Discovery of Crinasiadine, Trisphaeridine, Bicolorine, and Their Derivatives as Anti-Tobacco Mosaic Virus (TMV) Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antiviral Activity and Structure−Activity Relationships (SARs)
2.3. Preliminary Mode of Action of Anti-TMV
2.4. Molecular Docking
3. Materials and Methods
3.1. Chemicals
3.2. Instruments
3.3. Chemical Synthesis
- Trisphaeridine (4a)
- 2,4-Dimethoxyphenanthridine (4b)
- 8,9-Dimethoxyphenanthridine (4c)
- 2-Fluoro-8,9-dimethoxyphenanthridine (4d)
- 2,9-Difluorophenanthridine (4e)
- 9-Fluoro-2,4-dimethoxyphenanthridine (4f)
- 9-Fluorophenanthridine (4g)
- Phenanthridine (4h)
- 2-Bromophenanthridine (4i)
3.4. Biological Assay
3.5. Mode of Action of Anti-TMV Studies [45]
3.5.1. In Vitro 20S Disk Inhibition Reaction
3.5.2. In Vitro TMV Nanorod Assembly Reaction
3.5.3. Molecular Docking [49,50]
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lamberth, C.; Jeanmart, S.; Luksch, T.; Plant, A. Current Challenges and Trends in the Discovery of Agrochemicals. Science 2013, 341, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Hemathilake, D.M.K.S.; Gunathilake, D.M.C.C. Chapter 31—Agricultural Productivity and Food Supply to Meet Increased Demands. In Future Foods; Bhat, R., Ed.; Academic Press: New Yok, NY, USA, 2022; pp. 539–553. [Google Scholar]
- Feeding the Future Global Population. Nat. Commun. 2024, 15, 222. [CrossRef] [PubMed]
- Gobert, A.; Quan, Y.; Arrivé, M.; Waltz, F.; Da Silva, N.; Jomat, L.; Cohen, M.; Jupin, I.; Giegé, P. Towards Plant Resistance to Viruses Using Protein-Only Rnase P. Nat. Commun. 2021, 12, 1007. [Google Scholar] [CrossRef] [PubMed]
- Scholthof, K.-b.G.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Honhe, B.; Saunders, K.; Candresse, T.; Ahlquist, P.; et al. Top 10 Plant Viruses in Molecular Plant Pathology. Mol. Plant Pathol. 2011, 12, 938–954. [Google Scholar] [CrossRef]
- Chen, W.; Liu, W.; Jiao, H.; Zhang, H.; Cheng, J.; Wu, C. Development of a Concentration Method for Detection of Tobacco Mosaic Virus in Irrigation Water. Virol. Sin. 2014, 29, 155–161. [Google Scholar] [CrossRef]
- Jiang, Q.; Xie, Y.; Zhou, B.; Wang, Z.; Ning, D.; Li, H.; Zhang, J.; Yin, M.; Shen, J.; Yan, S. Nanomaterial Inactivates Environmental Virus and Enhances Plant Immunity for Controlling Tobacco Mosaic Virus Disease. Nat. Commun. 2024, 15, 8509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; He, F.; Chen, J.; Wang, Y.; Yang, Y.; Hu, D.; Song, B. Purine Nucleoside Derivatives Containing a Sulfa Ethylamine Moiety: Design, Synthesis, Antiviral Activity, and Mechanism. J. Agric. Food Chem. 2021, 69, 5575–5582. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Shen, T.; Shu, L.; Huang, Y.; Deng, Y.; Li, B.; Jin, Z.; Li, X.; Wu, J. Recent Achievements in Antiviral Agent Development for Plant Protection. J. Agric. Food Chem. 2023, 71, 1291–1309. [Google Scholar] [CrossRef]
