Integrated Computational Analysis Reveals Early Genetic and Epigenetic AML Susceptibility Biomarkers in Benzene-Exposed Workers
Abstract
:1. Introduction
2. Results
2.1. Differential Expression Analyses Disclose a Panel of Deregulated Genes in Benzene-Exposed Workers
2.2. Correlation and ROC Analyses Reveal Gene Interaction Changes and Predictive Roles in Benzene-Exposed Workers
2.3. Methylation Analysis Reveals Differential DNA Methylation Patterns in Benzene-Exposed Workers
2.4. Expression Patterns of Benzene-Associated Genes in AML Highlight Potential Links Between Occupational Exposure and Leukemogenesis
2.5. Functional and Network Analyses Highlight the Biological Roles and Interactions of the Benzene-Associated Gene Panel
2.6. Interactome Analyses Highlight CRK, GSPT1, KPNA1, MECP2, and MELTF as Central Nodes in AML Pathogenesis with Distinct Prognostic Implications
2.7. miRNet Analysis Highlights Key Tissue-Specific and AML-Specific miRNA-Target Regulatory Patterns
3. Discussion
4. Materials and Methods
4.1. Selected Dataset Repositories, Gene Expression, and DNA Methylation Analyses
4.2. Functional Analyses of Candidate Genetic and Epigenetic Biomarkers
4.3. Statistical Analyses and Plotting
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Vilahur, N.; Mattock, H.; Straif, K. Carcinogenicity of benzene. Lancet Oncol. 2017, 18, 1574–1575. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, Y.; Tang, L.; Li, D.; Xie, J.; Sun, Y.; Tian, Y. Long-Term Exposure to Low Concentrations of Ambient Benzene and Mortality in a National English Cohort. Am. J. Respir. Crit. Care Med. 2024, 209, 987–994. [Google Scholar] [CrossRef]
- Wang, T.; Cao, Y.; Xia, Z.; Christiani, D.C.; Au, W.W. Review on novel toxicological effects and personalized health hazard in workers exposed to low doses of benzene. Arch. Toxicol. 2024, 98, 365–374. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Benzene—IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 120; World Health Organization: Geneve, Switzerland, 2018; ISBN 978-9283201878. [Google Scholar]
- European Parliament; Council of the European Union. Directive (EU) 2022/431 of the European Parliament and of the Council of 9 March 2022 amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work. Off. J. Eur. Union 2022, 50, 1–14. [Google Scholar]
- Dewi, R.; Hamid, Z.A.; Rajab, N.; Shuib, S.; Razak, S.A. Genetic, epigenetic, and lineage-directed mechanisms in benzene-induced malignancies and hematotoxicity targeting hematopoietic stem cells niche. Hum. Exp. Toxicol. 2020, 39, 577–595. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.C.W.; Shahbaz, S.; Winn, L.M. Benzene and its effects on cell signaling pathways related to hematopoiesis and leukemia. J. Appl. Toxicol. 2020, 40, 1018–1032. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Peng, C.; Yang, X.; Li, P.; Bai, J.; Jia, Q.; Bo, C. Identification of critical genes associated with oxidative stress pathways in benzene-induced hematotoxicity. Heliyon 2024, 10, e35427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shi, W.; Ru, L.; Lv, W. Biomarkers of occupational benzene exposure: A Systematic Review to estimate the exposure levels and individual susceptibility at low doses. Toxicol. Ind. Health 2024, 40, 539–555. [Google Scholar] [CrossRef]
