Pathophysiology of Group 3 Pulmonary Hypertension Associated with Lung Diseases and/or Hypoxia
Abstract
:1. Introduction
1.1. Definition of Pulmonary Hypertension
1.2. Clinical Classification of Pulmonary Hypertension
2. Pathogenesis of Group 3 Pulmonary Hypertension
3. Causal Factors of Pathogenesis of Group 3 PH
3.1. Hypoxic Pulmonary Vasoconstriction
3.2. Cigarette Smoke
3.3. Decrease in Pulmonary Vascular Beds
3.4. Hypoxia-Inducible Factors (HIFs)
3.5. Endothelial Dysfunction
3.5.1. Endothelin-1
3.5.2. Nitric Oxide
3.5.3. Prostacyclin (PGI2)
3.5.4. ErbB3
3.6. Inflammation
3.7. Oxidative Stress
3.8. Genetic Predisposition
3.9. Comorbidities
4. Consequential Factors of Pathogenesis of Group 3 PH
4.1. Pulmonary Vascular Remodeling
4.2. Endothelial-to-Mesenchymal Transition (EndMT)
4.3. Mitochondrial Dysfunction
4.4. MicroRNA (miRNA)
5. Right Heart Failure
6. Clinical Implications
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
2-HOBA | 2-hydroxybenzylamine |
5-HT | 5-hydroxytryptamine |
5-HTT | 5-hydroxytryptamine transporter |
6MWD | 6-min walk distance |
BMPR2 | bone morphogenetic protein receptor 2 |
COPD | chronic obstructive pulmonary disease |
eNOS | endothelial nitric oxide synthase |
HIF | hypoxia-inducible factor |
IsoLGs | isolevuglandins |
IL | interleukin |
ILD | interstitial lung disease |
MCP-1 | monocyte chemoattractant protein-1 |
mPAP | mean pulmonary artery pressure |
PAEC | pulmonary artery endothelial cell |
PAP | pulmonary arterial pressure |
PASMC | pulmonary artery smooth muscle cell |
PGI2 | prostacyclin |
PH | pulmonary hypertension |
PPHN | persistent pulmonary hypertension of the newborn |
PVR | pulmonary vascular resistance |
ROS | reactive oxygen species |
SMC | smooth muscle cell |
TRP | transient receptor potential |
TRPC | transient receptor potential canonical |
TRPV | transient receptor potential vanilloid |
References
- Mocumbi, A.; Humbert, M.; Saxena, A.; Jing, Z.C.; Sliwa, K.; Thienemann, F.; Archer, S.L.; Stewart, S. Pulmonary hypertension. Nat. Rev. Dis. Primers 2024, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Humbert, M.; Souza, R.; Idrees, M.; Kawut, S.M.; Sliwa-Hahnle, K.; Jing, Z.C.; Gibbs, J.S. A global view of pulmonary hypertension. Lancet Respir. Med. 2016, 4, 306–322. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2023, 61, 2200879. [Google Scholar] [CrossRef] [PubMed]
- Hurdman, J.; Condliffe, R.; Elliot, C.A.; Swift, A.; Rajaram, S.; Davies, C.; Hill, C.; Hamilton, N.; Armstrong, I.J.; Billings, C.; et al. Pulmonary hypertension in COPD: Results from the ASPIRE registry. Eur. Respir. J. 2013, 41, 1292–1301. [Google Scholar] [CrossRef]
- Nathan, S.D.; Barbera, J.A.; Gaine, S.P.; Harari, S.; Martinez, F.J.; Olschewski, H.; Olsson, K.M.; Peacock, A.J.; Pepke-Zaba, J.; Provencher, S.; et al. Pulmonary hypertension in chronic lung disease and hypoxia. Eur. Respir. J. 2019, 53, 1801914. [Google Scholar] [CrossRef] [PubMed]
- Hatano, S.; Toma, S. (Eds.) Primary Pulmonary Hypertension: Report on a WHO Meeting, Geneva, 15–17 October 1973; World Health Organization: Geneva, Switzerland, 1975.
- Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801913. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Bogaard, H.J.; Condliffe, R.; Frantz, R.; Khanna, D.; Kurzyna, M.; Langleben, D.; Manes, A.; Satoh, T.; Torres, F.; et al. Definitions and diagnosis of pulmonary hypertension. J. Am. Coll. Cardiol. 2013, 62, D42–D50. [Google Scholar] [CrossRef] [PubMed]
- WHO. Chronic Cor Pulmonale. Report of an Expert Committee; World Health Organization Technical Report Series; WHO: Geneva, Switzerland, 1961; Volume 213, p. 35.
