“Omics” and Postmortem Interval Estimation: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Paper Selection
2.1.1. Inclusion Criteria
- Titles and abstracts available in the English language.
- Experimental studies including, as investigated samples, animal or human corpses in toto or in parts (i.e., organs, tissues, and/or fluids) aiming at estimating PMI.
- Experimental studies estimating PMI through mass-spectrometry-based untargeted omic approaches.
2.1.2. Exclusion Criteria
- Letters to the editor, book chapters, reviews, conference proceedings.
- Full texts not available in the English language.
- Studies estimating PMI through in vitro experiments.
- Records estimating PMI through the analysis of the postmortem colonizing fauna.
3. Results and Discussion
3.1. Short PMI
3.1.1. Proteomics
3.1.2. Metabolomics
3.2. Intermediate PMI
3.2.1. Proteomics
3.2.2. Metabolomics
3.2.3. Lipidomics
3.3. Long PMI
3.3.1. Proteomics
3.3.2. Metabolomics
3.3.3. Lipidomics
3.4. Postmortem Up and Down-Regulation Patterns of Biomolecules. A Molecular Insight
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3HAO | 3-Hydroxyanthranilic Acid Dioxygenase |
ACTB | Beta-actin |
ACY1 | aminoacylase 1 |
AK1 | adenylate kinase 1 |
ALBU | Albumin |
ALDH2 | aldehyde dehydrogenase 2 |
ANT3 | Antithrombin III |
ASPN | asporin |
ATP2A2 | Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2 |
ATP5MF | ATP Synthase Membrane Subunit F |
ATP5MG | ATP Synthase Membrane Subunit G |
ATP5PB | ATP Synthase Peripheral Stalk-Membrane Subunit B |
B2MG | Beta2-microglobulin |
BAG3 | BAG Cochaperone 3 |
CAPSO | 3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid |
CATA | Catalase |
CHAD | Chondroadherin |
CK | Creatine kinase |
CLC11 | C-type lectin domain family 11 member A |
CO3 | Complement C3 |
CO3A1 | Collagen alpha-1(III) chain |
CO9 | Complement component C9 |
COBA2 | Collagen alpha-2(XI) chain |
COX7B | Cytochrome c oxidase subunit 7B, mitochondrial |
CSPG2 | Versican core protein |
DHRS7C | Dehydrogenase/reductase SDR family member 7C |
eEF1A2 | Elongation factor 1-alpha 2 |
eEF2 | Elongation factor 2 |
ENO3 | Beta-enolase |
ENOA | Alpha-enolase |
FETUA | Alpha-2-HS-glycoprotein |
FMOD | Fibromodulin |
G3P | Glyceraldehyde-3-phosphate dehydrogenase |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
GPS1 | COP9 signalosome complex subunit 1 |
H2A1H | Histone H2A type 1-H |
H4 | Histone H4 |
HBA | Hemoglobin subunit alpha |
HBB | Hemoglobin subunit beta |
IGL1 | Immunoglobulin lambda-1 light chain |
IPO5 | Importin-5 |
KNG1 | Kininogen-1 |
LDH | L-lactate dehydrogenase |
MAO | Monoamine oxidases |
MAOB | Amine oxidase [flavin-containing] B |
MGP | Matrix Gla protein |
MIME | Mimecan |
MURC | Caveolae-associated protein 4 |
MYOZ1 | Myozenin-1 |
MYOZ3 | Myozenin-3 |
NCPs | Non-collagenous proteins |
NUCB1 | Nucleobindin-1 |
PCOC1 | Procollagen C-endopeptidase enhancer 1 |
PDLIM3 | PDZ and LIM domain protein 3 |
PDLIM5 | PDZ and LIM domain protein 5 |
PDLIM7 | PDZ and LIM domain protein 7 |
PGBM | Basement membrane-specific heparan sulfate proteoglycan core protein |
PGS2 | Decorin |
PK | Pyruvate kinase |
PRDX2 | Peroxiredoxin-2 |
RAB10 | Ras-related protein Rab-10 |
RCN3 | Reticulocalbin-3 |
RTN2 | Reticulon-2 |
SBP2 | Selenium-binding protein 2 |
SERBP1 | SERPINE1 mRNA-binding protein 1 |
SLC25A4 | ADP/ATP translocase 1 |
SOD2 | Superoxide dismutase [Mn], mitochondrial |
SRL | Sarcalumenin |
SYNPO2 | Synaptopodin-2 |
TNNC1 | Troponin C, slow skeletal and cardiac muscles |
TPIS | Triosephosphate isomerase |
TPM | Tropomyosin |
TPM1 | Tropomyosin alpha-1 chain |
TTHY | Transthyretin |
VIME | Vimentin |
References
- Brockbals, L.; Garrett-Rickman, S.; Fu, S.; Ueland, M.; McNevin, D.; Padula, M.P. Estimating the Time of Human Decomposition Based on Skeletal Muscle Biopsy Samples Utilizing an Untargeted LC–MS/MS-Based Proteomics Approach. Anal. Bioanal. Chem. 2023, 415, 5487–5498. [Google Scholar] [CrossRef] [PubMed]
- Nolan, A.N.; Mead, R.J.; Maker, G.; Bringans, S.; Chapman, B.; Speers, S.J. Examination of the Temporal Variation of Peptide Content in Decomposition Fluid under Controlled Conditions Using Pigs as Human Substitutes. Forensic Sci. Int. 2019, 298, 161–168. [Google Scholar] [CrossRef]