- McHale, C.M.; Smith, M.T.; Zhang, L. Application of Transcriptomics in Exposed Human Populations: Benzene as an Example. In Toxicogenomics in Predictive Carcinogenicity; The Royal Society of Chemistry: Tokyo, Japan, 2016; pp. 352–389. [Google Scholar]
- Fenga, C.; Gangemi, S.; Costa, C. Benzene exposure is associated with epigenetic changes (Review). Mol. Med. Rep. 2016, 13, 3401–3405. [Google Scholar] [CrossRef]
- Spatari, G.; Allegra, A.; Carrieri, M.; Pioggia, G.; Gangemi, S. Epigenetic Effects of Benzene in Hematologic Neoplasms: The Altered Gene Expression. Cancers 2021, 13, 2392. [Google Scholar] [CrossRef]
- Zhang, L.; McHale, C.M.; Rothman, N.; Li, G.; Ji, Z.; Vermeulen, R.; Hubbard, A.E.; Ren, X.; Shen, M.; Rappaport, S.M.; et al. Systems biology of human benzene exposure. Chem. Biol. Interact. 2010, 184, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.T.; Vermeulen, R.; Li, G.; Zhang, L.; Lan, Q.; Hubbard, A.E.; Forrest, M.S.; McHale, C.; Zhao, X.; Gunn, L.; et al. Use of ‘Omic’ technologies to study humans exposed to benzene. Chem. Biol. Interact. 2005, 153–154, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Xu, K.; Ji, S.; Pu, Y.; Yu, L.; Yin, L.; Zhang, J.; Pu, Y. Toxicity in hematopoietic stem cells from bone marrow and peripheral blood in mice after benzene exposure: Single-cell transcriptome sequencing analysis. Ecotoxicol. Environ. Saf. 2021, 207, 111490. [Google Scholar] [CrossRef] [PubMed]
- Fenga, C.; Gangemi, S.; Giambò, F.; Tsitsimpikou, C.; Golokhvast, K.; Tsatsakis, A.; Costa, C. Low-dose occupational exposure to benzene and signal transduction pathways involved in the regulation of cellular response to oxidative stress. Life Sci. 2016, 147, 67–70. [Google Scholar] [CrossRef]
- Boogaard, P.J. Human biomonitoring of low-level benzene exposures. Crit. Rev. Toxicol. 2022, 52, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Forrest, M.S.; Lan, Q.; Hubbard, A.E.; Zhang, L.; Vermeulen, R.; Zhao, X.; Li, G.; Wu, Y.-Y.; Shen, M.; Yin, S.; et al. Discovery of Novel Biomarkers by Microarray Analysis of Peripheral Blood Mononuclear Cell Gene Expression in Benzene-Exposed Workers. Environ. Health Perspect. 2005, 113, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Park, T. Crk and CrkL as Therapeutic Targets for Cancer Treatment. Cells 2021, 10, 739. [Google Scholar] [CrossRef]
- Shen, Q.; Bhatt, V.S.; Krieger, I.; Sacchettini, J.C.; Cho, J.-H. Structure-guided design of a potent peptide inhibitor targeting the interaction between CRK and ABL kinase. Medchemcomm 2018, 9, 519–524. [Google Scholar] [CrossRef]
- Nakasone, E.S.; Zemla, T.J.; Yu, M.; Lin, S.Y.; Ou, F.-S.; Carter, K.; Innocenti, F.; Saltz, L.; Grady, W.M.; Cohen, S.A. Evaluating the utility of ZNF331 promoter methylation as a prognostic and predictive marker in stage III colon cancer: Results from CALGB 89803 (Alliance). Epigenetics 2024, 19, 2349980. [Google Scholar] [CrossRef]
- Nie, C.; Han, X.; Wei, R.; Leonteva, A.; Hong, J.; Du, X.; Wang, J.; Zhu, L.; Zhao, Y.; Xue, Y.; et al. Association of ZNF331 and WIF1 methylation in peripheral blood leukocytes with the risk and prognosis of gastric cancer. BMC Cancer 2021, 21, 551. [Google Scholar] [CrossRef] [PubMed]