- Kovacs, G.; Berghold, A.; Scheidl, S.; Olschewski, H. Pulmonary arterial pressure during rest and exercise in healthy subjects: A systematic review. Eur. Respir. J. 2009, 34, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.A.; Hess, E.; Maddox, T.M.; Opotowsky, A.R.; Tedford, R.J.; Lahm, T.; Joynt, K.E.; Kass, D.J.; Stephens, T.; Stanislawski, M.A.; et al. Association of Borderline Pulmonary Hypertension With Mortality and Hospitalization in a Large Patient Cohort: Insights From the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program. Circulation 2016, 133, 1240–1248. [Google Scholar] [CrossRef]
- Scharf, S.M.; Iqbal, M.; Keller, C.; Criner, G.; Lee, S.; Fessler, H.E.; National Emphysema Treatment Trial, G. Hemodynamic characterization of patients with severe emphysema. Am. J. Respir. Crit. Care Med. 2002, 166, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Cuttica, M.J.; Kalhan, R.; Shlobin, O.A.; Ahmad, S.; Gladwin, M.; Machado, R.F.; Barnett, S.D.; Nathan, S.D. Categorization and impact of pulmonary hypertension in patients with advanced COPD. Respir. Med. 2010, 104, 1877–1882. [Google Scholar] [CrossRef] [PubMed]
- Doi, M.; Nakano, K.; Hiramoto, T.; Kohno, N. Significance of pulmonary artery pressure in emphysema patients with mild-to-moderate hypoxemia. Respir. Med. 2003, 97, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Lettieri, C.J.; Nathan, S.D.; Barnett, S.D.; Ahmad, S.; Shorr, A.F. Prevalence and outcomes of pulmonary arterial hypertension in advanced idiopathic pulmonary fibrosis. Chest 2006, 129, 746–752. [Google Scholar] [CrossRef]
- Karnati, S.; Seimetz, M.; Kleefeldt, F.; Sonawane, A.; Madhusudhan, T.; Bachhuka, A.; Kosanovic, D.; Weissmann, N.; Kruger, K.; Ergun, S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front. Cardiovasc. Med. 2021, 8, 649512. [Google Scholar] [CrossRef] [PubMed]
- Dhont, S.; Zwaenepoel, B.; Vandecasteele, E.; Brusselle, G.; De Pauw, M. Pulmonary hypertension in interstitial lung disease: An area of unmet clinical need. ERJ Open Res. 2022, 8, 00272–2022. [Google Scholar] [CrossRef] [PubMed]
- Ruopp, N.F.; Cockrill, B.A. Diagnosis and Treatment of Pulmonary Arterial Hypertension: A Review. JAMA 2022, 327, 1379–1391. [Google Scholar] [CrossRef]
- Nakamura, K.; Akagi, S.; Ejiri, K.; Yoshida, M.; Miyoshi, T.; Toh, N.; Nakagawa, K.; Takaya, Y.; Matsubara, H.; Ito, H. Current Treatment Strategies and Nanoparticle-Mediated Drug Delivery Systems for Pulmonary Arterial Hypertension. Int. J. Mol. Sci. 2019, 20, 5885. [Google Scholar] [CrossRef]
- Chebib, N.; Mornex, J.F.; Traclet, J.; Philit, F.; Khouatra, C.; Zeghmar, S.; Turquier, S.; Cottin, V. Pulmonary hypertension in chronic lung diseases: Comparison to other pulmonary hypertension groups. Pulm. Circ. 2018, 8, 2045894018775056. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, J.T.; Shimoda, L.A.; Aaronson, P.I.; Ward, J.P. Hypoxic pulmonary vasoconstriction. Physiol. Rev. 2012, 92, 367–520. [Google Scholar] [CrossRef] [PubMed]
- Dunham-Snary, K.J.; Wu, D.; Sykes, E.A.; Thakrar, A.; Parlow, L.R.G.; Mewburn, J.D.; Parlow, J.L.; Archer, S.L. Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine. Chest 2017, 151, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Connolly, M.J.; Prieto-Lloret, J.; Becker, S.; Ward, J.P.; Aaronson, P.I. Hypoxic pulmonary vasoconstriction in the absence of pretone: Essential role for intracellular Ca2+ release. J. Physiol. 2013, 591, 4473–4498. [Google Scholar] [CrossRef]
- Kunichika, N.; Landsberg, J.W.; Yu, Y.; Kunichika, H.; Thistlethwaite, P.A.; Rubin, L.J.; Yuan, J.X. Bosentan inhibits transient receptor potential channel expression in pulmonary vascular myocytes. Am. J. Respir. Crit. Care Med. 2004, 170, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Peng, Z.; Gong, F.; Yan, W.; Shi, Y.; Li, H.; Zhou, C.; Yao, H.; Yuan, M.; Yu, F.; et al. TRPC4 aggravates hypoxic pulmonary hypertension by promoting pulmonary endothelial cell apoptosis. Free Radic. Biol. Med. 2024, 219, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Parpaite, T.; Cardouat, G.; Mauroux, M.; Gillibert-Duplantier, J.; Robillard, P.; Quignard, J.F.; Marthan, R.; Savineau, J.P.; Ducret, T. Effect of hypoxia on TRPV1 and TRPV4 channels in rat pulmonary arterial smooth muscle cells. Pflugers Arch. 2016, 468, 111–130. [Google Scholar] [CrossRef]
- Yang, X.R.; Lin, A.H.; Hughes, J.M.; Flavahan, N.A.; Cao, Y.N.; Liedtke, W.; Sham, J.S. Upregulation of osmo-mechanosensitive TRPV4 channel facilitates chronic hypoxia-induced myogenic tone and pulmonary hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 2012, 302, L555–L568. [Google Scholar] [CrossRef] [PubMed]
- Weitzenblum, E.; Chaouat, A.; Kessler, R. Pulmonary hypertension in chronic obstructive pulmonary disease. Pneumonol. Alergol. Pol. 2013, 81, 390–398. [Google Scholar] [CrossRef]