- Sparks, T.C.; Sparks, J.M.; Duke, S.O. Natural Product-Based Crop Protection Compounds─Origins and Future Prospects. J. Agric. Food Chem. 2023, 71, 2259–2269. [Google Scholar] [CrossRef] [PubMed]
- Späth, G.; Loiseleur, O. Chemical Case Studies from Natural Products of Recent Interest in the Crop Protection Industry. Nat. Prod. Rep. 2024, 41, 1915–1938. [Google Scholar] [CrossRef] [PubMed]
- Mingbo, C.; Kailiang, W.; Qingmin, W.; Runqiu, H. Concise Synthesis of Benzoindolizidine Derivatives and Bioactivity Evaluation. Lett. Org. Chem. 2008, 5, 98–102. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, P.; Liu, Y.; Wang, Q. D and E Rings May Not Be Indispensable for Antofine: Discovery of Phenanthrene and Alkylamine Chain Containing Antofine Derivatives as Novel Antiviral Agents against Tobacco Mosaic Virus (Tmv) Based on Interaction of Antofine and Tmv Rna. J. Agric. Food Chem. 2014, 62, 10393–10404. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Z.; Liu, Y.; Wang, Q. Leveraging Botanical Resources for Crop Protection: The Isolation, Bioactivity and Structure–Activity Relationships of Lycoris Alkaloids. Pest Manag. Sci. 2018, 74, 2783–2792. [Google Scholar] [CrossRef]
- Kornienko, A.; Evidente, A. Chemistry, Biology, and Medicinal Potential of Narciclasine and Its Congeners. Chem. Rev. 2008, 108, 1982–2014. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Qu, D.; Zhang, K.; Cang, X.; Kou, Z.; Xiao, W.; Zhu, J. Phytochemical and Biological Investigations of Amaryllidaceae Alkaloids: A Review. J. Asian Nat. Prod. Res. 2017, 19, 53–100. [Google Scholar] [CrossRef] [PubMed]
- Tumir, L.M.; Radić Stojković, M.; Piantanida, I. Come-Back of Phenanthridine and Phenanthridinium Derivatives in the 21st Century. Beilstein J. Org. Chem. 2014, 10, 2930–2954. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, V.; Vijayan, A.; Kumar Katari, N.; Radhakrishnan, K.V.; Das, P. Recent Trends in the Synthesis and Mechanistic Implications of Phenanthridines. Adv. Synth. Catal. 2021, 363, 1202–1245. [Google Scholar] [CrossRef]
- Newton, B.A. The Mode of Action of Phenanthridines: The Effect of Ethidium Bromide on Cell Division and Nucleic Acid Synthesis. J. Gen. Microbiol. 1957, 17, 718–730. [Google Scholar] [CrossRef]
- Boibessot, I.; Turner, C.M.R.; Watson, D.G.; Goldie, E.; Connel, G.; Mcintosh, A.; Grant, M.H.; Skellern, G.G. Metabolism and Distribution of Phenanthridine Trypanocides in Trypanosoma Brucei. Acta Trop. 2002, 84, 219–228. [Google Scholar] [CrossRef]
- Venturelli, A.; Tagliazucchi, L.; Lima, C.; Venuti, F.; Malpezzi, G.; Magoulas, G.E.; Santarem, N.; Calogeropoulou, T.; Cordeiro-da-Silva, A.; Costi, M.P. Current Treatments to Control African Trypanosomiasis and One Health Perspective. Microorganisms 2022, 10, 1298. [Google Scholar] [CrossRef]
- Roy Chowdhury, A.; Bakshi, R.; Wang, J.; Yildirir, G.; Liu, B.; Pappas-Brown, V.; Tolun, G.; Griffith, J.D.; Shapiro, T.A.; Jensen, R.E.; et al. The Killing of African Trypanosomes by Ethidium Bromide. PLoS Pathog. 2010, 6, e1001226. [Google Scholar] [CrossRef] [PubMed]