- Bao, N.; Fu, B.; Zhong, X.; Jia, S.; Ren, Z.; Wang, H.; Wang, W.; Shi, H.; Li, J.; Ge, F.; et al. Role of the CXCR6/CXCL16 axis in autoimmune diseases. Int. Immunopharmacol. 2023, 121, 110530. [Google Scholar] [CrossRef]
- Korbecki, J.; Kupnicka, P.; Barczak, K.; Bosiacki, M.; Ziętek, P.; Chlubek, D.; Baranowska-Bosiacka, I. The Role of CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 Ligands in Molecular Cancer Processes and Clinical Aspects of Acute Myeloid Leukemia (AML). Cancers 2023, 15, 4555. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, C.; McHale, C.M.; Hubbard, A.E.; Zhang, L.; Thomas, R.; Vermeulen, R.; Li, G.; Shen, M.; Rappaport, S.M.; Yin, S.; et al. Identification of gene expression predictors of occupational benzene exposure. PLoS ONE 2018, 13, e0205427. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; McHale, C.M.; Lan, Q.; Hubbard, A.E.; Zhang, L.; Vermeulen, R.; Li, G.; Rappaport, S.M.; Yin, S.; Rothman, N.; et al. Global gene expression response of a population exposed to benzene: A pilot study exploring the use of RNA-sequencing technology. Environ. Mol. Mutagen. 2013, 54, 566–573. [Google Scholar] [CrossRef]
- van der Kloet, F.M.; Buurmans, J.; Jonker, M.J.; Smilde, A.K.; Westerhuis, J.A. Increased comparability between RNA-Seq and microarray data by utilization of gene sets. PLoS Comput. Biol. 2020, 16, e1008295. [Google Scholar] [CrossRef] [PubMed]
- Pyatt, D.W.; Stillman, W.S.; Irons, R.D. Hydroquinone, a Reactive Metabolite of Benzene, Inhibits NF-κB in Primary Human CD4+T Lymphocytes. Toxicol. Appl. Pharmacol. 1998, 149, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Zolghadr, F.; Sadeghizadeh, M.; Amirizadeh, N.; Hosseinkhani, S.; Nazem, S. How benzene and its metabolites affect human marrow derived mesenchymal stem cells. Toxicol. Lett. 2012, 214, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, M.; Xiong, Y.; Wen, X.; Zhang, M.; Ma, L.; Zhang, Y. MELTF Might Regulate Ferroptosis, Pyroptosis, and Autophagy in Platelet-Rich Plasma-Mediated Endometrial Epithelium Regeneration. Reprod. Sci. 2023, 30, 1506–1520. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Liu, M.; Xu, K.; Pu, Y.; Huang, J.; Liu, J.; Zhang, J.; Yin, L.; Pu, Y. Ferroptosis is involved in the benzene-induced hematotoxicity in mice via iron metabolism, oxidative stress and NRF2 signaling pathway. Chem. Biol. Interact. 2022, 362, 110004. [Google Scholar] [CrossRef] [PubMed]
- Rothman, N.; Vermeulen, R.; Zhang, L.; Hu, W.; Yin, S.; Rappaport, S.M.; Smith, M.T.; Jones, D.P.; Rahman, M.; Lan, Q.; et al. Metabolome-wide association study of occupational exposure to benzene. Carcinogenesis 2021, 42, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Chen, Y.; Yuan, W.; Qin, F.; Zhang, Q.; Deng, N.; Liu, X.; Ma, X.; Zhang, X.; Zhang, B.; et al. Down-regulation of miRNA-451a and miRNA-486-5p involved in benzene-induced inhibition on erythroid cell differentiation in vitro and in vivo. Arch. Toxicol. 