- Chai, T.; Qiu, C.; Xian, Z.; Lu, Y.; Zeng, Y.; Li, J. A narrative review of research advances in hypoxic pulmonary hypertension. Ann. Transl. Med. 2022, 10, 230. [Google Scholar] [CrossRef]
- Wang, A.; Valdez-Jasso, D. Cellular mechanosignaling in pulmonary arterial hypertension. Biophys. Rev. 2021, 13, 747–756. [Google Scholar] [CrossRef]
- Lu, D.; Kassab, G.S. Role of shear stress and stretch in vascular mechanobiology. J. R. Soc. Interface 2011, 8, 1379–1385. [Google Scholar] [CrossRef]
- Paszkowiak, J.J.; Dardik, A. Arterial wall shear stress: Observations from the bench to the bedside. Vasc. Endovasc. Surg. 2003, 37, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Barbeau, S.; Gilbert, G.; Cardouat, G.; Baudrimont, I.; Freund-Michel, V.; Guibert, C.; Marthan, R.; Vacher, P.; Quignard, J.F.; Ducret, T. Mechanosensitivity in Pulmonary Circulation: Pathophysiological Relevance of Stretch-Activated Channels in Pulmonary Hypertension. Biomolecules 2021, 11, 1389. [Google Scholar] [CrossRef] [PubMed]
- Inoue, R.; Jian, Z.; Kawarabayashi, Y. Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol. Ther. 2009, 123, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.K.; Zhen, Y.Y.; Lu, H.I.; Sung, P.H.; Chang, L.T.; Tsai, T.H.; Sheu, J.J.; Chen, Y.L.; Chua, S.; Chang, H.W.; et al. Reducing TRPC1 Expression through Liposome-Mediated siRNA Delivery Markedly Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension in a Murine Model. Stem Cells Int. 2014, 2014, 316214. [Google Scholar] [CrossRef]
- Malczyk, M.; Veith, C.; Fuchs, B.; Hofmann, K.; Storch, U.; Schermuly, R.T.; Witzenrath, M.; Ahlbrecht, K.; Fecher-Trost, C.; Flockerzi, V.; et al. Classical transient receptor potential channel 1 in hypoxia-induced pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2013, 188, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Ranchoux, B.; Harvey, L.D.; Ayon, R.J.; Babicheva, A.; Bonnet, S.; Chan, S.Y.; Yuan, J.X.; Perez, V.J. Endothelial dysfunction in pulmonary arterial hypertension: An evolving landscape (2017 Grover Conference Series). Pulm. Circ. 2018, 8, 2045893217752912. [Google Scholar] [CrossRef]
- MRC Working Party. Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Report of the Medical Research Council Working Party. Lancet 1981, 1, 681–686. [Google Scholar]
- Santos, S.; Peinado, V.I.; Ramirez, J.; Melgosa, T.; Roca, J.; Rodriguez-Roisin, R.; Barbera, J.A. Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. Eur. Respir. J. 2002, 19, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Barbera, J.A.; Peinado, V.I.; Santos, S.; Ramirez, J.; Roca, J.; Rodriguez-Roisin, R. Reduced expression of endothelial nitric oxide synthase in pulmonary arteries of smokers. Am. J. Respir. Crit. Care Med. 2001, 164, 709–713. [Google Scholar] [CrossRef]
- Peinado, V.I.; Barbera, J.A.; Abate, P.; Ramirez, J.; Roca, J.; Santos, S.; Rodriguez-Roisin, R. Inflammatory reaction in pulmonary muscular arteries of patients with mild chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999, 159, 1605–1611. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; White, A.; Wang, X.; Ko, J.; Choudhary, G.; Lange, T.; Rounds, S.; Lu, Q. Mitochondrial Fission Mediated Cigarette Smoke-induced Pulmonary Endothelial Injury. Am. J. Respir. Cell Mol. Biol. 2020, 63, 637–651. [Google Scholar] [CrossRef] [PubMed]
- Coste, F.; Dournes, G.; Dromer, C.; Blanchard, E.; Freund-Michel, V.; Girodet, P.O.; Montaudon, M.; Baldacci, F.; Picard, F.; Marthan, R.; et al. CT evaluation of small pulmonary vessels area in patients with COPD with severe pulmonary hypertension. Thorax 2016, 71, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Dorfmuller, P.; Shlobin, O.A.; Ventetuolo, C.E. Group 3 Pulmonary Hypertension: From Bench to Bedside. Circ. Res. 2022, 130, 1404–1422. [Google Scholar] [CrossRef] [PubMed]
- Bunel, V.; Guyard, A.; Dauriat, G.; Danel, C.; Montani, D.; Gauvain, C.; Thabut, G.; Humbert, M.; Castier, Y.; Dorfmuller, P.; et al. Pulmonary Arterial Histologic Lesions in Patients With COPD With Severe Pulmonary Hypertension. Chest 2019, 156, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Pullamsetti, S.S.; Mamazhakypov, A.; Weissmann, N.; Seeger, W.; Savai, R. Hypoxia-inducible factor signaling in pulmonary hypertension. J. Clin. Investig. 2020, 130, 5638–5651. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Zhang, F. Role of the HIF-1 signaling pathway in chronic obstructive pulmonary disease. Exp. Ther. Med. 2018, 16, 4553–4561. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Xu, Q.; Wuren, T. Inflammation and immunity in the pathogenesis of hypoxic pulmonary hypertension. Front. Immunol. 2023, 14, 1162556. [Google Scholar] [CrossRef]
- Yuan, X.; Ruan, W.; Bobrow, B.; Carmeliet, P.; Eltzschig, H.K. Targeting hypoxia-inducible factors: Therapeutic opportunities and challenges. Nat. Rev. Drug Discov. 2024, 23, 175–200. [Google Scholar] [CrossRef] [PubMed]