- Igoli, J.O.; Blackburn, G.; Gray, A.I.; Sutcliffe, O.B.; Watson, D.G.; Euerby, M.R.; Skellern, G.G. Chromatographic and Spectroscopic Analysis of the Components Present in the Phenanthridinium Trypanocidal Agent Isometamidium. Anal. Bioanal. Chem. 2015, 407, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Cai, J.; Yin, J.; Jiang, J.; Jing, C.; Zhu, Y.; Cheng, J.; Di, Y.; Zhang, Y.; Cao, M.; et al. Lycorine-Derived Phenanthridine Downregulators of Host Hsc70 as Potential Hepatitis C Virus Inhibitors. Future Med. Chem. 2015, 7, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.-Z.; Fan, S.-R.; Yang, B.-J.; Yao, H.-C.; Wang, Y.-T.; Cai, J.-Y.; Jing, C.-X.; Pan, Z.-H.; Luo, M.; Yuze, Y.-Q.; et al. Phenanthridine Derivative Host Heat Shock Cognate 70 Down-Regulators as Porcine Epidemic Diarrhea Virus Inhibitors. J. Nat. Prod. 2021, 84, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yin, J.; Chen, D.; Nie, F.; Song, X.; Fei, C.; Miao, H.; Jing, C.; Ma, W.; Wang, L.; et al. Small-Molecule Modulation of Wnt Signaling Via Modulating the Axin-Lrp5/6 Interaction. Nat. Chem. Biol. 2013, 9, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Jing, C.; Cai, J.; Wu, J.; Wang, s.; Yin, J.; Li, X.; Li, L.; Hao, X. Design, Synthesis, and Structural Optimization of Lycorine-Derived Phenanthridine Derivatives as Wnt/Β-Catenin Signaling Pathway Agonists. J. Nat. Prod. 2016, 79, 180–188. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, H.; Jing, C.; He, X.; Yang, B.; Cai, J.; Zhou, Y.; Song, X.; Li, L.; Hao, X. Efficient Synthesis of New Phenanthridine Wnt/Β-Catenin Signaling Pathway Agonists. Eur. J. Med. Chem. 2018, 157, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Jin, Z.; Zhang, J.; Jin, J. Antitumor Evaluation of Novel Phenothiazine Derivatives That Inhibit Migration and Tubulin Polymerization against Gastric Cancer Mgc-803 Cells. Investig. New Drugs 2019, 37, 188–198. [Google Scholar] [CrossRef]
- Chen, J.; Duan, Z.; Liu, Y.; Fu, R.; Zhu, C. Ginsenoside Rh4 Suppresses Metastasis of Esophageal Cancer and Expression of C-Myc Via Targeting the Wnt/Β-Catenin Signaling Pathway. Nutrients 2022, 14, 3042. [Google Scholar] [CrossRef]
- Czapar, A.E.; Shukla, S.; Steinmetz, N.F.; Zheng, Y.; Riddell, I.A.; Awuah, S.G.; Lippard, S.J. Tobacco Mosaic Virus Delivery of Phenanthriplatin for Cancer Therapy. ACS Nano 2016, 10, 4119–4126. [Google Scholar] [CrossRef] [PubMed]
- Almaqwashi, A.A.; Zhou, W.; Naufer, M.N.; Riddell, I.A.; Yilmaz, Ö.H.; Lippard, S.J.; Williams, M.C. DNA Intercalation Facilitates Efficient DNA-Targeted Covalent Binding of Phenanthriplatin. J. Am. Chem. Soc. 2019, 141, 1537–1545. [Google Scholar] [CrossRef]
- Dey, A.; Kumar, V.; Chatterjee, R.; Behera, A.; Maurya, R.K.; Burra, A.G.; Kumar, S.; Khatravath, M.; Dandella, R. Recent Advancements in Synthesis of Phenanthridines Via 2-Isocyanobiphenyls. Asian J. Org. Chem. 2023, 12, e202300369. [Google Scholar] [CrossRef]
