TNF/IFN-γ Co-Signaling Induces Differential Cellular Activation in COVID-19 Patients: Implications for Patient Outcomes
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of COVID-19 Patients Classified into Four Groups Based on TNF and IFN-γ Levels
2.2. The TNFHIFNγH Group Has Higher Levels of Proinflammatory and Anti-Inflammatory Cytokines and Cytotoxic Molecules Than the TNFN-LIFNγN-L Group
2.3. IMV Patients Exhibit a High Frequency of T Cell and Monocyte TNFR+1 and Hyperactive Production of Cytokines and Cytotoxic Molecules
2.4. SNPs in TLR7 and TLR8 Genes Are Related to TNF and IFN-γ Levels in COVID-19 Patients
2.5. SNPs in TLR7 and TLR8 Could Play a Role in Increasing TNF and IFN-γ Levels in COVID-19 Patients
2.6. TNFHIFNγH Patients Have Higher Levels than TNFN-LIFNγN-L Patients of Molecules Associated with TLR Signaling and Cell Death Mediated by the TNF/TNFR1 Pathway
3. Discussion
4. Materials and Methods
4.1. Ethics Approval and Consent to Participate
4.2. Study Population
4.3. Sample Preparation
4.4. Quantification of TNF and IFN-γ Soluble Levels
4.5. Classification of COVID-19 Patients According to TNF and IFN-γ Levels
4.6. Cytotoxic Molecule Quantification by Multiplex Bead-Based Assay
4.7. Measurement of TNFR1 and TNFR2 Expression by Flow Cytometry
4.8. Genotyping and Analysis of Gene Expression by Quantitative Real-Time PCR
4.9. Statistical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fitzgerald, K.A.; Kagan, J.C. Toll-like Receptors and the Control of Immunity. Cell 2020, 180, 1044–1066. [Google Scholar] [CrossRef]
- Birra, D.; Benucci, M.; Landolfi, L.; Merchionda, A.; Loi, G.; Amato, P.; Licata, G.; Quartuccio, L.; Triggiani, M.; Moscato, P. COVID 19: A Clue from Innate Immunity. Immunol. Res. 2020, 68, 161–168. [Google Scholar] [CrossRef]
- Totura, A.L.; Whitmore, A.; Agnihothram, S.; Schäfer, A.; Katze, M.G.; Heise, M.T.; Baric, R.S. Toll-like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection. mBio 2015, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, S.; Oliviero, B.; Varchetta, S.; Renieri, A.; Mondelli, M.U. TLRs: Innate Immune Sentries against SARS-CoV-2 Infection. Int. J. Mol. Sci. 2023, 24, 8065. [Google Scholar] [CrossRef] [PubMed]
- Diebold, S.S. Recognition of Viral Single-Stranded RNA by Toll-like Receptors. Adv. Drug Deliv. Rev. 2008, 60, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, Y.; Zhang, P.; Xing, H.; Zhao, S.; Song, Y.; Wan, D.; Yu, J. Targeting Toll-like Receptor 7/8 for Immunotherapy: Recent Advances and Prospectives. Biomark. Res. 2022, 10, 89. [Google Scholar]
- Duan, T.; Du, Y.; Xing, C.; Wang, H.Y.; Wang, R.F. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front. Immunol. 2022, 13, 812774. [Google Scholar] [CrossRef]
- Astuti, I. Ysrafil Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An Overview of Viral Structure and Host Response. Diabetes Metab. Syndr. 2020, 14, 407–412. [Google Scholar] [CrossRef]
- Moreno-Eutimio, M.A.; López-Macías, C.; Pastelin-Palacios, R. Bioinformatic Analysis and Identification of Single-Stranded RNA Sequences Recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV Genomes. Microbes Infect. 2020, 22, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Debnath, M.; Banerjee, M.; Berk, M. Genetic Gateways to COVID-19 Infection: Implications for Risk, Severity, and Outcomes. FASEB J. 2020, 34, 8787–8795. [Google Scholar] [CrossRef] [PubMed]
- Manik, M.; Singh, R.K. Role of Toll-like Receptors in Modulation of Cytokine Storm Signaling in SARS-CoV-2-Induced COVID-19. J. Med. Virol. 2022, 94, 869–877. [Google Scholar] [CrossRef] [PubMed]
- De Rivero Vaccari, J.C.; Dietrich, W.D.; Keane, R.W.; de Rivero Vaccari, J.P. The Inflammasome in Times of COVID-19. Front. Immunol. 2020, 11, 583373. [Google Scholar] [CrossRef]