- Alqarni, A.A.; Aldhahir, A.M.; Alghamdi, S.A.; Alqahtani, J.S.; Siraj, R.A.; Alwafi, H.; AlGarni, A.A.; Majrshi, M.S.; Alshehri, S.M.; Pang, L. Role of prostanoids, nitric oxide and endothelin pathways in pulmonary hypertension due to COPD. Front. Med. 2023, 10, 1275684. [Google Scholar] [CrossRef]
- Carratu, P.; Scoditti, C.; Maniscalco, M.; Seccia, T.M.; Di Gioia, G.; Gadaleta, F.; Cardone, R.A.; Dragonieri, S.; Pierucci, P.; Spanevello, A.; et al. Exhaled and arterial levels of endothelin-1 are increased and correlate with pulmonary systolic pressure in COPD with pulmonary hypertension. BMC Pulm. Med. 2008, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Ventetuolo, C.E.; Kawut, S.M.; Lederer, D.J. Plasma endothelin-1 and vascular endothelial growth factor levels and their relationship to hemodynamics in idiopathic pulmonary fibrosis. Respiration 2012, 84, 299–305. [Google Scholar] [CrossRef]
- Stolz, D.; Rasch, H.; Linka, A.; Di Valentino, M.; Meyer, A.; Brutsche, M.; Tamm, M. A randomised, controlled trial of bosentan in severe COPD. Eur. Respir. J. 2008, 32, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Valerio, G.; Bracciale, P.; Grazia D’Agostino, A. Effect of bosentan upon pulmonary hypertension in chronic obstructive pulmonary disease. Ther. Adv. Respir. Dis. 2009, 3, 15–21. [Google Scholar] [CrossRef]
- Fike, C.D.; Kaplowitz, M.R.; Thomas, C.J.; Nelin, L.D. Chronic hypoxia decreases nitric oxide production and endothelial nitric oxide synthase in newborn pig lungs. Am. J. Physiol. 1998, 274, L517–L526. [Google Scholar] [CrossRef]
- Nathan, S.D.; Rajicic, N.; Dudenhofer, R.; Hussain, R.; Argula, R.; Bandyopadhyay, D.; Luckhardt, T.; Muehlemann, N.; Flaherty, K.R.; Glassberg, M.K.; et al. Inhaled Nitric Oxide in Fibrotic Lung Disease: A Randomized, Double-Blind, Placebo-controlled Trial. Ann. Am. Thorac. Soc. 2024, 21, 1661–1669. [Google Scholar] [CrossRef]
- Nana-Sinkam, S.P.; Lee, J.D.; Sotto-Santiago, S.; Stearman, R.S.; Keith, R.L.; Choudhury, Q.; Cool, C.; Parr, J.; Moore, M.D.; Bull, T.M.; et al. Prostacyclin prevents pulmonary endothelial cell apoptosis induced by cigarette smoke. Am. J. Respir. Crit. Care Med. 2007, 175, 676–685. [Google Scholar] [CrossRef]
- Figueroa, E.G.; Gonzalez-Candia, A.; Villanueva, C.A.; Ebensperger, G.; Reyes, R.V.; Llanos, A.J.; Herrera, E.A. Beneficial effects of melatonin on prostanoids pathways in pulmonary hypertensive neonates. Vasc. Pharmacol. 2021, 138, 106853. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.S.; Chen, J.; Zhang, J.; Tan, J.; Chen, Y.; Yang, X.; Li, Y.; Deng, L.; Chen, R.; Nie, X. ErbB3 Governs Endothelial Dysfunction in Hypoxia-Induced Pulmonary Hypertension. Circulation 2024, 150, 1533–1553. [Google Scholar] [CrossRef] [PubMed]
- Stacher, E.; Graham, B.B.; Hunt, J.M.; Gandjeva, A.; Groshong, S.D.; McLaughlin, V.V.; Jessup, M.; Grizzle, W.E.; Aldred, M.A.; Cool, C.D.; et al. Modern age pathology of pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2012, 186, 261–272. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Zhang, Q.; Liu, C.; Ma, Y.; Huang, P.; Ge, R.; Ma, L. Macrophage-derived inflammation promotes pulmonary vascular remodeling in hypoxia-induced pulmonary arterial hypertension mice. Immunol. Lett. 2023, 263, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Smits, A.J.; Botros, L.; Mol, M.A.E.; Ziesemer, K.A.; Wilkins, M.R.; Vonk Noordegraaf, A.; Bogaard, H.J.; Aman, J. A systematic review with meta-analysis of biomarkers for detection of pulmonary arterial hypertension. ERJ Open Res. 2022, 8, 00009-2022. [Google Scholar] [CrossRef] [PubMed]
- Chaouat, A.; Savale, L.; Chouaid, C.; Tu, L.; Sztrymf, B.; Canuet, M.; Maitre, B.; Housset, B.; Brandt, C.; Le Corvoisier, P.; et al. Role for interleukin-6 in COPD-related pulmonary hypertension. Chest 2009, 136, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Poyatos, P.; Gratacos, M.; Samuel, K.; Orriols, R.; Tura-Ceide, O. Oxidative Stress and Antioxidant Therapy in Pulmonary Hypertension. Antioxidants 2023, 12, 1006. [Google Scholar] [CrossRef]
- Ishtiaq Ahmed, A.S.; Blood, A.B.; Zhang, L. Hypoxia-induced pulmonary hypertension in adults and newborns: Implications for drug development. Drug Discov. Today 2024, 29, 104015. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.W.; Yeung, H.M.; Lau, C.F.; Poon, A.M.S.; Tipoe, G.L.; Fung, M.L. Melatonin Attenuates Pulmonary Hypertension in Chronically Hypoxic Rats. Int. J. Mol. Sci. 2017, 18, 1125. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Candia, A.; Candia, A.A.; Figueroa, E.G.; Feixes, E.; Gonzalez-Candia, C.; Aguilar, S.A.; Ebensperger, G.; Reyes, R.V.; Llanos, A.J.; Herrera, E.A. Melatonin long-lasting beneficial effects on pulmonary vascular reactivity and redox balance in chronic hypoxic ovine neonates. J. Pineal Res. 2020, 68, e12613. [Google Scholar] [CrossRef]
- May-Zhang, L.S.; Kirabo, A.; Huang, J.; Linton, M.F.; Davies, S.S.; Murray, K.T. Scavenging Reactive Lipids to Prevent Oxidative Injury. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 291–308. [Google Scholar] [CrossRef]