- Bhakuni, B.S.; Kumar, A.; Balkrishna, S.J.; Sheikh, J.A.; Konar, S.; Kumar, S. Kotbu Mediated Synthesis of Phenanthridinones and Dibenzoazepinones. Org. Lett. 2012, 14, 2838–2841. [Google Scholar] [CrossRef]
- Meseroll, L.M.N.; McKee, J.R.; Zanger, M. Synthesis of 5,6-Dihydrophenanthridine (Dhpa) Sulfonamides and Subsequent Acid-Catalyzed Rearrangement to Diaryl Sulfones. Synth. Commun. 2011, 41, 2557–2568. [Google Scholar] [CrossRef]
- Pan, H.L.; Fletcher, T.L. 6(5h)-Phenanthridinones. Iii. Halo-6(5h)Phenanthridinones. J. Heterocycl. Chem. 1970, 7, 597–605. [Google Scholar] [CrossRef]
- Baechler, S.A.; Fehr, M.; Habermeyer, M.; Hofmann, A.; Merz, K.-H.; Fiebig, H.-H.; Marko, D.; Eisenbrand, G. Synthesis, Topoisomerase-Targeting Activity and Growth Inhibition of Lycobetaine Analogs. Bioorg. Med. Chem. 2013, 21, 814–823. [Google Scholar] [CrossRef]
- Fujita, R.; Yoshisuji, T.; Wakayanagi, S.; Wakamatsu, H.; Matsuzaki, H. Synthesis of 5(6h)-Phenanthridones Using Diels–Alder Reaction of 3-Nitro-2(1h)-Quinolones Acting as Dienophiles. Chem. Pharm. Bull. 2006, 54, 204–208. [Google Scholar] [CrossRef]
- Hoffmann-Emery, F.; Jakob-Roetne, R.; Flohr, A.; Bliss, F.; Reents, R. Improved Synthesis of (S)-7-Amino-5H,7H-Dibenzo[b,d]Azepin-6-One, a Building Block for γ-Secretase Inhibitors. Tetrahedron Lett. 2009, 50, 6380–6382. [Google Scholar] [CrossRef]
- Casida, J.E. Curious About Pesticide Action. J. Agric. Food Chem. 2011, 59, 2762. [Google Scholar] [CrossRef] [PubMed]
- Butler, P.J. Self-Assembly of Tobacco Mosaic Virus: The Role of an Intermediate Aggregate in Generating Both Specificity and Speed. Phil. Trans. R. Soc. Lond. B 1999, 354, 537–550. [Google Scholar] [CrossRef]
- Chen, W.; Chen, C.; Chen, Y.; Hsieh, J. Hydride-Induced Anionic Cyclization: An Efficient Method for the Synthesis of 6-H-Phenanthridines Via a Transition-Metal-Free Process. Org. Lett. 2015, 17, 1613–1616. [Google Scholar] [CrossRef] [PubMed]
- Tummatorn, J.; Krajangsri, S.; Norseeda, K.; Thongsornkleeb, C.; Ruchirawat, S. A New Synthetic Approach to 6-Unsubstituted Phenanthridine and Phenanthridine-Like Compounds under Mild and Metal-Free Conditions. Org. Biomol. Chem. 2014, 12, 5077–5081. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Ahmed, A.; Singha, R.; Ray, J.K. Domino Suzuki Coupling and Condensation Reaction: An Efficient Strategy Towards Synthesis of Phenanthridines. Tetrahedron Lett. 2015, 56, 353–355. [Google Scholar] [CrossRef]
- Lu, A.; Wang, T.; Hui, H.; Wei, X.; Cui, W.; Zhou, C.; Li, H.; Wang, Z.; Guo, J.; Ma, D.; et al. Natural Products for Drug Discovery: Discovery of Gramines as Novel Agents against a Plant Virus. J. Agric. Food Chem. 2019, 67, 2148–2156. [Google Scholar] [CrossRef] [PubMed]
- Leberman, R. The Isolation of Plant Viruses by Means of “Simple” Coacervates. Virology 1966, 30, 341–347. [Google Scholar] [CrossRef]
- Fraenkel-Conrat, H.; Williams, R.C. Reconstitution of Active Tobacco Mosaic Virus from Its Inactive Protein and Nucleic Acid Components. Proc. Natl. Acad. Sci. USA 1955, 41, 690–698. [Google Scholar] [CrossRef]