- Marrone, A.; La Russa, D.; Barberio, L.; Murfuni, M.S.; Gaspari, M.; Pellegrino, D. Forensic Proteomics for the Discovery of New post mortem Interval Biomarkers: A Preliminary Study. Int. J. Mol. Sci. 2023, 24, 14627. [Google Scholar] [CrossRef]
- Burkhard, M. Handbook of Forensic Medicine, 1st ed.; Wiley Blackwell: Hoboken, NJ, USA, 2013; pp. 75–133. [Google Scholar]
- Dettmeyer, R.B.; Verhoff, M.A.; Schütz, H.F. Forensic Medicine. Fundamentals and Perspectives; Springer: Berlin/Heidelberg, Germany, 2014; pp. 33–55. [Google Scholar]
- Sangwan, A.; Singh, S.P.; Singh, P.; Gupta, O.P.; Manas, A.; Gupta, S. Role of Molecular Techniques in PMI Estimation: An Update. J. Forensic Leg. Med. 2021, 83, 102251. [Google Scholar] [CrossRef]
- Amendt, J.; Campobasso, C.P.; Gaudry, E.; Reiter, C.; LeBlanc, H.N.; Hall, M.J.R. Best Practice in Forensic Entomology—Standards and Guidelines. Int. J. Leg. Med. 2007, 121, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, S. Post-Mortem Interval Estimation Based on Insect Evidence: Current Challenges. Insects 2021, 12, 314. [Google Scholar] [CrossRef]
- Madea, B. Importance of Supravitality in Forensic Medicine. Forensic Sci. Int. 1994, 69, 221–241. [Google Scholar] [CrossRef] [PubMed]
- Hayman, J.; Oxenham, M. Supravital reactions in the estimation of the time since death (TSD). In Human Body Decomposition; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–12. [Google Scholar]
- Focardi, M.; Lanzilao, L.; Bonari, A.; Lazzeretti, M.; Lorubbio, M.; Ognibene, A.; Gualco, B.; Fanelli, A.; Pinchi, V. Improvement in Estimation of Time since Death by Albumin and Potassium Concentrations in Vitreous Humor. Forensic Sci. Int. 2020, 314, 110393. [Google Scholar] [CrossRef] [PubMed]
- Bortolotti, F.; Pascali, J.P.; Davis, G.G.; Smith, F.P.; Brissie, R.M.; Tagliaro, F. Study of vitreous potassium correlation with time since death in the postmortem range from 2 to 110 hours using capillary ion analysis. Med. Sci. Law 2011, 51, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Ceciliason, A.-S.; Andersson, M.G.; Nyberg, S.; Sandler, H. Histological Quantification of Decomposed Human Livers: A Potential Aid for Estimation of the Post-Mortem Interval? Int. J. Leg. Med. 2021, 135, 253–267. [Google Scholar] [CrossRef]
- Carrasco, P.A.; Brizuela, C.I.; Rodriguez, I.A.; Muñoz, S.; Godoy, M.E.; Inostroza, C. Histological Transformations of the Dental Pulp as Possible Indicator of Post Mortem Interval: A Pilot Study. Forensic Sci. Int. 2017, 279, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Jellinghaus, K.; Urban, P.K.; Hachmann, C.; Bohnert, M.; Hotz, G.; Rosendahl, W.; Wittwer-Backofen, U. Collagen Degradation as a Possibility to Determine the Post-Mortem Interval (PMI) of Human Bones in a Forensic Context—A Survey. Leg. Med. 2019, 36, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Tambuzzi, S.; Gentile, G.; Andreola, S.; Bilardo, G.; Collini, F.; Bailo, P.; Zoja, R. Elastic Fiber Degradation as a Possible Indicator for PMI Estimation on Mummified and Corified Skin: A Pilot Study. Int. J. Leg. Med. 2023, 137, 519–535. [Google Scholar] [CrossRef]
- Battistini, A.; Capitanio, D.; Bailo, P.; Moriggi, M.; Tambuzzi, S.; Gelfi, C.; Piccinini, A. Proteomic Analysis by Mass Spectrometry of Postmortem Muscle Protein Degradation for PMI Estimation: A Pilot Study. Forensic Sci. Int. 2023, 349, 111774. [Google Scholar] [CrossRef] [PubMed]
- Pittner, S.; Bugelli, V.; Weitgasser, K.; Zissler, A.; Sanit, S.; Lutz, L.; Monticelli, F.; Campobasso, C.P.; Steinbacher, P.; Amendt, J. A Field Study to Evaluate PMI Estimation Methods for Advanced Decomposition Stages. Int. J. Leg. Med. 2020, 134, 1361–1373. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martínez, C.; Pérez-Cárceles, M.D.; Legaz, I.; Prieto-Bonete, G.; Luna, A. Quantification of Nitrogenous Bases, DNA and Collagen Type I for the Estimation of the Postmortem Interval in Bone Remains. Forensic Sci. Int. 2017, 281, 106–112. [Google Scholar] [CrossRef]
- Lu, X.; Li, J.; Wei, X.; Li, N.; Dang, L.; An, G.; Du, Q.; Jin, Q.; Cao, J.; Wang, Y.; et al. A Novel Method for Determining Postmortem Interval Based on the Metabolomics of Multiple Organs Combined with Ensemble Learning Techniques. Int. J. Leg. Med. 2023, 137, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Dai, X.; Shi, X.; Xiao, L.; Ye, Y.; Liao, L. A Pilot Study Investigating Early Postmortem Interval of Rats Based on Ambient Temperature and Postmortem Interval-Related Metabolites in Blood. Forensic Sci. Med. Pathol. 2023, 20, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Fan, F.; Ye, Y.; Lu, X.; Chen, F.; Wu, Z.; Liao, L. An Experimental Study on Investigating the Postmortem Interval in Dichlorvos Poisoned Rats by GC/MS-Based Metabolomics. Leg. Med. 2019, 36, 28–36. [Google Scholar] [CrossRef]