2018, 92, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, X.; Bian, Q.; Shi, Y.; Liu, Q.; Ding, L.; Zhang, H.; Zhu, B. Analysis of plasma microRNA expression profiles in a Chinese population occupationally exposed to benzene and in a population with chronic benzene poisoning. J. Thorac. Dis. 2016, 8, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Rahmanto, Y.S.; Bal, S.; Loh, K.H.; Yu, Y.; Richardson, D.R. Melanotransferrin: Search for a function. Biochim. Biophys. Acta-Gen. Subj. 2012, 1820, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Sawaki, K.; Kanda, M.; Umeda, S.; Miwa, T.; Tanaka, C.; Kobayashi, D.; Hayashi, M.; Yamada, S.; Nakayama, G.; Omae, K.; et al. Level of Melanotransferrin in Tissue and Sera Serves as a Prognostic Marker of Gastric Cancer. Anticancer Res. 2019, 39, 6125–6133. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Kim, H.-J.; Kim, G.; Song, M.; Woo, S.J.; Lee, S.-T.; Kim, H.; Lee, C. Discovery of Melanotransferrin as a Serological Marker of Colorectal Cancer by Secretome Analysis and Quantitative Proteomics. J. Proteome Res. 2014, 13, 4919–4931. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Clarke, F.; Karimi, M.; Roy, N.H.; Williamson, E.K.; Okumura, M.; Mochizuki, K.; Chen, E.J.H.; Park, T.-J.; Debes, G.F.; et al. CRK proteins selectively regulate T cell migration into inflamed tissues. J. Clin. Investig. 2015, 125, 1019–1032. [Google Scholar] [CrossRef] [PubMed]
- Zarth, A.T.; Murphy, S.E.; Hecht, S.S. Benzene oxide is a substrate for glutathione S-transferases. Chem. Biol. Interact. 2015, 242, 390–395. [Google Scholar] [CrossRef]
- Nourozi, M.A.; Neghab, M.; Bazzaz, J.T.; Nejat, S.; Mansoori, Y.; Shahtaheri, S.J. Association between polymorphism of GSTP1, GSTT1, GSTM1 and CYP2E1 genes and susceptibility to benzene-induced hematotoxicity. Arch. Toxicol. 2018, 92, 1983–1990. [Google Scholar] [CrossRef]
- Zhang, D.; Lin, P.; Lin, J. Molecular glues targeting GSPT1 in cancers: A potent therapy. Bioorg. Chem. 2024, 143, 107000. [Google Scholar] [CrossRef]
- Pierce, D.W.; Yao, T.-W.S.; Pace, E.; Wang, H.; Flandin-Blety, P.; Benitez, A.; Guarinos, C.; Hoffmann, M.; Carrancio, S.; Fan, J.; et al. Synergistic Combination Activity of the Novel GSPT1 Degrader CC-90009 in Acute Myeloid Leukemia Models. Blood 2021, 138, 3330. [Google Scholar] [CrossRef]
- Chang, Y.; Keramatnia, F.; Ghate, P.S.; Nishiguchi, G.; Gao, Q.; Iacobucci, I.; Yang, L.; Chepyala, D.; Mishra, A.; High, A.A.; et al. The orally bioavailable GSPT1/2 degrader SJ6986 exhibits in vivo efficacy in acute lymphoblastic leukemia. Blood 2023, 142, 629–642. [Google Scholar] [CrossRef] [PubMed]
- Keramatnia, F.; Chang, Y.; Nishiguchi, G.; Min, J.; Mullighan, C.; Fischer, M.; Rankovic, Z.; Keramatnia, F. Abstract LBA002: Targeting GSPT1 by a novel cereblon E3 ligase modulator for the treatment of Acute Lymphoblastic Leukemia. Mol. Cancer Ther. 2021, 20, LBA002. [Google Scholar] [CrossRef]
- Newell, S.; van der Watt, P.J.; Leaner, V.D. Therapeutic targeting of nuclear export and import receptors in cancer and their potential in combination chemotherapy. IUBMB Life 2024, 76, 4–25. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.H.; Zhang, Q.; Sprung, R.; Day, R.B.; Erdmann-Gilmore, P.; Li, Y.; Xu, Z.; Helton, N.M.; George, D.R.; Mi, Y.; et al. Proteomic and phosphoproteomic landscapes of acute myeloid leukemia. Blood 2022, 140, 1533–1548. [Google Scholar] [CrossRef] [PubMed]