- Zimmern, D. The 5′ End Group of Tobacco Mosaic Virus Rna Is M7g5′Ppp5′Gp. Nucleic Acids Res. 1975, 2, 1189–1202. [Google Scholar] [CrossRef]
- Yang, S.; Wang, T.; Lu, A.; Wang, Q. Discovery of Chiral Diamine Derivatives Containing 1,2-Diphenylethylenediamine as Novel Antiviral and Fungicidal Agents. J. Agric. Food Chem. 2023, 71, 10989–11000. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, C.; Zou, J.; Deng, Z.; You, S.; Wang, Q. Novel Cyclopenta[C]Pyridine Derivatives Based on Natural Cerbinal as Potential Agrochemical Anti-Tmv Agents and Insecticides. J. Agric. Food Chem. 2024, 72, 6684–6690. [Google Scholar] [CrossRef] [PubMed]
- Bhyravbhatla, B.; Watowich, S.J.; Caspar, D.L.D. Refined Atomic Model of the Four-Layer Aggregate of the Tobacco Mosaic Virus Coat Protein at 2.4-Å Resolution. Biophys. J. 1998, 74, 604–615. [Google Scholar] [CrossRef]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational Protein–Ligand Docking and Virtual Drug Screening with the Autodock Suite. Nat. Protoc. 2016, 11, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-F.; Wu, Y.-S.; Jhan, Y.-H.; Hsieh, J.-C. An Efficient Synthesis of (Nh)-Phenanthridinones Via Ligand-Free Copper-Catalyzed Annulation. Org. Chem. Front. 2014, 1, 253–257. [Google Scholar] [CrossRef]
- Liu, F.; Venter, H.; Bi, F.; Semple, S.J.; Liu, J.; Jin, C.; Ma, S. Synthesis and Antibacterial Activity of 5-Methylphenanthridium Derivatives as Ftsz Inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 3399–3402. [Google Scholar] [CrossRef]
- Ferraccioli, R.; Carenzi, D.; Motti, E.; Catellani, M. A Simple Catalytic Synthesis of Condensed Pyridones from O-Bromoarylcarboxamides Involving Ipso Substitution Via Palladacycles. J. Am. Chem. Soc. 2006, 128, 722–723. [Google Scholar] [CrossRef] [PubMed]
- Cookson, R.F.; James, J.W.; Rodway, R.E.; Simmonds, R.G. Synthesis of Some Phenanthridone Derivatives. J. Heterocycl. Chem. 1972, 9, 475–480. [Google Scholar] [CrossRef]
- Lu, C.; Dubrovskiy, A.V.; Larock, R.C. Palladium-Catalyzed Annulation of Arynes by O-Halobenzamides: Synthesis of Phenanthridinones. J. Org. Chem. 2012, 77, 8648–8656. [Google Scholar] [CrossRef]
- Tabata, H.; Suzuki, H.; Akiba, K.; Takahashi, H.; Natsugari, H. Atropisomeric Properties of 7-, 8-, and 9-Membered-Ring Dibenzolactams: Conformation, Thermal Stability, and Chemical Reactivity. J. Org. Chem. 2010, 75, 5984–5993. [Google Scholar] [CrossRef]
Sample | Inhibition Rate (%) a | Sample | Inhibition Rate (%) a | Sample | Inhibition Rate (%) a | Sample | Inhibition Rate (%) a |
---|---|---|---|---|---|---|---|
3a | 19.5 ± 1.7 | 4b | 25.3 ± 0.6 | 5c | 37.2 ± 2.6 | 13d | 37.8 ± 1.1 |
3b | 31.8 ± 2.4 | 4c | 40.9 ± 1.1 | 5d | 19.2 ± 4.5 | 13e | 31.6 ± 1.1 |
3c | 33.7 ± 1.8 | 4d | 34.9 ± 3.5 | 5e | 31.1 ± 0.2 | 16 | 41.2 ± 3.5 |
3d | 31.9 ± 3.3 | 4e | 43.0 ± 2.5 | 5f | 36.8 ± 0.8 | 17 | 32.5 ± 1.9 |
3e | 29.2 ± 1.1 | 4f | 30.9 ± 4.8 | 5g | 38.4 ± 0.3 | 18 | 49.2 ± 1.6 |