- Bonicelli, A.; Mickleburgh, H.L.; Chighine, A.; Locci, E.; Wescott, D.J.; Procopio, N. The ‘ForensOMICS’ Approach for Postmortem Interval Estimation from Human Bone by Integrating Metabolomics, Lipidomics, and Proteomics. eLife 2022, 11, e83658. [Google Scholar] [CrossRef] [PubMed]
- Zissler, A.; Stoiber, W.; Steinbacher, P.; Geissenberger, J.; Monticelli, F.C.; Pittner, S. Postmortem Protein Degradation as a Tool to Estimate the PMI: A Systematic Review. Diagnostics 2020, 10, 1014. [Google Scholar] [CrossRef] [PubMed]
- Sacco, M.A.; Cordasco, F.; Scalise, C.; Ricci, P.; Aquila, I. Systematic Review on Post-Mortem Protein Alterations: Analysis of Experimental Models and Evaluation of Potential Biomarkers of Time of Death. Diagnostics 2022, 12, 1490. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Moreno, L.; Luna, A.; Legaz, I. Lipidomes in Cadaveric Decomposition and Determination of the Postmortem Interval: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 984. [Google Scholar] [CrossRef]
- Tozzo, P.; Scrivano, S.; Sanavio, M.; Caenazzo, L. The Role of DNA Degradation in the Estimation of Post-Mortem Interval: A Systematic Review of the Current Literature. Int. J. Mol. Sci. 2020, 21, 3540. [Google Scholar] [CrossRef]
- Thakral, S.; Purohit, P.; Mishra, R.; Gupta, V.; Setia, P. The Impact of RNA Stability and Degradation in Different Tissues to the Determination of Post-Mortem Interval: A Systematic Review. Forensic Sci. Int. 2023, 349, 111772. [Google Scholar] [CrossRef]
- Maiese, A.; Scatena, A.; Costantino, A.; Di Paolo, M.; La Russa, R.; Turillazzi, E.; Frati, P.; Fineschi, V. MicroRNAs as Useful Tools to Estimate Time Since Death. A Systematic Review of Current Literature. Diagnostics 2021, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Pesko, B.K.; Weidt, S.; McLaughlin, M.; Wescott, D.J.; Torrance, H.; Burgess, K.; Burchmore, R. Postmortomics: The Potential of Untargeted Metabolomics to Highlight Markers for Time Since Death. OMICS J. Integr. Biol. 2020, 24, 649–659. [Google Scholar] [CrossRef]
- Di Girolamo, F.; Lante, I.; Muraca, M.; Putignani, L. The Role of Mass Spectrometry in the “Omics” Era. Curr. Org. Chem. 2013, 17, 2891–2905. [Google Scholar] [CrossRef] [PubMed]
- Duong, V.A.; Park, J.M.; Lim, H.J.; Lee, H. Proteomics in Forensic Analysis: Applications for Human Samples. Appl. Sci. 2021, 11, 3393. [Google Scholar] [CrossRef]
- Xie, F.; Liu, T.; Qian, W.-J.; Petyuk, V.A.; Smith, R.D. Liquid Chromatography-Mass Spectrometry-Based Quantitative Proteomics. J. Biol. Chem. 2011, 286, 25443–25449. [Google Scholar] [CrossRef]
- Wu, Z.; Lu, X.; Chen, F.; Dai, X.; Ye, Y.; Yan, Y.; Liao, L. Estimation of Early Postmortem Interval in Rats by GC–MS-Based Metabolomics. Leg. Med. 2018, 31, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Kaszynski, R.H.; Nishiumi, S.; Azuma, T.; Yoshida, M.; Kondo, T.; Takahashi, M.; Asano, M.; Ueno, Y. Postmortem Interval Estimation: A Novel Approach Utilizing Gas Chromatography/Mass Spectrometry-Based Biochemical Profiling. Anal. Bioanal. Chem. 2016, 408, 3103–3112. [Google Scholar] [CrossRef] [PubMed]
- Bonicelli, A.; Di Nunzio, A.; Di Nunzio, C.; Procopio, N. Insights into the Differential Preservation of Bone Proteomes in Inhumed and Entombed Cadavers from Italian Forensic Caseworks. J. Proteome Res. 2022, 21, 1285–1298. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, K.; Sun, J.; Huang, Z.; Shi, P. The Relationship between Postmortem Interval and Protein Changes in Mice. J. Forensic Leg. Med. 2024, 101, 102618. [Google Scholar] [CrossRef]
- Kocsmár, É.; Schmid, M.; Cosenza-Contreras, M.; Kocsmár, I.; Föll, M.; Krey, L.; Barta, B.A.; Rácz, G.; Kiss, A.; Werner, M.; et al. Proteome Alterations in Human Autopsy Tissues in Relation to Time after Death. Cell. Mol. Life Sci. 2023, 80, 117. [Google Scholar] [CrossRef] [PubMed]