- Derecki, N.C.; Cronk, J.C.; Lu, Z.; Xu, E.; Abbott, S.B.G.; Guyenet, P.G.; Kipnis, J. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 2012, 484, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Nejati-Koshki, K.; Roberts, C.-T.; Babaei, G.; Rastegar, M. The Epigenetic Reader Methyl-CpG-Binding Protein 2 (MeCP2) Is an Emerging Oncogene in Cancer Biology. Cancers 2023, 15, 2683. [Google Scholar] [CrossRef] [PubMed]
- Frietsch, J.J.; Kastner, C.; Grunewald, T.G.P.; Schweigel, H.; Nollau, P.; Ziermann, J.; Clement, J.H.; La Rosée, P.; Hochhaus, A.; Butt, E. LASP1 is a novel BCR-ABL substrate and a phosphorylation-dependent binding partner of CRKL in chronic myeloid leukemia. Oncotarget 2014, 5, 5257–5271. [Google Scholar] [CrossRef]
- Cao, M.; Carrasco, R.D.; Dubuc, A.M.; Cin, P.D.; Fletcher, J.A.; Xiao, S. ZMYM2-FGFR1 fusion as secondary change in acute myeloid leukemia. Leuk. Lymphoma 2019, 60, 556–558. [Google Scholar] [CrossRef] [PubMed]
- Sellar, R.S.; Sperling, A.S.; Słabicki, M.; Gasser, J.A.; McConkey, M.E.; Donovan, K.A.; Mageed, N.; Adams, D.N.; Zou, C.; Miller, P.G.; et al. Degradation of GSPT1 causes TP53-independent cell death in leukemia while sparing normal hematopoietic stem cells. J. Clin. Investig. 2022, 132, e153514. [Google Scholar] [CrossRef]
- Choo, H.-J.; Cutler, A.; Rother, F.; Bader, M.; Pavlath, G.K. Karyopherin Alpha 1 Regulates Satellite Cell Proliferation and Survival by Modulating Nuclear Import. Stem Cells 2016, 34, 2784–2797. [Google Scholar] [CrossRef]
- Noguera, N.I.; Travaglini, S.; Scalea, S.; Catalanotto, C.; Reale, A.; Zampieri, M.; Zaza, A.; Ricciardi, M.R.; Angelini, D.F.; Tafuri, A.; et al. YY1 Knockdown Relieves the Differentiation Block and Restores Apoptosis in AML Cells. Cancers 2023, 15, 4010. [Google Scholar] [CrossRef]
- Li, K.; Jing, Y.; Yang, C.; Liu, S.; Zhao, Y.; He, X.; Li, F.; Han, J.; Li, G. Increased leukemia-associated gene expression in benzene-exposed workers. Sci. Rep. 2014, 4, 5369. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Chen, Y.; Yang, J.; Niu, P.; Tian, L.; Gao, A. Aberrant miRNA profiles associated with chronic benzene poisoning. Exp. Mol. Pathol. 2014, 96, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wu, Y.; Zhang, Z.; Lin, D.; Wang, D.; Huang, X.; Zhang, Y. Proteomics analysis identified serum biomarkers for occupational benzene exposure and chronic benzene poisoning. Medicine 2019, 98, e16117. [Google Scholar] [CrossRef]
- Liang, B.; Zhong, Y.; Chen, K.; Zeng, L.; Li, G.; Zheng, J.; Jiang, L.; Xie, Z.; Que, B.; Lai, G.; et al. Serum plasminogen as a potential biomarker for the effects of low-dose benzene exposure. Toxicology 2018, 410, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Schmeisser, S.; Miccoli, A.; von Bergen, M.; Berggren, E.; Braeuning, A.; Busch, W.; Desaintes, C.; Gourmelon, A.; Grafström, R.; Harrill, J.; et al. New approach methodologies in human regulatory toxicology—Not if, but how and when! Environ. Int. 2023, 178, 108082. [Google Scholar] [CrossRef] [PubMed]
- Faulhammer, F.; van Ravenzwaay, B.; Schnatter, A.R.; Rooseboom, M.; Kamp, H.; Flick, B.; Giri, V.; Sperber, S.; Higgins, L.G.; Penman, M.G.; et al. The short-term toxicity and metabolome of Benzene. Toxicol. Lett. 2024, 400, 58–70. [Google Scholar] [CrossRef]
- GEO DataSets. NIH. Available online: https://www.ncbi.nlm.nih.gov/gds (accessed on 26 November 2024).
