System by Enhanced Corticotropin-Releasing Factor Signaling Within the Bed Nucleus of the Stria Terminalis in Chronic Pain Model Rats. J. Neurosci. 2019, 39, 8376–8385. [Google Scholar] [CrossRef]
- Barcelon, E.E.; Cho, W.H.; Jun, S.B.; Lee, S.J. Brain Microglial Activation in Chronic Pain-Associated Affective Disorder. Front. Neurosci. 2019, 13, 213. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Yang, J.; Zhan, M.; Hu, X.; Liu, Y.; Yu, L.; Yan, X.; Liang, S.; Zhang, R.; et al. P2Y12 receptor as a new target for electroacupuncture relieving comorbidity of visceral pain and depression of inflammatory bowel disease. Chin. Med. 2021, 16, 139. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.M.; Castonguay, A.; Taylor, A.J.; Murphy, N.P.; Ghogha, A.; Cook, C.; Xue, L.; Olmstead, M.C.; De Koninck, Y.; Evans, C.J.; et al. Microglia disrupt mesolimbic reward circuitry in chronic pain. J. Neurosci. 2015, 35, 8442–8450. [Google Scholar] [CrossRef]
- Chen, L.Q.; Lv, X.J.; Guo, Q.H.; Lv, S.S.; Lv, N.; Xu, W.D.; Yu, J.; Zhang, Y.Q. Asymmetric activation of microglia in the hippocampus drives anxiodepressive consequences of trigeminal neuralgia in rodents. Br. J. Pharmacol. 2023, 180, 1090–1113. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Han, Q.Q.; Gong, W.Q.; Pan, D.H.; Wang, L.Z.; Hu, W.; Yang, M.; Li, B.; Yu, J.; Liu, Q. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J. Neuroinflammation 2018, 15, 21. [Google Scholar] [CrossRef]
- Agalave, N.M.; Larsson, M.; Abdelmoaty, S.; Su, J.; Baharpoor, A.; Lundback, P.; Palmblad, K.; Andersson, U.; Harris, H.; Svensson, C.I. Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain 2014, 155, 1802–1813. [Google Scholar] [CrossRef] [PubMed]
- Sorge, R.E.; Mapplebeck, J.C.; Rosen, S.; Beggs, S.; Taves, S.; Alexander, J.K.; Martin, L.J.; Austin, J.S.; Sotocinal, S.G.; Chen, D.; et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 2015, 18, 1081–1083. [Google Scholar] [CrossRef]
- Wei, N.; Guo, Z.; Qiu, M.; Ye, R.; Shao, X.; Liang, Y.; Liu, B.; Fang, J.; Fang, J.; Du, J. Astrocyte Activation in the ACC Contributes to Comorbid Anxiety in Chronic Inflammatory Pain and Involves in The Excitation-Inhibition Imbalance. Mol. Neurobiol. 2024, 61, 6934–6949. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Dai, L.; Xu, D.; Wang, Y.; Bai, L.; Chen, X.; Li, M.; Yang, S.; Tang, Y. Astrocyte secretes IL-6 to modulate PSD-95 palmitoylation in basolateral amygdala and depression-like behaviors induced by peripheral nerve injury. Brain Behav. Immun. 2022, 104, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Chowen, J.A.; Argente-Arizon, P.; Freire-Regatillo, A.; Argente, J. Sex differences in the neuroendocrine control of metabolism and the implication of astrocytes. Front. Neuroendocrinol. 2018, 48, 3–12. [Google Scholar] [CrossRef]
- Morrison, H.W.; Filosa, J.A. Sex differences in astrocyte and microglia responses immediately following middle cerebral artery occlusion in adult mice. Neuroscience 2016, 339, 85–99. [Google Scholar] [CrossRef]
- Shubayev, V.I.; Angert, M.; Dolkas, J.; Campana, W.M.; Palenscar, K.; Myers, R.R. TNFalpha-induced MMP-9 promotes macrophage recruitment into injured peripheral nerve. Mol. Cell Neurosci. 2006, 31, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yu, S.; Long, Y.; Shi, A.; Deng, J.; Ma, Y.; Wen, J.; Li, X.; Liu, S.; Zhang, Y.; et al. Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders. Front. Immunol. 2022, 13, 985378. [Google Scholar] [CrossRef] [PubMed]