- Nakamura, K.; Kusano, K.; Nakamura, Y.; Kakishita, M.; Ohta, K.; Nagase, S.; Yamamoto, M.; Miyaji, K.; Saito, H.; Morita, H.; et al. Carvedilol decreases elevated oxidative stress in human failing myocardium. Circulation 2002, 105, 2867–2871. [Google Scholar] [CrossRef] [PubMed]
- Kirabo, A.; Fontana, V.; de Faria, A.P.; Loperena, R.; Galindo, C.L.; Wu, J.; Bikineyeva, A.T.; Dikalov, S.; Xiao, L.; Chen, W.; et al. DC isoketal-modified proteins activate T cells and promote hypertension. J. Clin. Investig. 2014, 124, 4642–4656. [Google Scholar] [CrossRef]
- Tao, H.; Huang, J.; Yancey, P.G.; Yermalitsky, V.; Blakemore, J.L.; Zhang, Y.; Ding, L.; Zagol-Ikapitte, I.; Ye, F.; Amarnath, V.; et al. Scavenging of reactive dicarbonyls with 2-hydroxybenzylamine reduces atherosclerosis in hypercholesterolemic Ldlr(-/-) mice. Nat. Commun. 2020, 11, 4084. [Google Scholar] [CrossRef]
- Prinsen, J.K.; Kannankeril, P.J.; Sidorova, T.N.; Yermalitskaya, L.V.; Boutaud, O.; Zagol-Ikapitte, I.; Barnett, J.V.; Murphy, M.B.; Subati, T.; Stark, J.M.; et al. Highly Reactive Isolevuglandins Promote Atrial Fibrillation Caused by Hypertension. JACC Basic Transl. Sci. 2020, 5, 602–615. [Google Scholar] [CrossRef] [PubMed]
- Ngwenyama, N.; Kirabo, A.; Aronovitz, M.; Velazquez, F.; Carrillo-Salinas, F.; Salvador, A.M.; Nevers, T.; Amarnath, V.; Tai, A.; Blanton, R.M.; et al. Isolevuglandin-Modified Cardiac Proteins Drive CD4+ T-Cell Activation in the Heart and Promote Cardiac Dysfunction. Circulation 2021, 143, 1242–1255. [Google Scholar] [CrossRef] [PubMed]
- Fuller, J.C., Jr.; Pitchford, L.M.; Morrison, R.D.; Daniels, J.S.; Flynn, C.R.; Abumrad, N.N.; Oates, J.A.; Boutaud, O.; Rathmacher, J.A. In vitro safety pharmacology evaluation of 2-hydroxybenzylamine acetate. Food Chem. Toxicol. 2018, 121, 541–548. [Google Scholar] [CrossRef]
- Rathmacher, J.A.; Fuller, J.C., Jr.; Abumrad, N.N.; Flynn, C.R. Inflammation Biomarker Response to Oral 2-Hydroxybenzylamine (2-HOBA) Acetate in Healthy Humans. Inflammation 2023, 46, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Egnatchik, R.A.; Brittain, E.L.; Shah, A.T.; Fares, W.H.; Ford, H.J.; Monahan, K.; Kang, C.J.; Kocurek, E.G.; Zhu, S.; Luong, T.; et al. Dysfunctional BMPR2 signaling drives an abnormal endothelial requirement for glutamine in pulmonary arterial hypertension. Pulm. Circ. 2017, 7, 186–199. [Google Scholar] [CrossRef]
- Eddahibi, S.; Hanoun, N.; Lanfumey, L.; Lesch, K.P.; Raffestin, B.; Hamon, M.; Adnot, S. Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene. J. Clin. Investig. 2000, 105, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Eddahibi, S.; Humbert, M.; Fadel, E.; Raffestin, B.; Darmon, M.; Capron, F.; Simonneau, G.; Dartevelle, P.; Hamon, M.; Adnot, S. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J. Clin. Investig. 2001, 108, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Eddahibi, S.; Chaouat, A.; Morrell, N.; Fadel, E.; Fuhrman, C.; Bugnet, A.S.; Dartevelle, P.; Housset, B.; Hamon, M.; Weitzenblum, E.; et al. Polymorphism of the serotonin transporter gene and pulmonary hypertension in chronic obstructive pulmonary disease. Circulation 2003, 108, 1839–1844. [Google Scholar] [CrossRef] [PubMed]
- Swietlik, E.M.; Greene, D.; Zhu, N.; Megy, K.; Cogliano, M.; Rajaram, S.; Pandya, D.; Tilly, T.; Lutz, K.A.; Welch, C.C.L.; et al. Bayesian Inference Associates Rare KDR Variants with Specific Phenotypes in Pulmonary Arterial Hypertension. Circ. Genom. Precis. Med. 2020, 14, e003155. [Google Scholar] [CrossRef] [PubMed]
- Eyries, M.; Montani, D.; Girerd, B.; Favrolt, N.; Riou, M.; Faivre, L.; Manaud, G.; Perros, F.; Graf, S.; Morrell, N.W.; et al. Familial pulmonary arterial hypertension by KDR heterozygous loss of function. Eur. Respir. J. 2020, 55, 1902165. [Google Scholar] [CrossRef] [PubMed]
- Mei, M.; Cheng, G.; Sun, B.; Yang, L.; Wang, H.; Sun, J.; Zhou, W. EDN1 Gene Variant is Associated with Neonatal Persistent Pulmonary Hypertension. Sci. Rep. 2016, 6, 29877. [Google Scholar] [CrossRef]
- Liu, X.; Mei, M.; Chen, X.; Lu, Y.; Dong, X.; Hu, L.; Hu, X.; Cheng, G.; Cao, Y.; Yang, L.; et al. Identification of genetic factors underlying persistent pulmonary hypertension of newborns in a cohort of Chinese neonates. Respir. Res. 2019, 20, 174. [Google Scholar] [CrossRef] [PubMed]
- Putcha, N.; Drummond, M.B.; Wise, R.A.; Hansel, N.N. Comorbidities and Chronic Obstructive Pulmonary Disease: Prevalence, Influence on Outcomes, and Management. Semin. Respir. Crit. Care Med. 2015, 36, 575–591. [Google Scholar] [CrossRef] [PubMed]
- Prior, T.S.; Hyldgaard, C.; Torrisi, S.E.; Kronborg-White, S.; Ganter, C.; Bendstrup, E.; Kreuter, M. Comorbidities in unclassifiable interstitial lung disease. Respir. Res. 2022, 23, 59. [Google Scholar] [CrossRef]