- Clough, E.; Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; et al. NCBI GEO: Archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acids Res. 2024, 52, D138–D144. [Google Scholar] [CrossRef]
- Kolberg, L.; Raudvere, U.; Kuzmin, I.; Adler, P.; Vilo, J.; Peterson, H. g: Profiler—Interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 2023, 51, W207–W212. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Luck, K.; Kim, D.-K.; Lambourne, L.; Spirohn, K.; Begg, B.E.; Bian, W.; Brignall, R.; Cafarelli, T.; Campos-Laborie, F.J.; Charloteaux, B.; et al. A reference map of the human binary protein interactome. Nature 2020, 580, 402–408. [Google Scholar] [CrossRef]
- Du, Y.; Cai, M.; Xing, X.; Ji, J.; Yang, E.; Wu, J. PINA 3.0: Mining cancer interactome. Nucleic Acids Res. 2021, 49, D1351–D1357. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Xia, J. MicroRNA Regulatory Network Analysis Using miRNet 2.0. In Transcription Factor Regulatory Networks; Springer: New York, NY, USA, 2023; pp. 185–204. [Google Scholar]
- ChiPlot—A Web-Based Tool for Free Bioinformatics Plots. Available online: https://www.chiplot.online/ (accessed on 24 November 2024).
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef] [PubMed]
- McHale, C.M.; Zhang, L.; Lan, Q.; Vermeulen, R.; Li, G.; Hubbard, A.E.; Porter, K.E.; Thomas, R.; Portier, C.J.; Shen, M.; et al. Global Gene Expression Profiling of a Population Exposed to a Range of Benzene Levels. Environ. Health Perspect. 2011, 119, 628–640. [Google Scholar] [CrossRef] [PubMed]
- McHale, C.M.; Zhang, L.; Lan, Q.; Li, G.; Hubbard, A.E.; Forrest, M.S.; Vermeulen, R.; Chen, J.; Shen, M.; Rappaport, S.M.; et al. Changes in the Peripheral Blood Transcriptome Associated with Occupational Benzene Exposure Identified by Cross-Comparison on Two Microarray Platforms. Genomics 2009, 93, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Yang, J.; Yang, G.; Niu, P.; Tian, L.; Gao, A. Long Non-Coding RNA NR_045623 and NR_028291 Involved in Benzene Hematotoxicity in Occupationally Benzene-Exposed Workers. Exp. Mol. Pathol. 2014, 96, 354–360. [Google Scholar] [CrossRef]
- Chen, Y.; Hoffmeister, L.M.; Zaun, Y.; Arnold, L.; Schmid, K.W.; Giebel, B.; Klein-Hitpass, L.; Hanenberg, H.; Squire, A.; Reinhardt, H.C.; et al. Acute Myeloid Leukemia–Induced Remodeling of the Human Bone Marrow Niche Predicts Clinical Outcome. Blood Adv. 2020, 4, 5257–5268. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-H.; Chen, F.-Y.; Chou, W.-C.; Hou, H.-A.; Ko, B.-S.; Lin, C.-T.; Tang, J.-L.; Li, C.-C.; Yao, M.; Tsay, W.; et al. Long Non-Coding RNA HOXB-AS3 Promotes Myeloid Cell Proliferation and Its Higher Expression Is an Adverse Prognostic Marker in Patients with Acute Myeloid Leukemia and Myelodysplastic Syndrome. BMC Cancer 2019, 19, 617. [Google Scholar] [CrossRef] [PubMed]
- Boyd, A.L.; Reid, J.C.; Salci, K.R.; Aslostovar, L.; Benoit, Y.D.; Shapovalova, Z.; Nakanishi, M.; Porras, D.P.; Almakadi, M.; Campbell, C.J.V.; et al. Acute Myeloid Leukaemia Disrupts Endogenous Myelo-Erythropoiesis by Compromising the Adipocyte Bone Marrow Niche. Nat. Cell Biol. 2017, 19, 1336–1347. [Google Scholar] [CrossRef]