- Cervenka, I.; Agudelo, L.Z.; Ruas, J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 2017, 357, eaaf9794. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.R.; Chamessian, A.; Zhang, Y.Q. Pain regulation by non-neuronal cells and inflammation. Science 2016, 354, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Chen, O.; Donnelly, C.R.; Ji, R.R. Regulation of pain by neuro-immune interactions between macrophages and nociceptor sensory neurons. Curr. Opin. Neurobiol. 2020, 62, 17–25. [Google Scholar] [CrossRef]
- Mai, C.L.; Tan, Z.; Xu, Y.N.; Zhang, J.J.; Huang, Z.H.; Wang, D.; Zhang, H.; Gui, W.S.; Zhang, J.; Lin, Z.J.; et al. CXCL12-mediated monocyte transmigration into brain perivascular space leads to neuroinflammation and memory deficit in neuropathic pain. Theranostics 2021, 11, 1059–1078. [Google Scholar] [CrossRef] [PubMed]
- Garrity, R.; Arora, N.; Haque, M.A.; Weis, D.; Trinh, R.T.; Neerukonda, S.V.; Kumari, S.; Cortez, I.; Ubogu, E.E.; Mahalingam, R.; et al. Fibroblast-derived PI16 sustains inflammatory pain via regulation of CD206(+) myeloid cells. Brain Behav. Immun. 2023, 112, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Billi, A.C.; Kahlenberg, J.M.; Gudjonsson, J.E. Sex bias in autoimmunity. Curr. Opin. Rheumatol. 2019, 31, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.Q.; Sankaranarayanan, I.; Price, T.J.; Tavares-Ferreira, D. Sex-differences in prostaglandin signaling: A semi-systematic review and characterization of PTGDS expression in human sensory neurons. Sci. Rep. 2023, 13, 4670. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.R.; Shiers, S.; Caruso, J.P.; Tavares-Ferreira, D.; Sankaranarayanan, I.; Uhelski, M.L.; Li, Y.; North, R.Y.; Tatsui, C.; Dussor, G.; et al. RNA profiling of human dorsal root ganglia reveals sex differences in mechanisms promoting neuropathic pain. Brain 2023, 146, 749–766. [Google Scholar] [CrossRef]
- Luo, X.; Chen, O.; Wang, Z.; Bang, S.; Ji, J.; Lee, S.H.; Huh, Y.; Furutani, K.; He, Q.; Tao, X.; et al. IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron 2021, 109, 2691–2706.e5. [Google Scholar] [CrossRef] [PubMed]
- Greden, J.F. Treating depression and pain. J. Clin. Psychiatry 2009, 70, e16. [Google Scholar] [CrossRef]
- Boll, S.; Ueltzhoeffer, K.; Roth, C.; Bertsch, K.; Desch, S.; Nees, F.; Grinevich, V.; Herpertz, S.C. Pain-modulating effects of oxytocin in patients with chronic low back pain. Neuropharmacology 2020, 171, 108105. [Google Scholar] [CrossRef]
- Tzabazis, A.; Kori, S.; Mechanic, J.; Miller, J.; Pascual, C.; Manering, N.; Carson, D.; Klukinov, M.; Spierings, E.; Jacobs, D.; et al. Oxytocin and Migraine Headache. Headache 2017, 57 (Suppl. 2), 64–75. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.Y.; Satyanarayanan, S.K.; Lin, Y.W.; Su, K.P. Clinical efficacy and immune effects of acupuncture in patients with comorbid chronic pain and major depression disorder: A double-blinded, randomized controlled crossover study. Brain Behav. Immun. 2023, 110, 339–347. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Li, H.; Xie, D.; Chen, R.; Chen, M. Acupuncture for Chronic Pain-Related Depression: A Systematic Review and Meta-Analysis. Pain Res. Manag. 2021, 2021, 6617075. [Google Scholar] [CrossRef] [PubMed]
- Somaa, F.A.; de Graaf, T.A.; Sack, A.T. Transcranial Magnetic Stimulation in the Treatment of Neurological Diseases. Front. Neurol. 2022, 13, 793253. [Google Scholar] [CrossRef]