- Wright, J.L.; Petty, T.; Thurlbeck, W.M. Analysis of the structure of the muscular pulmonary arteries in patients with pulmonary hypertension and COPD: National Institutes of Health nocturnal oxygen therapy trial. Lung 1992, 170, 109–124. [Google Scholar] [CrossRef]
- Ferrer, E.; Peinado, V.I.; Castaneda, J.; Prieto-Lloret, J.; Olea, E.; Gonzalez-Martin, M.C.; Vega-Agapito, M.V.; Diez, M.; Dominguez-Fandos, D.; Obeso, A.; et al. Effects of cigarette smoke and hypoxia on pulmonary circulation in the guinea pig. Eur. Respir. J. 2011, 38, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Welsh, D.J.; Scott, P.; Plevin, R.; Wadsworth, R.; Peacock, A.J. Hypoxia enhances cellular proliferation and inositol 1,4, 5-triphosphate generation in fibroblasts from bovine pulmonary artery but not from mesenteric artery. Am. J. Respir. Crit. Care Med. 1998, 158, 1757–1762. [Google Scholar] [CrossRef]
- Stenmark, K.R.; Gerasimovskaya, E.; Nemenoff, R.A.; Das, M. Hypoxic activation of adventitial fibroblasts: Role in vascular remodeling. Chest 2002, 122, 326S–334S. [Google Scholar] [CrossRef]
- Stenmark, K.R.; Davie, N.J.; Reeves, J.T.; Frid, M.G. Hypoxia, leukocytes, and the pulmonary circulation. J. Appl. Physiol. 2005, 98, 715–721. [Google Scholar] [CrossRef]
- Kovacic, J.C.; Dimmeler, S.; Harvey, R.P.; Finkel, T.; Aikawa, E.; Krenning, G.; Baker, A.H. Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 190–209. [Google Scholar] [CrossRef] [PubMed]
- Ranchoux, B.; Antigny, F.; Rucker-Martin, C.; Hautefort, A.; Pechoux, C.; Bogaard, H.J.; Dorfmuller, P.; Remy, S.; Lecerf, F.; Plante, S.; et al. Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation 2015, 131, 1006–1018. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Huang, L.; Ge, X.; Yan, F.; Wu, R.; Ao, Q. Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling. Int. J. Exp. Pathol. 2006, 87, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wei, C.; Kim, I.K.; Janssen-Heininger, Y.; Gupta, S. Inhibition of nuclear factor-kappaB in the lungs prevents monocrotaline-induced pulmonary hypertension in mice. Hypertension 2014, 63, 1260–1269. [Google Scholar] [CrossRef] [PubMed]
- Gorelova, A.; Berman, M.; Al Ghouleh, I. Endothelial-to-Mesenchymal Transition in Pulmonary Arterial Hypertension. Antioxid. Redox Signal. 2021, 34, 891–914. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, P.; Lu, W.; Hardikar, A.; Dey, S.; Gaikwad, A.V.; Shahzad, A.M.; Chia, C.; Williams, A.; Singhera, G.K.; Hackett, T.L.; et al. Endothelial to mesenchymal transition is an active process in smokers and patients with early COPD contributing to pulmonary arterial pathology. ERJ Open Res. 2024, 10, 00767-2023. [Google Scholar] [CrossRef]
- Gaikwad, A.V.; Lu, W.; Dey, S.; Bhattarai, P.; Chia, C.; Larby, J.; Haug, G.; Myers, S.; Jaffar, J.; Westall, G.; et al. Vascular remodelling in idiopathic pulmonary fibrosis patients and its detrimental effect on lung physiology: Potential role of endothelial-to-mesenchymal transition. ERJ Open Res. 2022, 8, 00571-2021. [Google Scholar] [CrossRef]
- Gaikwad, A.V.; Eapen, M.S.; Dey, S.; Bhattarai, P.; Shahzad, A.M.; Chia, C.; Jaffar, J.; Westall, G.; Sutherland, D.; Singhera, G.K.; et al. TGF-beta1, pSmad-2/3, Smad-7, and beta-Catenin Are Augmented in the Pulmonary Arteries from Patients with Idiopathic Pulmonary Fibrosis (IPF): Role in Driving Endothelial-to-Mesenchymal Transition (EndMT). J. Clin. Med. 2024, 13, 1160. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tan, J.; Miao, Y.; Zhang, Q. Mitochondrial Dynamics, Mitophagy, and Mitochondria-Endoplasmic Reticulum Contact Sites Crosstalk Under Hypoxia. Front. Cell Dev. Biol. 2022, 10, 848214. [Google Scholar] [CrossRef]
- Yan, S.; Sheak, J.R.; Walker, B.R.; Jernigan, N.L.; Resta, T.C. Contribution of Mitochondrial Reactive Oxygen Species to Chronic Hypoxia-Induced Pulmonary Hypertension. Antioxidants 2023, 12, 2060. [Google Scholar] [CrossRef]
- Adesina, S.E.; Kang, B.Y.; Bijli, K.M.; Ma, J.; Cheng, J.; Murphy, T.C.; Michael Hart, C.; Sutliff, R.L. Targeting mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension. Free Radic. Biol. Med. 2015, 87, 36–47. [Google Scholar] [CrossRef]
- Bhansali, S.; Sohi, K.; Dhawan, V. Hypoxia-induced mitochondrial reactive oxygen species (mtROS) differentially regulates smooth muscle cell (SMC) proliferation of pulmonary and systemic vasculature. Mitochondrion 2021, 57, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ying, M.; Gu, S.; Zhou, Z.; Zhao, R. SIRT6 inhibits hypoxia-induced pulmonary arterial smooth muscle cells proliferation via HIF-1alpha/PDK4 signaling. Life Sci. 2023, 312, 121192. [Google Scholar] [CrossRef] [PubMed]
- Pullamsetti, S.S.; Doebele, C.; Fischer, A.; Savai, R.; Kojonazarov, B.; Dahal, B.K.; Ghofrani, H.A.; Weissmann, N.; Grimminger, F.; Bonauer, A.; et al. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2012, 185, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Qiu, Z.; Bai, Z.; Dai, Y.; Li, C.; Chen, X.; Song, X.; Shi, D.; Zhou, Y.; Pan, Y.; et al. Inhibition of microRNA-30a alleviates vascular remodeling in pulmonary arterial hypertension. Mol. Ther. Nucleic Acids 2021, 26, 678–693. [Google Scholar] [CrossRef]