- Mickleburgh, H.L.; Schwalbe, E.C.; Bonicelli, A.; Mizukami, H.; Sellitto, F.; Starace, S.; Wescott, D.J.; Carter, D.O.; Procopio, N. Human Bone Proteomes before and after Decomposition: Investigating the Effects of Biological Variation and Taphonomic Alteration on Bone Protein Profiles and the Implications for Forensic Proteomics. J. Proteome Res. 2021, 20, 2533–2546. [Google Scholar] [CrossRef] [PubMed]
- Nolan, A.N.; Maker, G.; Mead, R.J.; Bringans, S.; Speers, S.J. Peptide Analysis of Mammalian Decomposition Fluid in Relation to the Post-Mortem Interval. Forensic Sci. Int. 2020, 311, 110269. [Google Scholar] [CrossRef]
- Nolan, A.N.; Mead, R.J.; Maker, G.; Bringans, S.; Speers, S.J. The Impact of Environmental Factors on the Production of Peptides in Mammalian Decomposition Fluid in Relation to the Estimation of Post-Mortem Interval: A Summer/Winter Comparison in Western Australia. Forensic Sci. Int. 2019, 303, 109957. [Google Scholar] [CrossRef]
- Choi, K.M.; Zissler, A.; Kim, E.; Ehrenfellner, B.; Cho, E.; Lee, S.; Steinbacher, P.; Yun, K.N.; Shin, J.H.; Kim, J.Y.; et al. Postmortem Proteomics to Discover Biomarkers for Forensic PMI Estimation. Int. J. Leg. Med. 2019, 133, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Lin, Z.; Xie, Y.; Ye, X.; Tu, C.; Jin, K.; Xie, J.; Shen, Y. Metabolic Profiling of Femoral Muscle from Rats at Different Periods of Time after Death. PLoS ONE 2018, 13, e0203920. [Google Scholar] [CrossRef]
- Li, C.; Ma, D.; Deng, K.; Chen, Y.; Huang, P.; Wang, Z. Application of MALDI—TOF MS for Estimating the Postmortem Interval in Rat Muscle Samples. J. Forensic Sci. 2017, 62, 1345–1350. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, Z.; Tuo, Y.; Ma, D.; Shi, Y.; Zhang, Q.; Zhuo, X.; Deng, K.; Chen, Y.; Wang, Z.; et al. MALDI-TOF MS as a Novel Tool for the Estimation of Postmortem Interval in Liver Tissue Samples. Sci. Rep. 2017, 7, 4887. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Zaitsu, K.; Tsuboi, K.; Nomura, M.; Kusano, M.; Shima, N.; Abe, S.; Ishii, A.; Tsuchihashi, H.; Suzuki, K. A Preliminary Study on Postmortem Interval Estimation of Suffocated Rats by GC-MS/MS-Based Plasma Metabolic Profiling. Anal. Bioanal. Chem. 2015, 407, 3659–3665. [Google Scholar] [CrossRef]
- Boroumand, M.; Grassi, V.M.; Castagnola, F.; De-Giorgio, F.; d’Aloja, E.; Vetrugno, G.; Pascali, V.L.; Vincenzoni, F.; Iavarone, F.; Faa, G.; et al. Estimation of Postmortem Interval Using Top-down HPLC–MS Analysis of Peptide Fragments in Vitreous Humour: A Pilot Study. Int. J. Mass. Spectrom. 2023, 483, 116952. [Google Scholar] [CrossRef]
- Kwak, J.-H.; Kim, H.K.; Kim, K.; Noh, B.R.; Cheon, H.I.; Yeo, M.; Shakya, R.; Shrestha, S.A.; Kim, D.; Choe, S.; et al. Proteomic Evaluation of Biomarkers to Determine the Postmortem Interval. Anal. Lett. 2016, 50, 207–218. [Google Scholar] [CrossRef]
- Ueland, M.; Collins, S.; Maestrini, L.; Forbes, S.L.; Luong, S. Fresh vs. Frozen Human Decomposition—A Preliminary Investigation of Lipid Degradation Products as Biomarkers of Post-Mortem Interval. For. Chem. 2021, 24, 100335. [Google Scholar] [CrossRef]
- Percie Du Sert, N.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting Animal Research: Explanation and Elaboration for the ARRIVE Guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE Guidelines. Saudi J. Anaesth. 2019, 13, S31–S34. [Google Scholar] [CrossRef] [PubMed]
- Pittner, S.; Monticelli, F.C.; Pfisterer, A.; Zissler, A.; Sänger, A.M.; Stoiber, W.; Steinbacher, P. Postmortem Degradation of Skeletal Muscle Proteins: A Novel Approach to Determine the Time since Death. Int. J. Leg. Med. 2016, 130, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Pittner, S.; Ehrenfellner, B.; Zissler, A.; Racher, V.; Trutschnig, W.; Bathke, A.C.; Sänger, A.M.; Stoiber, W.; Steinbacher, P.; Monticelli, F.C. First Application of a Protein-Based Approach for Time since Death Estimation. Int. J. Leg. Med. 2017, 131, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Pittner, S.; Merold, V.; Anders, S.; Lohner, L.; Amendt, J.; Klinger, M.; Hausmann, R.; Kissling, S.; Monticelli, F.; Geissenberger, J.; et al. A Standard Protocol for the Analysis of Postmortem Muscle Protein Degradation: Process Optimization and Considerations for the Application in Forensic PMI Estimation. Int. J. Leg. Med. 2022, 136, 1913–1923. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kassam, N.; Gauthier, M.L.; O’Day, D.H. Post-Mortem Changes in Calmodulin Binding Proteins in Muscle and Lung. For. Sci. Int. 2003, 131, 140–147. [Google Scholar] [CrossRef]