- Li, K.; Wang, F.; Cao, W.-B.; Lv, X.-X.; Hua, F.; Cui, B.; Yu, J.-J.; Zhang, X.-W.; Shang, S.; Liu, S.-S.; et al. TRIB3 Promotes APL Progression through Stabilization of the Oncoprotein PML-RARα and Inhibition of P53-Mediated Senescence. Cancer Cell 2017, 31, 697–710.e7. [Google Scholar] [CrossRef] [PubMed]
- von der Heide, E.K.; Neumann, M.; Vosberg, S.; James, A.R.; Schroeder, M.P.; Ortiz-Tanchez, J.; Isaakidis, K.; Schlee, C.; Luther, M.; Jöhrens, K.; et al. Molecular Alterations in Bone Marrow Mesenchymal Stromal Cells Derived from Acute Myeloid Leukemia Patients. Leukemia 2017, 31, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.-F.; Liu, X.; Fox, T.E.; Barth, B.M.; Sharma, A.; Turner, S.D.; Awwad, A.; Dewey, A.; Doi, K.; Spitzer, B.; et al. Acid Ceramidase Is Upregulated in AML and Represents a Novel Therapeutic Target. Oncotarget 2016, 7, 83208–83222. [Google Scholar] [CrossRef] [PubMed]
- Le Dieu, R.; Taussig, D.C.; Ramsay, A.G.; Mitter, R.; Miraki-Moud, F.; Fatah, R.; Lee, A.M.; Lister, T.A.; Gribben, J.G. Peripheral Blood T Cells in Acute Myeloid Leukemia (AML) Patients at Diagnosis Have Abnormal Phenotype and Genotype and Form Defective Immune Synapses with AML Blasts. Blood 2009, 114, 3909–3916. [Google Scholar] [CrossRef]
- Goswami, M.; Prince, G.; Biancotto, A.; Moir, S.; Kardava, L.; Santich, B.H.; Cheung, F.; Kotliarov, Y.; Chen, J.; Shi, R.; et al. Impaired B Cell Immunity in Acute Myeloid Leukemia Patients after Chemotherapy. J. Transl. Med. 2017, 15, 155. [Google Scholar] [CrossRef] [PubMed]
- Knaus, H.A.; Berglund, S.; Hackl, H.; Blackford, A.L.; Zeidner, J.F.; Montiel-Esparza, R.; Mukhopadhyay, R.; Vanura, K.; Blazar, B.R.; Karp, J.E.; et al. Signatures of CD8+ T Cell Dysfunction in AML Patients and Their Reversibility with Response to Chemotherapy. JCI Insight 2018, 3, e120974. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivarelli, S.; Sevim, C.; Giambò, F.; Fenga, C. Integrated Computational Analysis Reveals Early Genetic and Epigenetic AML Susceptibility Biomarkers in Benzene-Exposed Workers. Int. J. Mol. Sci. 2025, 26, 1138. https://doi.org/10.3390/ijms26031138
Vivarelli S, Sevim C, Giambò F, Fenga C. Integrated Computational Analysis Reveals Early Genetic and Epigenetic AML Susceptibility Biomarkers in Benzene-Exposed Workers. International Journal of Molecular Sciences. 2025; 26(3):1138. https://doi.org/10.3390/ijms26031138
Chicago/Turabian StyleVivarelli, Silvia, Cigdem Sevim, Federica Giambò, and Concettina Fenga. 2025. "Integrated Computational Analysis Reveals Early Genetic and Epigenetic AML Susceptibility Biomarkers in Benzene-Exposed Workers" International Journal of Molecular Sciences 26, no. 3: 1138. https://doi.org/10.3390/ijms26031138
APA StyleVivarelli, S., Sevim, C., Giambò, F., & Fenga, C. (2025). Integrated Computational Analysis Reveals Early Genetic and Epigenetic AML Susceptibility Biomarkers in Benzene-Exposed Workers. International Journal of Molecular Sciences, 26(3), 1138. https://doi.org/10.3390/ijms26031138