- White, K.; Lu, Y.; Annis, S.; Hale, A.E.; Chau, B.N.; Dahlman, J.E.; Hemann, C.; Opotowsky, A.R.; Vargas, S.O.; Rosas, I.; et al. Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension. EMBO Mol. Med. 2015, 7, 695–713. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, J.; Chen, Y.; Lv, T.; Wang, X.; Liu, C.; Xue, H.; He, K.; Sun, L. The miR-182/Myadm axis regulates hypoxia-induced pulmonary hypertension by balancing the BMP- and TGF-beta-signalling pathways in an SMC/EC-crosstalk-associated manner. Basic Res. Cardiol. 2021, 116, 53. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Sun, M.R.; Zhou, Q.; Guzman, A.M.; Ramchandran, R.; Chen, J.; Fraidenburg, D.R.; Ganesh, B.; Maienschein-Cline, M.; Obrietan, K.; et al. MicroRNA-212-5p, an anti-proliferative miRNA, attenuates hypoxia and sugen/hypoxia-induced pulmonary hypertension in rodents. Mol. Ther. Nucleic Acids 2022, 29, 204–216. [Google Scholar] [CrossRef]
- Ding, D.; Jiang, H.; He, Y.; Li, X.; Liu, X. miR-320-3p regulates the proliferation, migration and apoptosis of hypoxia-induced pulmonary arterial smooth muscle cells via KLF5 and HIF1alpha. Am. J. Transl. Res. 2021, 13, 2283–2295. [Google Scholar]
- Zhao, J.; Florentin, J.; Tai, Y.Y.; Torrino, S.; Ohayon, L.; Brzoska, T.; Tang, Y.; Yang, J.; Negi, V.; Woodcock, C.C.; et al. Long Range Endocrine Delivery of Circulating miR-210 to Endothelium Promotes Pulmonary Hypertension. Circ. Res. 2020, 127, 677–692. [Google Scholar] [CrossRef]
- Jin, X.; Xu, Y.; Guo, M.; Sun, Y.; Ding, J.; Li, L.; Zheng, X.; Li, S.; Yuan, D.; Li, S.S. hsa_circNFXL1_009 modulates apoptosis, proliferation, migration, and potassium channel activation in pulmonary hypertension. Mol. Ther. Nucleic Acids 2021, 23, 1007–1019. [Google Scholar] [CrossRef]
- Zhou, S.; Jiang, H.; Li, M.; Wu, P.; Sun, L.; Liu, Y.; Zhu, K.; Zhang, B.; Sun, G.; Cao, C.; et al. Circular RNA hsa_circ_0016070 Is Associated with Pulmonary Arterial Hypertension by Promoting PASMC Proliferation. Mol. Ther. Nucleic Acids 2019, 18, 275–284. [Google Scholar] [CrossRef]
- Vonk Noordegraaf, A.; Chin, K.M.; Haddad, F.; Hassoun, P.M.; Hemnes, A.R.; Hopkins, S.R.; Kawut, S.M.; Langleben, D.; Lumens, J.; Naeije, R. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: An update. Eur. Respir. J. 2019, 53, 1801900. [Google Scholar] [CrossRef] [PubMed]
- Fishman, A.P. State of the art: Chronic cor pulmonale. Am. Rev. Respir. Dis. 1976, 114, 775–794. [Google Scholar]
- Weitzenblum, E. Chronic cor pulmonale. Heart 2003, 89, 225–230. [Google Scholar] [CrossRef]
- Hilde, J.M.; Skjorten, I.; Grotta, O.J.; Hansteen, V.; Melsom, M.N.; Hisdal, J.; Humerfelt, S.; Steine, K. Right ventricular dysfunction and remodeling in chronic obstructive pulmonary disease without pulmonary hypertension. J. Am. Coll. Cardiol. 2013, 62, 1103–1111. [Google Scholar] [CrossRef]
- Prins, K.W.; Rose, L.; Archer, S.L.; Pritzker, M.; Weir, E.K.; Olson, M.D.; Thenappan, T. Clinical Determinants and Prognostic Implications of Right Ventricular Dysfunction in Pulmonary Hypertension Caused by Chronic Lung Disease. J. Am. Heart Assoc. 2019, 8, e011464. [Google Scholar] [CrossRef]
- Holloway, C.J.; Montgomery, H.E.; Murray, A.J.; Cochlin, L.E.; Codreanu, I.; Hopwood, N.; Johnson, A.W.; Rider, O.J.; Levett, D.Z.; Tyler, D.J.; et al. Cardiac response to hypobaric hypoxia: Persistent changes in cardiac mass, function, and energy metabolism after a trek to Mt. Everest Base Camp. FASEB J. 2011, 25, 792–796. [Google Scholar] [CrossRef]
- Huez, S.; Faoro, V.; Guenard, H.; Martinot, J.B.; Naeije, R. Echocardiographic and tissue Doppler imaging of cardiac adaptation to high altitude in native highlanders versus acclimatized lowlanders. Am. J. Cardiol. 2009, 103, 1605–1609. [Google Scholar] [CrossRef] [PubMed]
- Richalet, J.P.; Hermand, E.; Lhuissier, F.J. Cardiovascular physiology and pathophysiology at high altitude. Nat. Rev. Cardiol. 2024, 21, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Sarashina, T.; Nakamura, K.; Akagi, S.; Oto, T.; Oe, H.; Ejiri, K.; Nakagawa, K.; Nishii, N.; Matsubara, H.; Kobayashi, M.; et al. Reverse Right Ventricular Remodeling After Lung Transplantation in Patients With Pulmonary Arterial Hypertension Under Combination Therapy of Targeted Medical Drugs. Circ. J. 2017, 81, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Boucherat, O.; Agrawal, V.; Lawrie, A.; Bonnet, S. The Latest in Animal Models of Pulmonary Hypertension and Right Ventricular Failure. Circ. Res. 2022, 130, 1466–1486. [Google Scholar] [CrossRef]
- Waxman, A.; Restrepo-Jaramillo, R.; Thenappan, T.; Ravichandran, A.; Engel, P.; Bajwa, A.; Allen, R.; Feldman, J.; Argula, R.; Smith, P.; et al. Inhaled Treprostinil in Pulmonary Hypertension Due to Interstitial Lung Disease. N. Engl. J. Med. 2021, 384, 325–334. [Google Scholar] [CrossRef]
