Multidrug Resistance-Associated Proteins 3 and 5 Play a Role in the Hepatic Transport of Mercuric Conjugates of Glutathione
Abstract
:1. Introduction
2. Results
2.1. Analyses of Hg Transport into Membrane Vesicles Containing MRP3
2.2. Analysis of GSH-Hg-GSH Transport into Membrane Vesicles Containing MRP5
3. Discussion
4. Materials and Methods
4.1. Radioactive Mercury ([203Hg])
4.2. Membrane Vesicles
4.2.1. Time Course Analyses of [3H]-Estradiol or 5-6-Carboxy-2′,7′-dichlorofluorescein (CDCF) Uptake
4.2.2. Uptake of GSH-[203Hg]-GSH into MRP3 and MRP5 Membrane Vesicles
4.2.3. Analysis of Saturation Kinetics
4.3. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oliveira, C.S.; Piccoli, B.C.; Aschner, M.; Rocha, J.B.T. Chemical Speciation of Selenium and Mercury as Determinant of Their Neurotoxicity. In Neurotoxicity of Metals. Advances in Neurobiology; Aschner, M., Costa, L., Eds.; Springer: Cham, Switzerland, 2017; Volume 18. [Google Scholar]
- Santos, A.A.; Ferrer, B.; Marques Gonçalves, F.; Tsatsakis, A.M.; Renieri, E.A.; Skalny, A.V.; Farina, M.; Rocha, J.B.T.; Aschner, M. Oxidative stress in methylmercury-induced cell toxicity. Toxics 2018, 6, 47. [Google Scholar] [CrossRef]
- Althobaiti, N.A. Heavy metals exposure and Alzheimer’s disease: Underlying mechanisms and advancing therapeutic approaches. Behav. Brain Res. 2024, 476, 115212. [Google Scholar] [CrossRef] [PubMed]
- Zahed, M.A.; Ebrahimi, M.; Barmakhshad, N.; Shemshadi, S.; Parsasharif, N. Mercury-mediated neurological diseases: Insight into molecular mechanisms, mutant proteins, and structure-based therapeutic inhibitors. Toxicol. Environ. Health Sci. 2024, 16, 459–480. [Google Scholar] [CrossRef]
- Hostert, J.; Galiciolli, M.E.A.; Lima, L.S.; Souza, J.V.; de Oliveira, C.S. Mercury Toxicity: A Brief Overview. In Toxicology of Essential and Xenobiotic Metals, 1st ed.; Rocha, J.B.T.D., Aschner, M., Nogara, P.A., Eds.; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Fowler, B.A.; Zalups, R.K. Mercury. In Handbook on the Toxicology of Metals: Volume II: Specific Metals, 5th ed.; Nordberg, G., Costa, M., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 2. [Google Scholar]
- Norseth, T.; Clarkson, T.W. Studies on the biotransformation of 203Hg-labeled methyl mercury chloride in rats. Arch. Environ. Health 1970, 21, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Norseth, T.; Clarkson, T.W. Biotransformation of methylmercury salts in the rat studied by specific determination of inorganic mercury. Biochem. Pharmacol. 1970, 19, 2775–2783. [Google Scholar] [CrossRef]
- Khan, A.T.; Atkinson, A.; Graham, T.C.; Shireen, K.F. Uptake and distribution of mercury in rats after repeated administration of mercuric chloride. J. Environ. Sci. Health Part A 2001, 36, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, M.F.H.; Souza, J.M.O.; Grotto, D.; Batista, B.L.; de Oliveira Souza, V.C.; Barbosa, F., Jr. A systematic study of the disposition and metabolism of mercury species in mice after exposure to low levels of thimerosal (ethylmercury). Environ. Res. 2014, 134, 218–227. [Google Scholar] [CrossRef]
- Berndt, W.O.; Baggett, J.M.; Blacker, A.; Houser, M. Renal glutathione and mercury uptake by kidney. Fundam. App. Toxicol. 1985, 5, 832–839. [Google Scholar] [CrossRef]
- Rabenstein, D.L. Metal complexes of glutathione and their biological significance. In Glutathione: Chemical, Biochemical and Medical Aspects, Coenzymes and Cofactors; Dolphin, D., Auromovibic, O., Poulson, R., Eds.; Wiley: New York, NY, USA, 1989; Volume 3, pp. 147–186. [Google Scholar]