- Lefaucheur, J.P. Transcranial magnetic stimulation. Handb. Clin. Neurol. 2019, 160, 559–580. [Google Scholar] [CrossRef] [PubMed]
Neurotransmitters | Source | Receptors and Main Locations | Functions | Ref |
---|---|---|---|---|
Monoaminergic neurotransmitters (5-HT, NE, DA) | 5-HT:RVM NE:DLPT DA:VTA | 5-HT1 to 5-HT7 receptors: cortex, hippocampus, and raphe nuclei, basal ganglia α- and β-adrenergic receptors: smooth muscles, cortex, and hippocampus, brainstem, pre-synaptic terminals D1-like and D2-like receptors: striatum, prefrontal cortex, and limbic system, basal ganglia | 5-HT and NE project to the dorsal horn of the spinal cord to exert inhibitory effects on pain transmission as well as to various brain regions involved in the regulation of emotions, motor function, and cognition | [12,13,14,15,16,17] |
Gamma-aminobutyric acid (GABA) | CeA, ACC | GABA_A and GABA_B receptors: cortex, hippocampus, basal ganglia, cerebellum, and spinal cord | GABA mediates inhibition of neuronal activity primarily through GABA_A and GABA_B receptors and a reduction in GABA levels may exacerbate pain and emotional symptoms | [18,19] |
Glutamate (Glu) | NAc, LHb, PFC | NMDA receptors, AMPA receptors, Kainate receptors, and metabotropic glutamate receptors: cortex, hippocampus, basal ganglia, cerebellum, and spinal cord | Glutamate is involved in the neural networks of pain perception and emotional regulation and also participates in central sensitization through the activation of spinal cord neurons via AMPA and NMDA receptors | [20,21,22] |
Corticotropin-releasing hormone (CRH) | PV, LC/NE, mPFC | CRH receptor 1 (CRH-R1) and CRH receptor 2 (CRH-R2): hypothalamus, cortex, amygdala, brainstem, and various peripheral tissues | CRH neurons play a role in the stress hypothesis of anxiety and depression through the hypothalamic–pituitary–adrenal axis, whose activation may indirectly reflect increased serotonergic tension in the central nervous system | [23,24,25,26,27] |
Oxytocin | PVN, SON | oxytocin receptors (OTR): hypothalamus, brainstem, cortex, amygdala, uterus, mammary glands, and various other peripheral tissues | Oxytocin selectively alleviates anxiety-related behaviors and presynaptic long-term potentiation associated with anxiety caused by chronic pain | [28] |
Neural Circuits | Neurotransmitters | Receptors | Neurotransmitter Functions | Key Findings | Ref |
---|---|---|---|---|---|
ACCGlu-VTAGABA-VTADA-ACCGlu | DA | D2R | Excitatory | Forming a positive feedback loop that mediates the mutual promotion of chronic pain comorbidity | [53] |
BLA-ACC | / | / | / | Overactive in pain comorbidity | [54] |
ACC-STN | / | / | / | Overactive in chronic pain | [55] |
mPFCGlu-NAc | Glu | / | Excitatory | Activation of the circuit alleviates depression induced by chronic stress | [56] |
VTADA-mPFC | / | / | / | Inhibition of this circuit can exacerbate chronic stress-induced depression | [57] |
dmPFCGABA→vlPAGGlu | GABA/Glu | GABA_AR/mGluR1 | Inhibitory/Excitatory | Activation of the circuit, or administration of GABA_AR antagonists and mGluR1 to the dmPFC produced analgesic and anxiolytic effects | [58] |
pPVTGlu-mPFCnNOS+ | NO, Glu | AMPA | Nitrosylate the AMPA receptor | pPVT excitatory neurons drive chronic pain-induced anxiety through activation of vmPFC nNOS-expressing neurons, resulting in NO-mediated AMPAR trafficking in vmPFC pyramidal neurons | [59] |
ICGlu-BLAGlu | / | / | / | Overactive in chronic pain | [60] |