- Poloz, Y.O.; O’Day, D.H. Determining Time of Death: Temperature-Dependent Postmortem Changes in Calcineurin A, MARCKS, CaMKII, and Protein Phosphatase 2A in Mouse. Int. J. Leg. Med. 2009, 123, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Geesink, G.H.; Koohmaraie, M. Postmortem Proteolysis and Calpain/Calpastatin Activity in Callipyge and Normal Lamb Biceps Femoris during Extended Postmortem Storage. J. Anim. Sci. 1999, 77, 1490. [Google Scholar] [CrossRef] [PubMed]
- Foditsch, E.E.; Saenger, A.M.; Monticelli, F.C. Skeletal Muscle Proteins: A New Approach to Delimitate the Time since Death. Int. J. Leg. Med. 2016, 130, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Zissler, A.; Ehrenfellner, B.; Foditsch, E.E.; Monticelli, F.C.; Pittner, S. Does Altered Protein Metabolism Interfere with Postmortem Degradation Analysis for PMI Estimation? Int. J. Leg. Med. 2018, 132, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-G.; Yang, K.E.; Hwang, J.W.; Kang, H.-S.; Lee, S.-Y.; Choi, S.; Shin, J.; Jang, I.-S.; An, H.J.; Chung, H.; et al. Degradation of Kidney and Psoas Muscle Proteins as Indicators of Post-Mortem Interval in a Rat Model, with Use of Lateral Flow Technology. PLoS ONE 2016, 11, e0160557. [Google Scholar] [CrossRef] [PubMed]
- Chighine, A.; Stocchero, M.; Ferino, G.; De-Giorgio, F.; Conte, C.; Nioi, M.; d’Aloja, E.; Locci, E. Metabolomics Investigation of Post-Mortem Human Pericardial Fluid. Int. J. Leg. Med. 2023, 137, 1875–1885. [Google Scholar] [CrossRef]
- Chhikara, A.; Kumari, P.; Dalal, J.; Kumari, K. Protein Degradation Patterns as Biomarkers for Post-Mortem Interval Estimation: A Comprehensive Review of Proteomic Approaches in Forensic Science. J. Proteome Res. 2025, 310, 105326. [Google Scholar] [CrossRef]
- Luo, Z.; Tian, M.; Yang, G.; Tan, Q.; Chen, Y.; Li, G.; Zhang, Q.; Li, Y.; Wan, P.; Wu, J. Hypoxia Signaling in Human Health and Diseases: Implications and Prospects for Therapeutics. Sig. Transduct. Target. Ther. 2022, 7, 218. [Google Scholar] [CrossRef]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef] [PubMed]
- Abo El-Noor, M.M.; Elhosary, N.M.; Khedr, N.F.; El-Desouky, K.I. Estimation of Early Postmortem Interval Through Biochemical and Pathological Changes in Rat Heart and Kidney. Am. J. For. Med. Pat. 2016, 37, 40–46. [Google Scholar] [CrossRef]
- Gottfries, C.G. Human brain levels of monoamines and their metabolites. Postmortem investigations. Acta Psychiatr. Scand. 1980, 280, 49–61. [Google Scholar] [CrossRef]
- Stuart, B. Decomposition Chemistry: Overview, Analysis, and Interpretation. In Encyclopedia of Forensic Sciences; Elsevier: Amsterdam, The Netherlands, 2013; pp. 11–15. [Google Scholar]
- Pfeiffer, S.; Milne, S.; Stevenson, R.M. The natural decomposition of adipocere. J. For. Sci. 1998, 43, 368–370. [Google Scholar] [CrossRef]
- Statheropoulos, M.; Agapiou, A.; Spiliopoulou, C.; Pallis, G.; Sianos, E. Environmental Aspects of VOCs Evolved in the Early Stages of Human Decomposition. Sci. Total Environ. 2007, 385, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Bonete, G.; Pérez-Cárceles, M.D.; Maurandi-López, A.; Pérez-Martínez, C.; Luna, A. Association between Protein Profile and Postmortem Interval in Human Bone Remains. J. Proteome Res. 2019, 192, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, C.M.; Oxenham, M. Modelling Time-since-Death in Australian Temperate Conditions. Aust. J. Forensic Sci. 2009, 41, 27–41. [Google Scholar] [CrossRef]
- Stokes, K.L.; Forbes, S.L.; Tibbett, M. Human Versus Animal: Contrasting Decomposition Dynamics of Mammalian Analogues in Experimental Taphonomy. J. For. Sci. 2013, 58, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Hayman, J.; Oxenham, M. Estimation of the Time since Death in Decomposed Bodies Found in Australian Conditions. Aust. J. Forensic Sci. 2017, 49, 31–44. [Google Scholar] [CrossRef]
- McIntosh, C.S.; Dadour, I.R.; Voss, S.C. A Comparison of Carcass Decomposition and Associated Insect Succession onto Burnt and Unburnt Pig Carcasses. Int. J. Leg. Med. 2017, 131, 835–845. [Google Scholar] [CrossRef]