- Rabenstein, D.L.; Fairhurst, M.T. Nuclear magnetic resonance studies of the solution chemistry of metal complexes. XI. The binding of methylmercury by sulfhydryl-containing amino acids and by glutathione. J. Am. Chem. Soc. 1975, 97, 2086–2092. [Google Scholar] [CrossRef]
- Lau, S.; Sarkar, B. Inorganic mercury(II)-binding components in normal human blood serum. J. Toxicol. Environ. Health 1979, 5, 907–916. [Google Scholar] [CrossRef]
- Ajsuvakova, O.P.; Tinkov, A.A.; Aschner, M.; Rocha, J.B.T.; Michalke, B.; Skalnaya, M.G.; Skalny, A.V.; Butnariu, M.; Dadar, M.; Sarac, I.; et al. Sulfhydryl groups as targets of mercury toxicity. Coord. Chem. Rev. 2020, 417, 213343. [Google Scholar] [CrossRef]
- Barfuss, D.W.; Buchanan, J.T.; Joshee, L.; Pittman, E.H.; D’Souza, N.; Matta, K.E.; Brownlee, R.T.; Bridges, C.C. Hepatic processing of mercuric ions facilitates delivery to renal proximal tubules. Toxicol. Lett. 2022, 359, 1–9. [Google Scholar] [CrossRef]
- Zalups, R.K.; Barfuss, D.W. Diversion or prevention of biliary outflow from the liver diminishes the renal uptake of injected inorganic mercury. Drug Metab. Dispos. 1996, 24, 480–486. [Google Scholar] [PubMed]
- Bridges, C.C.; Joshee, L.; Zalups, R.K. MRP2 and the DMPS- and DMSA-mediated elimination of mercury in TR(-) and control rats exposed to thiol S-conjugates of inorganic mercury. Toxicol. Sci. 2008, 105, 211–220. [Google Scholar] [CrossRef]
- Bridges, C.C.; Joshee, L.; Zalups, R.K. Multidrug resistance proteins and the renal elimination of inorganic mercury mediated by 2,3-dimercaptopropane-1-sulfonic acid and meso-2,3-dimercaptosuccinic acid. J. Pharmacol. Exp. Ther. 2008, 324, 383–390. [Google Scholar] [CrossRef]
- Wang, J.Q.; Yang, Y.; Cai, C.Y.; Teng, Q.X.; Cui, Q.; Lin, J.; Assaraf, Y.G.; Chen, Z.S. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist. Updates 2021, 54, 100743. [Google Scholar] [CrossRef] [PubMed]
- Borst, P.; de Wolf, C.; van de Wetering, K. Multidrug resistance-associated proteins 3, 4, and 5. Pflug. Arch. 2007, 453, 661–673. [Google Scholar] [CrossRef]
- Wijnholds, J.; Mol, C.A.; van Deemter, L.; de Haas, M.; Scheffer, G.L.; Baas, F.; Beijnen, J.H.; Scheper, R.J.; Hatse, S.; Clercq, E.D.; et al. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc. Nat. Acad. Sci. USA 2000, 97, 7476–7481. [Google Scholar] [CrossRef]
- Seelheim, P.; Wüllner, A.; Galla, H.J. Substrate translocation and stimulated ATP hydrolysis of human ABC transporter MRP3 show positive cooperativity and are half-coupled. Biophys. Chem. 2013, 171, 31–37. [Google Scholar] [CrossRef]
- Sampath, J.; Adachi, M.; Hatse, S.; Naesens, L.; Balzarini, J.; Flatley, R.; Matherly, L.; Schuetz, J. Role of MRP4 and MRP5 in biology and chemotherapy. AAPS PharmSci 2002, 4, 22–30. [Google Scholar] [CrossRef]
- Kock, K.; Brouwer, K.L. A perspective on efflux transport proteins in the liver. Clin. Pharmacol. Ther. 2012, 92, 599–612. [Google Scholar] [CrossRef]
- Zelcer, N.; Saeki, T.; Reid, G.; Beijnen, J.H.; Borst, P. Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). J. Biol. Chem. 2001, 276, 46400–46407. [Google Scholar] [CrossRef] [PubMed]
- Pratt, S.; Chen, V.; Perry, W.I., 3rd; Starling, J.J.; Dantzig, A.H. Kinetic validation of the use of carboxydichlorofluorescein as a drug surrogate for MRP5-mediated transport. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2006, 27, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Zalups, R.K. Molecular interactions with mercury in the kidney. Pharmacol. Rev. 2000, 52, 113–143. [Google Scholar] [CrossRef] [PubMed]