PICGlu-BLA/VM | / | / | / | Both projections were enhanced accompanied by hyperactivity of PIC, BLA, and VM neurons in SNI mice | [61] |
PrL-BLA | / | / | / | Inhibition of the circuit improved anxiety but not pain sensitivity | [62] |
DRN5-HT-CeASOM-LHb | 5-HT | 5-HT2AR | Excitatory | Activation of this circuit can alleviate pain comorbid depression | [16] |
PVTGlu-BLA | Glu | AMPA, NMDA | Excitatory | Chronic pain increases the activity of PVTGlu, resulting in increased excitatory inputs to BLA | [63] |
CeAGABA-PFGlu-S2 | GABA | GABA_AR | Inhibitory | Enhanced inhibition of the circuit was found in mice with comorbid depressive symptoms of pain | [64] |
NTSGlu-CeASOM | / | / | / | Activated in pain comorbidity | [65] |
PVNoxytocin-PFCGlu | Oxytocin | OTR | Excitatory | Oxytocin in the PVN-PFC circuit alleviates pain and its affective component | [66] |
PVNoxytocin-CeA | Oxytocin | / | / | Oxytocin has an anxiolytic effect, and activation of this circuit exerts analgesic and anxiolytic effects | [67] |
PVNoxytocin-vlPAGGABA | Oxytocin | OTR | Excitatory | Activation of this circuit induces potent analgesic effects without affecting the affective component of pain | [68] |
LHGlu-LHb | / | / | / | Overactive in chronic pain | [69] |
LHGABA-VTAGABA-VTADA | DA | / | / | The circuit regulated pain sensation by targeting local GABAergic interneurons to disinhibit the mesolimbic DA circuit | [70] |
LH-BNST | / | / | / | Chronic pain increases inhibitory synaptic inputs and induces anxiety-like behaviors | [71] |
LSGABA-LH | / | / | / | LS GABAergic neurons are activated in pain comorbidity with increased projections to the LH | [9] |
vHPCGlu-mPFCGABA | CRH | CRHR1, GABA_AR | Inhibitory | In pain comorbidity, excitatory synaptic transmission in this circuit is enhanced, leading to feedforward inhibition of the mPFC via CRHR1 | [26] |
LSCrfr2-AHA | Corticosteroid | CRFR2 | / | Activation of LSCrfr2 neurons can induce both behavioral and neuroendocrine dimensions of a persistent anxiety state | [72] |
IL-LS | / | / | / | IL-LS projections promote anxiety-related behaviors | [73] |
DRNVGLUT3-VTADA | Glu, DA | D2R, D1R | Excitatory | Activation of this circuit releases glutamate, promoting DA release in the medial shell of the nucleus accumbens, which exerts analgesic effects via D2 receptors and counteracts anhedonia via D1 receptors | [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; She, K.; Zhu, P.; Li, Z.; Liu, J.; Luo, F.; Ye, Y. Chronic Pain and Comorbid Emotional Disorders: Neural Circuitry and Neuroimmunity Pathways. Int. J. Mol. Sci. 2025, 26, 436. https://doi.org/10.3390/ijms26020436
Li M, She K, Zhu P, Li Z, Liu J, Luo F, Ye Y. Chronic Pain and Comorbid Emotional Disorders: Neural Circuitry and Neuroimmunity Pathways. International Journal of Molecular Sciences. 2025; 26(2):436. https://doi.org/10.3390/ijms26020436
Chicago/Turabian StyleLi, Meihong, Kepeng She, Pengfei Zhu, Zhen Li, Jieqiong Liu, Fang Luo, and Yingze Ye. 2025. "Chronic Pain and Comorbid Emotional Disorders: Neural Circuitry and Neuroimmunity Pathways" International Journal of Molecular Sciences 26, no. 2: 436. https://doi.org/10.3390/ijms26020436
APA StyleLi, M., She, K., Zhu, P., Li, Z., Liu, J., Luo, F., & Ye, Y. (2025). Chronic Pain and Comorbid Emotional Disorders: Neural Circuitry and Neuroimmunity Pathways. International Journal of Molecular Sciences, 26(2), 436. https://doi.org/10.3390/ijms26020436