- Sutherland, A.; Myburgh, J.; Steyn, M.; Becker, P.J. The Effect of Body Size on the Rate of Decomposition in a Temperate Region of South Africa. For. Sci. Int. 2013, 231, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Ueland, M.; Nizio, K.D.; Forbes, S.L.; Stuart, B.H. The Interactive Effect of the Degradation of Cotton Clothing and Decomposition Fluid Production Associated with Decaying Remains. For. Sci. Int. 2015, 255, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Demo, C.; Cansi, E.R.; Kosmann, C.; Pujol-Luz, J.R. Vultures and Others Scavenger Vertebrates Associated with Man-Sized Pig Carcasses: A Perspective in Forensic Taphonomy. Zoologia 2013, 30, 574–576. [Google Scholar] [CrossRef]
- Bugajski, K.N.; Seddon, C.C.; Williams, R.E. A Comparison of Blow Fly (Diptera: Calliphoridae) and Beetle (Coleoptera) Activity on Refrigerated Only versus Frozen-Thawed Pig Carcasses in Indiana. J. Med. Entom. 2011, 48, 1231–1235. [Google Scholar] [CrossRef]
- Li, S.; Hu, Z.; Shao, Y.; Zhang, G.; Wang, Z.; Guo, Y.; Wang, Y.; Cui, W.; Wang, Y.; Ren, L. Influence of Drugs and Toxins on Decomposition Dynamics: Forensic Implications. Molecules 2024, 29, 5221. [Google Scholar] [CrossRef]
- Quijano-Mateos, A.; Castillo-Alanis, A.; Pedraza-Lara, C.S.; Bravo-Gòmez, M.E. Evaluation of the effect of clonazepam and its metabolites on the life cycle of Megaseria scalaris (Loew) (Diptera: Phoridae). Sci. Justice 2024, 64, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Saleh, F.M.; Badawy, A.H.; Badawy, R.M.; Rahman, A.A.; Adly, E. Impact of ante-mortem fluoxetine administration on estimation of post-mortem interval and insect activity in rabbit carcasses. Egypt. J. Forensic Sci. 2024, 14, 35. [Google Scholar] [CrossRef]
- Introna, F.; Campobasso, C.P.; Goff, M.L. Entomotoxicology. Forensic Sci. Int. 2001, 120, 42–47. [Google Scholar] [CrossRef] [PubMed]
Study, Year and JCR Rank [Citation] | Sample and Time Interval | Technique and Approach | Statistical Approach | Biomarkers | Predictive Model |
---|---|---|---|---|---|
Efficiency | |||||
Error Interval-Accuracy | |||||
Zhang W. et al., 2024, Q3 [38] | A (42 mice) Liver and spleen 0–240 h | MALDI-TOF/TOF Proteomic | Student t-test (p < 0.05) | 6 proteins: SBP2, ENOA, ALDH2, 3HAO, TPIS, CATA | No No No |
Marrone A. et al., 2023, Q1 [3] | A (3 pigs) Skeletal muscle 0–24 h | LC-MS/MS Proteomic | Student t-test (p < 0.01, S0 = 0.2) | 9 proteins: eEF1A2, eEF2, GPS1, MURC, IPO5; SERBP1, COX7B, SOD2, MAO | No No No |
Brockbals L. et al., 2023, Q1 [1] | H (9) Skeletal muscle 0–120 days | LC-MS/MS Proteomic | Coefficient of determination (r2 ≥ 0.5) | 12 peptides ratios (main proteins of origin Myosin-2 and Myosin-7) | No No No |
Battistini A. et al., 2023, Q1 [17] | A (3 pigs) Skeletal muscle 0–120 h | LC-ESI-MS/MS Proteomic | ANOVA + Tukey test (n = 3, p < 0.05) | 22 proteins: AK1, BAG3, MYOZ3, MYOZ1, ACY1, PDLIM7, PDLIM3, PRDX2, LOC100156324, SYNPO2, DHRS7C, RAB10, RTN2, SRL, TPM1, ATP5MF, ATP2A2, TNNC1, ATP5PB, ATP5MG, PDLIM5, SLC25A4 | No No No |
Fang S. et al., 2023, Q2 [21] | A (150 rats) Cardiac blood 0–24 h | GC-MS Metabolomic | PCA, PLS, VIP > 1.0, Kruskal–Wallis test (p < 0.001) | 4 amino acids: isoleucine, alanine, proline, valine. Other molecules: glycerol, glycerol phosphate, xanthine, and hypoxanthine | Yes Yes Yes |
Kocsmár E. et al., 2023, Q1 [39] | H (3 to 4) Lung, kidney, liver 6–96 h | LC-MS/MS Proteomic | Benjamini–Hochberg, PCA | 18 proteins for each investigated organ: liver, lung, and kidney | No No No |
Lu X. et al., 2023, Q1 [20] | A (140 rats) Skeletal muscle, liver, lung, kidney 0–30 days | UPLC-HRMS Metabolomic | PCA, OPLS-DA, permutation test, R2 ≈ 1, Q2 ≥ 0.5, Mann–Whitney U test (p < 0.01) | 11 main metabolites: Nootkatone, Xanthine, Hypoxanthine, Azelaic Acid, Acetophenone, N-Acetylhistamine, N-Acetylvaline, 3-Phenyllactic Acid, Indole-3-Lactic Acid, N-Acetyl-L-Phenylalanine, and N-Acetyl-DL-tryphtophan | Yes Yes Yes |
Bonicelli A. et al., 2022, Q1 [23] | H (4) Bone 2–872 days | LC-MS Proteomic Metabolomic Lipidomic | PCA, Kruskal–Wallis, Dunn’s test, Holm’s correction, PLS-DA, regression PLS pairwise | 18 main molecules (most relevant H2A1H, H4, VIME, ACTB, HBA, Palmitoyl ethanolamide, N,N–Diethylethanolamine, Creatine, Hypoxanthine, Creatinine, CAPSO, Sedanolide, Taurine, Uracil, Ethyl palmitoleate, 12-Aminododecanoic acid, 12-hydroxydodecanoic acid, d-Neopterin) | No No Yes |