- Nathan, S.D.; Argula, R.; Trivieri, M.G.; Aziz, S.; Gay, E.; Medarov, B.; Parambil, J.; Raina, A.; Risbano, M.G.; Thenappan, T.; et al. Inhaled treprostinil in pulmonary hypertension associated with COPD: PERFECT study results. Eur. Respir. J. 2024, 63, 2400172. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Badesch, D.B.; Ghofrani, H.A.; Gibbs, J.S.R.; Gomberg-Maitland, M.; McLaughlin, V.V.; Preston, I.R.; Souza, R.; Waxman, A.B.; Grunig, E.; et al. Phase 3 Trial of Sotatercept for Treatment of Pulmonary Arterial Hypertension. N. Engl. J. Med. 2023, 388, 1478–1490. [Google Scholar] [CrossRef] [PubMed]
Causal Factors | Consequential Factors |
---|---|
Hypoxic pulmonary vasoconstriction | Pulmonary vascular remodeling |
Cigarette smoke | Endothelial-to-mesenchymal transition (EndMT) |
Decrease in pulmonary vascular beds Hypoxia-inducible factors (HIFs) | Mitochondrial dysfunction |
Endothelial dysfunction | MicroRNA (miRNA) |
Increase in endothelin-1 | |
Reduction in endothelial nitric oxide synthase (eNOS) | |
Reduction in prostacyclin (PGI2) synthase | |
Inflammation Oxidative stress | |
Genetic predisposition Comorbidities |
MicroRNA | Role | Expression | Target | Effects | References |
---|---|---|---|---|---|
miR-17 | facilitative | increased | BMPR2 | Increased PASMC proliferation | Pullamsetti et al. [104] |
miR-30a | facilitative | increased | p53 | Inhibition of microRNA-30a alleviates vascular remodeling in Su5416/hypoxia-induced PH animals | Ma et al. [105] |
miR-210 | facilitative | increased | ISCU1/2 | Iron–sulfur deficiencies and promotion of PH | White et al. [106] |
miR182 | suppressive | - | Myadm | miR-182 gain-of-function significantly inhibited the pathological progression in hypoxia-induced PH | Bai et al. [107] |
miR-212-5p | suppressive | increased | Suppression of PASMC proliferation in hypoxia-induced PH in rodents | Chen et al. [108] | |
miR-320-3p | suppressive | decreased | KLF5, HIF-1α | Inhibition of proliferation and migration and promotion of apoptosis in hypoxic PASMCs | Ding et al. [109] |
Study Title | NCT Number | Interventions | Primary Outcome |
---|---|---|---|
MK-5475-013 INSIGNIA-PH-COPD: A Study of the Efficacy and Safety of MK-5475 (an Inhaled sGC Stimulator) in Adults With PH-COPD | NCT05612035 | MK-5475 | Mean change from baseline in 6-min walk distance |
A Mechanistic Study of Inhaled Nitric Oxide in COPD | NCT05785195 | Inhaled NO | Change in ventilation–perfusion ratio (V/Q) from baseline |
Long-term Oxygen Therapy in Patients with Chronic Obstructive Pulmonary Disease Who Live at High Altitude | NCT03020212 | Oxygen | Development of PH, assessed via echocardiogram |
Hyperoxia During Pulmonary Rehabilitation in Chronic Lung Disease—Does it Matter? | NCT06174207 | Oxygen | Constant Work Rate Exercise Test |
Bioenergetic Effect of Pioglitazone in CLD-PH | NCT06336798 | Pioglitazone | Change in mitochondrial metabolism parameters |
COPD Exacerbation and Pulmonary Hypertension Trial | NCT04538976 | Sildenafil | Time alive and out of hospital |
Tadalafil for Severe Pulmonary Hypertension Due to Chronic Obstructive Pulmonary Disease | NCT05844462 | Tadalafil | 6-min walk |
Breathe Easier with Tadalafil Therapy for Dyspnea in COPD-PH | NCT05937854 | Tadalafil | Severity of patient-reported dyspnea |
Tadalafil for Severe Pulmonary Hypertension Due to Chronic Obstructive Pulmonary Disease | NCT05844462 | Tadalafil | 6-min walk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, K.; Akagi, S.; Ejiri, K.; Taya, S.; Saito, Y.; Kuroda, K.; Takaya, Y.; Toh, N.; Nakayama, R.; Katanosaka, Y.; et al. Pathophysiology of Group 3 Pulmonary Hypertension Associated with Lung Diseases and/or Hypoxia. Int. J. Mol. Sci. 2025, 26, 835. https://doi.org/10.3390/ijms26020835
Nakamura K, Akagi S, Ejiri K, Taya S, Saito Y, Kuroda K, Takaya Y, Toh N, Nakayama R, Katanosaka Y, et al. Pathophysiology of Group 3 Pulmonary Hypertension Associated with Lung Diseases and/or Hypoxia. International Journal of Molecular Sciences. 2025; 26(2):835. https://doi.org/10.3390/ijms26020835
Chicago/Turabian StyleNakamura, Kazufumi, Satoshi Akagi, Kentaro Ejiri, Satoshi Taya, Yukihiro Saito, Kazuhiro Kuroda, Yoichi Takaya, Norihisa Toh, Rie Nakayama, Yuki Katanosaka, and et al. 2025. "Pathophysiology of Group 3 Pulmonary Hypertension Associated with Lung Diseases and/or Hypoxia" International Journal of Molecular Sciences 26, no. 2: 835. https://doi.org/10.3390/ijms26020835
APA StyleNakamura, K., Akagi, S., Ejiri, K., Taya, S., Saito, Y., Kuroda, K., Takaya, Y., Toh, N., Nakayama, R., Katanosaka, Y., & Yuasa, S. (2025). Pathophysiology of Group 3 Pulmonary Hypertension Associated with Lung Diseases and/or Hypoxia. International Journal of Molecular Sciences, 26(2), 835. https://doi.org/10.3390/ijms26020835