- Zalups, R.K.; Barfuss, D.W.; Lash, L.H. Disposition of inorganic mercury following biliary obstruction and chemically induced glutathione depletion: Dispositional changes one hour after the intravenous administration of mercuric chloride. Toxicol. Appl. Pharmacol. 1999, 154, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Joshee, L.; Bridges, C.C. MRP2 and the Transport Kinetics of Cysteine Conjugates of Inorganic Mercury. Biol. Trace Elem. Res. 2018, 184, 279–286. [Google Scholar] [CrossRef]
- Grant, C.E.; Gao, M.; DeGorter, M.K.; Cole, S.P.; Deeley, R.G. Structural determinants of substrate specificity differences between human multidrug resistance protein (MRP) 1 (ABCC1) and MRP3 (ABCC3). Drug Metab. Dispos. 2008, 36, 2571–2581. [Google Scholar] [CrossRef] [PubMed]
- Kool, M.; van der Linden, M.; de Haas, M.; Scheffer, G.L.; de Vree, J.M.; Smith, A.J.; Jansen, G.; Peters, G.J.; Ponne, N.; Scheper, R.J.; et al. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc. Natl. Acad. Sci. USA 1999, 96, 6914–6919. [Google Scholar] [CrossRef]
- Xu, S.F.; Wu, Q.; Zhang, B.B.; Li, H.; Xu, Y.S.; Du, Y.Z.; Wei, L.X.; Liu, J. Comparison of mercury sulfides with mercury chloride and methylmercury on hepatic P450, phase-2 and transporter gene expression in mice. J. Trace Elem. Med. Biol. 2016, 37, 37–43. [Google Scholar] [CrossRef]
- Belanger, M.; Westin, A.; Barfuss, D.W. Some health physics aspects of working with 203Hg in university research. Health Phys. 2001, 80 (2 Suppl), S28–S30. [Google Scholar]
- Bridges, C.C.; Bauch, C.; Verrey, F.; Zalups, R.K. Mercuric conjugates of cysteine are transported by the amino acid transporter system b(0,+): Implications of molecular mimicry. J. Am. Soc. Nephrol. 2004, 15, 663–673. [Google Scholar] [CrossRef]
- El-Sheikh, A.A.K.; van den Heuvel, J.J.M.W.; Koenderink, J.B.; Russel, F.G.M. Effect of hypouricaemic and hyperuracaemic drugs on the renal urate efflux transporter, multidrug resistance protein 4. Br. J. Pharmacol. 2008, 155, 1066–1075. [Google Scholar] [CrossRef]
- Wittgen, H.G.M.; van den Heuvel, J.J.M.W.; van den Broek, P.H.H.; Siissalo, S.; Groothuis, G.M.M.; de Graaf, I.A.M.; Koenderink, J.B.; Russel, F.G.M. Transport of the coumarin metabolite 7-hydroxycoumarin glucuronide is mediated via multidrug resistance-associated proteins 3 and 4. Drug Metab. Dispos. 2012, 40, 1076–1079. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galiciolli, M.E.A.; Joshee, L.; Oliveira, C.S.; Barkin, J.L.; Bridges, C.C. Multidrug Resistance-Associated Proteins 3 and 5 Play a Role in the Hepatic Transport of Mercuric Conjugates of Glutathione. Int. J. Mol. Sci. 2025, 26, 1194. https://doi.org/10.3390/ijms26031194
Galiciolli MEA, Joshee L, Oliveira CS, Barkin JL, Bridges CC. Multidrug Resistance-Associated Proteins 3 and 5 Play a Role in the Hepatic Transport of Mercuric Conjugates of Glutathione. International Journal of Molecular Sciences. 2025; 26(3):1194. https://doi.org/10.3390/ijms26031194
Chicago/Turabian StyleGaliciolli, Maria Eduarda Andrade, Lucy Joshee, Cláudia S. Oliveira, Jennifer L. Barkin, and Christy C. Bridges. 2025. "Multidrug Resistance-Associated Proteins 3 and 5 Play a Role in the Hepatic Transport of Mercuric Conjugates of Glutathione" International Journal of Molecular Sciences 26, no. 3: 1194. https://doi.org/10.3390/ijms26031194
APA StyleGaliciolli, M. E. A., Joshee, L., Oliveira, C. S., Barkin, J. L., & Bridges, C. C. (2025). Multidrug Resistance-Associated Proteins 3 and 5 Play a Role in the Hepatic Transport of Mercuric Conjugates of Glutathione. International Journal of Molecular Sciences, 26(3), 1194. https://doi.org/10.3390/ijms26031194