Bonicelli A. et al., 2022, Q1 [36] | H (14) Bone 1–37 years | LC-MS/MS Proteomic | Student t-test, Robust empirical Bayes regression, Spearman’s rank correlation (p < 0.05) | 90 proteins (most relevant ALBU, ASPN, CLC11, FETUA, FMOD, MIME, NUCB1, B2MG, KNG1, PCOC1, PGMB, CSPG2, G3P, IGL1, RCN3) | No No No |
Mickleburgh H. et al., 2021, Q1 [40] | H (4) Bone 2–872 days | LC-MS/MS Proteomic | Scaffold local FDR, Mascot evaluation, ANOVA, post hoc mean pairwise, Wilcoxon rank sum test, and Kruskal–Wallis | 7 main proteins: CO3A1, CO9, COBA2, MGP, PGS2, TTHY, CO3 | No No No |
Pesko B. et al., 2020, Q3 [30] | A (8 rats) Skeletal muscle 0–72 h H (6) Skeletal muscle 3–19 days | LC-MS Metabolomic | Retention time prediction algorithm | 20 main metabolites in rats: Methionine, Tryptophane, Leucine, aspartate, Phenylalanine, Valine, Lysine, Tyrosine, Histidine, Threonine, Arginine, Cadaverine, Putresceine, Skatole, Indole, Xanthine, N-acetylneuraminate, Uracil, Choline Phosphate, 1-methylnicotinamide 9 main metabolites in humans: Tyrosine, Threonine, Lysine, Skatole, Xanthine, N-acetylneuraminate, 1-methylnicotinamide, Choline phosphate, Uracil. | No No No |
Nolan A. et al., 2020, Q1 [41] | A (16 pigs) Fluid leaking from the body <34 days | HPLC-MS Proteomic | Multivariate analysis, PCA, Student t-test | 29 peptides resulting from the degradation of HBA, HBB, CK, ENO3, LDH | No No No |
Nolan A. et al., 2019, Q1 [42] | A (16 pigs) Fluid leaking from the body <34 days | HPLC-MS Proteomic | VennDiagram package | 142 peptides mainly resulting from the degradation of HBA, HBB, CK, ENO3 | No No No |
Nolan A. et al., 2019, Q1 [2] | A (4 pigs) Fluid leaking from the body <4 weeks | HPLC-TOF Proteomic | VennDiagram package | 27 peptides resulting from degradation of CK, ENO3, PK, HBA, HBB | No No No |
Choi K. et al., 2019, Q1 [43] | A (25 Rats, 10 Mice) Skeletal muscle 0–96 h H (3) Skeletal muscle 0–96 h | LC-MS/MS Proteomic | Spearman correlation, Kolmogorov-Smirnov tests, ANOVA, Tukey’s post hoc multiple comparisons tests, Kruskal–Wallis test, Bonferroni correction method (p ≤ 0.05, p ≤ 0.001 highly significant) | 2 proteins: eEF1A2, GAPDH | No No No |
Dai X. et al., 2019, Q3 [22] | A (36 Rats) Cardiac blood 0–72 h | GC-MS Metabolomic | PCA, PLS, VIP > 1.0, Kruskal–Wallis test (p < 0.05) | 23 main metabolites: valine, phenylalanine, leucine, xanthine, ribitol, isoleucine, 3-aminoisobutyric acid, threonine, mannitol, creatinine, pantothenate, pyroglutamate, xylose, hypoxanthine, linoleic acid, palmitic acid, pentitol, malic acid, pyruvate, proline, methionine, glutamate, uracil | Yes Yes Yes |
Du T. et al., 2018, Q1 [44] | A (60 Rats) Skeletal muscle 3–168 h | LC-MS Metabolomic | PCA, PLS-DA, OPLS-DA, VIP > 1.5, Student’s t-test (p < 0.05) | 14 main metabolites: cytidine, isomaltose, UDP-N-acetylglucosamine, inosine 5-monophosphate, uridine 5-monophosphate, guanosine 5-monophosphate, nicotinamide, 3-o-metylguanosine, reduced nicotinamide adenine dinucleotide, beta-nicotinamide, d-ribonucleotide, d-alanyl-d-alanine, glycerol 3-phosphate, n6-acetyl-l-lysine | Yes No No |
Wu Z. et al., 2018, Q3 [34] | A (84 Rats) Cardiac blood 0–72 h | GC-MS Metabolomic | PCA, OSC-PLS, VIP > 1.2, Kruskal–Wallis test (p < 0.05), Pearson correlation coefficient | 55 metabolites: mainly organic acids, amino acids, carbohydrates, lipids, and others | Yes Yes Yes |
Pérez-Martìnez C. et al., 2017, Q1 [19] | H (80) Bone More o less than 20 years | HPLC-MS/MS Proteomic | Spearman’s coefficient, Kruskal–Wallis test (p ≤ 0.05) | 8 nitrogenous bases (adenine, guanine, purines, cytosine, thymine, pyrimidines, hypoxanthine and xanthine), and several Collagen Type I peptides | Yes Yes Yes |
Li C. et al., 2017, Q2 [45] | A (4 Rats) Skeletal muscle 0–144 h | MALDI-TOF MS Proteomic | PCA, Wilcoxon test (p < 0.05) | Skeletal muscle proteins (not specifically reported by the authors) | Yes Yes Yes |
Li C. et al., 2017, Q1 [46] | A (36 Rats) Liver 0–144 h H (4) Liver 6–168 h | MALDI-TOF MS Proteomic | PCA, GA, SNN, QC algorithms | 4 main proteins in rats: LOC102151723, basic proline-rich protein-like, olfactory receptor 2G3-like, interferon omega 5 precursor. 3 main protesins in humans: Rho GTPase-activating protein 24, Amine oxidase, Small vasohibin-binding protein | Yes Yes Yes |