3f | 41.3 ± 0.2 | 4g | 33.5 ± 1.4 | 5h | 26.3 ± 2.1 | 2 | 44.7 ± 0.5 |
3g | 35.1 ± 2.4 | 4h | 21.5 ± 3.4 | 5i | 35.2 ± 1.1 | ribavirin | 39.5 ± 0.3 |
3h | 46.8 ± 0.2 | 4i | 45.9 ± 4.3 | 13a | 27.0 ± 4.0 | NN | 58.8 ± 2.4 |
3i | 37.5 ± 1.0 | 5a | 34.0 ± 4.4 | 13b | 59.4 ± 1.8 | ||
4a | 35.2 ± 2.6 | 5b | 49.7 ± 0.8 | 13c | 42.9 ± 1.9 |
Sample | Conc. (mg/L) | Inhibition Rate (%) a | Sample | Conc. (mg/L) | Inhibition Rate (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Inactivation Effect | Curative Effect | Protection Effect | Inactivation Effect | Curative Effect | Protection Effect | ||||
3f | 500 | 41.3 ± 0.2 | 46.9 ± 1.8 | 38.1 ± 2.3 | 13c | 500 | 42.9 ± 1.9 | 35.4 ± 3.6 | 44.7 ± 1.1 |
100 | 5.8 ± 0.5 | 11.5 ± 2.7 | 7.4 ± 0.9 | 100 | 7.2 ± 0.7 | 6.0 ± 0.4 | 13.5 ± 0.2 | ||
3h | 500 | 46.8 ± 0.2 | 42.1 ± 1.4 | 41.7 ± 0.6 | 16 | 500 | 41.2 ± 3.5 | 44.4 ± 2.0 | 37.9 ± 1.2 |
100 | 9.3 ± 0.7 | 12.5 ± 2.0 | 0 | 100 | 5.3 ± 1.0 | 8.6 ± 0.6 | 0 | ||
4c | 500 | 40.9 ± 1.1 | 36.7 ± 1.3 | 47.0 ± 3.8 | 18 | 500 | 49.2 ± 1.6 | 47.3 ± 0.2 | 54.4 ± 2.5 |
100 | 15.1 ± 0.6 | 9.6 ± 1.8 | 17.9 ± 2.0 | 100 | 16.7 ± 1.1 | 19.2 ± 0.8 | 22.0 ± 2.1 | ||
4e | 500 | 43.0 ± 2.5 | 40.1 ± 3.4 | 35.6 ± 4.5 | 2 | 500 | 44.7 ± 0.5 | 40.9 ± 3.3 | 39.1 ± 2.9 |
100 | 9.8 ± 0.9 | 11.0 ± 0.7 | 7.8 ± 1.3 | 100 | 6.6 ± 0.1 | 0 | 0 | ||
4i | 500 | 45.9 ± 4.3 | 41.7 ± 2.0 | 47.8 ± 0.6 | ribavirin | 500 | 39.5 ± 0.3 | 37.2 ± 1.4 | 40.2 ± 0.8 |
100 | 12.1 ± 0.7 | 18.6 ± 3.5 | 9.1 ± 1.0 | 100 | 11.3 ± 0.9 | 13.6 ± 0.8 | 9.5 ± 1.2 | ||
5b | 500 | 49.7 ± 0.8 | 47.1 ± 2.9 | 51.3 ± 3.7 | NN | 500 | 58.8 ± 2.4 | 55.9 ± 0.7 | 57.1 ± 0.6 |
100 | 17.6 ± 1.4 | 9.4 ± 2.5 | 15.2 ± 0.5 | 100 | 26.4 ± 0.9 | 24.0 ± 1.2 | 27.2 ± 1.5 | ||
13b | 500 | 59.4 ± 1.8 | 55.6 ± 1.0 | 52.3 ± 2.5 | |||||
100 | 15.8 ± 3.6 | 18.0 ± 0.4 | 21.5 ± 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Guo, J.; Ma, D.; Wang, Z.; Liu, Y.; Wang, Q. Discovery of Crinasiadine, Trisphaeridine, Bicolorine, and Their Derivatives as Anti-Tobacco Mosaic Virus (TMV) Agents. Int. J. Mol. Sci. 2025, 26, 1103. https://doi.org/10.3390/ijms26031103
Hu Z, Guo J, Ma D, Wang Z, Liu Y, Wang Q. Discovery of Crinasiadine, Trisphaeridine, Bicolorine, and Their Derivatives as Anti-Tobacco Mosaic Virus (TMV) Agents. International Journal of Molecular Sciences. 2025; 26(3):1103. https://doi.org/10.3390/ijms26031103
Chicago/Turabian StyleHu, Zhan, Jincheng Guo, Dejun Ma, Ziwen Wang, Yuxiu Liu, and Qingmin Wang. 2025. "Discovery of Crinasiadine, Trisphaeridine, Bicolorine, and Their Derivatives as Anti-Tobacco Mosaic Virus (TMV) Agents" International Journal of Molecular Sciences 26, no. 3: 1103. https://doi.org/10.3390/ijms26031103
APA StyleHu, Z., Guo, J., Ma, D., Wang, Z., Liu, Y., & Wang, Q. (2025). Discovery of Crinasiadine, Trisphaeridine, Bicolorine, and Their Derivatives as Anti-Tobacco Mosaic Virus (TMV) Agents. International Journal of Molecular Sciences, 26(3), 1103. https://doi.org/10.3390/ijms26031103