Kaszynski R. et al., 2016, Q1 [35] | A (52 Mice) Serum and skeletal muscle 0–48 h | GC-MS Metabolomic | Pearson’s correlation coefficient (p < 0.05), PCA | 17 main metabolites in muscle: Nicotinamide, Hypoxantine, N-formylglycine, Medo-erythritol, Citrulline, Valine, Lysine, 2-Aminoethanol, N-methylethanolamine, isoleucine, threonine, galactosamine, S-benzyl-l-cysteine, Methionine, Pyroglutamic acid, Ribitol, Xylitol. 15 main metabolites in serum: Hydroxybutyrate, glucarate, xylitol, glycerol-2-phosphate, ribitol, rhamnose, 2-aminoethanole, pantothenate, b-alanine, ribose, tryptophane, lysine, glucosamine, citric acid, isocitric acid. | Yes Yes Yes |
Sato T. et al., 2015, Q1 [47] | A (36 Rats) Serum 0–48 h | GC-MS/MS Metabolomic | PCA, PLS regression model, Kruskal–Wallis test, VIP > 1.2 | 18 amino acids, 5 sugars, 1 carboxylic acid, 1 phosphate | Yes Yes Yes |
Boroumand M. et al., 2023, Q3 [48] | H (7) Vitreous humor 3–160 h | High resolution HPLC-ESI-MS, MS/MS Proteomic | Correlation analysis, Pearson correlation coefficient | 7 proteins and 35 peptide fragments | Yes No No |
Kwak J. et al., 2016, Q3 [49] | A (3 Rats) Liver and heart 0–48 h | HPLC-MS Proteomic | Cross-correlation, delta correlation | 9 main proteins: Tropomyosin, Cardiac myosin heavy chain 5, stress-70, Glutathione synthetase, Mu 2, Glutathione S-transferase alpha, Creatine kinase, Enolase, Aldehyde dehydrogenase. | No No No |
Ueland M. et al., 2021, Q2 [50] | H (2) Unspecified tissue from upper arm, lower abdomen, upper thigh 0–69 days | GC–MS/MS Lipidomic | PCA, Two-way ANOVA with post hoc tests, Shapiro–Wilk tests | 22 fatty acids (saturated, unsaturated, and dicarboxylic acids) and 11 sterol analytes | No No No |
Short PMI | Intermediate PMI | Long PMI | ||
---|---|---|---|---|
Down-regulation pattern | ↓ | ATP2A2 (SERCA2), Cadaverine, Cardiac myosin heavy chain 5, eEF1A2, eEF2, GAPDH, Glutathione synthetase, GPS1, IPO5, MURC, PDLIM7, Pyruvate, TPM1 Tropomyosin. | ALDH2 Azelaic Acid, ß-actin ß-enolase, CK, ENOA, HBA, HBB, Hypoxanthine, LDH, Nootkatone, SBP2. | ACTB, B2MG, CAPSO, CO3, CO3A1, CO9, COBA2, Creatine, CSPG2, G3P, H2A1H, H4, HBA, Hypoxanthine, IGL1, KNG1, LPC(17:0) + HCOO, LPC(18:0) + HCOO, LPC(19:0) + HCOO, MGP, PC(16:1e_20:4) + HCOO, PCOC1, PI(18:0_20:4)-H, PGBM, PGS2, RCN3 Taurine, TTHY, VIME. |
Up-regulation pattern | ↑ | Aldehyde dehydrogenase, COX7B, Glutathione S-transferase Mu2, Indole, Isoleucine, Lactic acid, MAOB, Oleic acid, Palmitic acid, Polyubiquitin Fr. 1–73, Putresceine SERBP1, SOD2, Stearic acid, Stress-70 protein, Thymosin ß4, Vimentin Fr. 443–465, Xanthine. | 1-Methylnicotinamide, 3-Phenyllactic Acid, Acetophenone, Choline Phosphate, Indole, Indole-3-Lactic Acid, Linoleic acid Lysine, N-Acetyl-DL-tryphtophan, N-Acetylhistamine, N-Acetyl-l-Phenylalanine, N-Acetylneuraminate, N-Acetylvaline, Oleic acid, Palmitic acid, Skatole, Stearic acid, Threonine, Tyrosine, Uracil, Xanthine. | 12-Aminododecanoic acid, Acetamide, ANT3, CHAD, Ethyl palmitolate, N,N-Diethylethanolamine, Palmitoyl ethanolamide, Sedanolide. |
Up-regulation followed by down-regulation | ↑↓ | Aldolase A, Creatine kinase. | ||
Down-regulation followed by up-regulation | ↓↑ | Arginase-1, Hydroxyacylglutathione hydrolase, Lactate dehydrogenase B, Nicotinamide adenine dinucleotide. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Secco, L.; Palumbi, S.; Padalino, P.; Grosso, E.; Perilli, M.; Casonato, M.; Cecchetto, G.; Viel, G. “Omics” and Postmortem Interval Estimation: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 1034. https://doi.org/10.3390/ijms26031034
Secco L, Palumbi S, Padalino P, Grosso E, Perilli M, Casonato M, Cecchetto G, Viel G. “Omics” and Postmortem Interval Estimation: A Systematic Review. International Journal of Molecular Sciences. 2025; 26(3):1034. https://doi.org/10.3390/ijms26031034
Chicago/Turabian StyleSecco, Laura, Stefano Palumbi, Pasquale Padalino, Eva Grosso, Matteo Perilli, Matteo Casonato, Giovanni Cecchetto, and Guido Viel. 2025. "“Omics” and Postmortem Interval Estimation: A Systematic Review" International Journal of Molecular Sciences 26, no. 3: 1034. https://doi.org/10.3390/ijms26031034
APA StyleSecco, L., Palumbi, S., Padalino, P., Grosso, E., Perilli, M., Casonato, M., Cecchetto, G., & Viel, G. (2025). “Omics” and Postmortem Interval Estimation: A Systematic Review. International Journal of Molecular Sciences, 26(3), 1034. https://doi.org/10.3390/ijms26031034