- Palacios, Y.; Ruiz, A.; Ramón-Luing, L.A.; Ocaña-Guzman, R.; Barreto-Rodriguez, O.; Sánchez-Monciváis, A.; Tecuatzi-Cadena, B.; Regalado-García, A.G.; Pineda-Gudiño, R.D.; García-Martínez, A.; et al. Severe COVID-19 Patients Show an Increase in Soluble TNFR1 and ADAM17, with a Relationship to Mortality. Int. J. Mol. Sci. 2021, 22, 8423. [Google Scholar] [CrossRef]
- Wajant, H.; Siegmund, D. TNFR1 and TNFR2 in the Control of the Life and Death Balance of Macrophages. Front. Cell Dev. Biol. 2019, 7, 91. [Google Scholar] [CrossRef] [PubMed]
- Palacios, Y.; Ramón-Luing, L.A.; Ruiz, A.; García-Martínez, A.; Sánchez-Monciváis, A.; Barreto-Rodríguez, O.; Falfán-Valencia, R.; Pérez-Rubio, G.; Medina-Quero, K.; Buendia-Roldan, I.; et al. COVID-19 Patients with High TNF/IFN-γ Levels Show Hallmarks of PANoptosis, an Inflammatory Cell Death. Microbes Infect. 2023, 25, 105179. [Google Scholar] [CrossRef] [PubMed]
- Zanza, C.; Romenskaya, T.; Manetti, A.C.; Franceschi, F.; La Russa, R.; Bertozzi, G.; Maiese, A.; Savioli, G.; Volonnino, G.; Longhitano, Y. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina 2022, 58, 144. [Google Scholar] [CrossRef]
- Hsu, R.J.; Yu, W.C.; Peng, G.R.; Ye, C.H.; Hu, S.Y.; Chong, P.C.T.; Yap, K.Y.; Lee, J.Y.C.; Lin, W.C.; Yu, S.H. The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Front. Immunol. 2022, 13, 832394. [Google Scholar] [CrossRef] [PubMed]
- Mortaz, E.; Tabarsi, P.; Jamaati, H.; Dalil Roofchayee, N.; Dezfuli, N.K.; Hashemian, S.M.R.; Moniri, A.; Marjani, M.; Malekmohammad, M.; Mansouri, D.; et al. Increased Serum Levels of Soluble TNF-α Receptor Is Associated With ICU Mortality in COVID-19 Patients. Front. Immunol. 2021, 12, 592727. [Google Scholar] [CrossRef]
- Van Loo, G.; Bertrand, M.J.M. Death by TNF: A Road to Inflammation. Nat. Rev. Immunol. 2023, 23, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Christgen, S.; Zheng, M.; Kesavardhana, S.; Karki, R.; Malireddi, R.K.S.; Banoth, B.; Place, D.E.; Briard, B.; Sharma, B.R.; Tuladhar, S.; et al. Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Front. Cell Infect. Microbiol. 2020, 10, 237. [Google Scholar] [CrossRef]
- Samir, P.; Malireddi, R.K.S.; Kanneganti, T.D. The PANoptosome: A Deadly Protein Complex Driving Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Front. Cell Infect. Microbiol. 2020, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.; David, J.K.; Maden, S.K.; Wood, M.A.; Weeder, B.R.; Nellore, A.; Thompson, R.F. Human Leukocyte Antigen Susceptibility Map for Severe Acute Respiratory Syndrome Coronavirus 2. J. Virol. 2020, 94, e00510-20. [Google Scholar] [CrossRef]
- Gupta, K.; Kaur, G.; Pathak, T.; Banerjee, I. Systematic Review and Meta-Analysis of Human Genetic Variants Contributing to COVID-19 Susceptibility and Severity. Gene 2022, 844, 146790. [Google Scholar] [CrossRef]
- Möhlendick, B.; Schönfelder, K.; Breuckmann, K.; Elsner, C.; Babel, N.; Balfanz, P.; Dahl, E.; Dreher, M.; Fistera, D.; Herbstreit, F.; et al. ACE2 Polymorphism and Susceptibility for SARS-CoV-2 Infection and Severity of COVID-19. Pharmacogenet Genom. 2021, 31, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Solanich, X.; Vargas-Parra, G.; van der Made, C.I.; Simons, A.; Schuurs-Hoeijmakers, J.; Antolí, A.; del Valle, J.; Rocamora-Blanch, G.; Setién, F.; Esteller, M.; et al. Genetic Screening for TLR7 Variants in Young and Previously Healthy Men With Severe COVID-19. Front. Immunol. 2021, 12, 719115. [Google Scholar] [CrossRef]
- Fallerini, C.; Daga, S.; Mantovani, S.; Benetti, E.; Picchiotti, N.; Francisci, D.; Paciosi, F.; Schiaroli, E.; Baldassarri, M.; Fava, F.; et al. Association of Toll-like Receptor 7 Variants with Life-Threatening COVID-19 Disease in Males: Findings from a Nested Case-Control Study. eLife 2021, 10, e67569. [Google Scholar] [CrossRef]
- Van Der Made, C.I.; Simons, A.; Schuurs-Hoeijmakers, J.; Van Den Heuvel, G.; Mantere, T.; Kersten, S.; Van Deuren, R.C.; Steehouwer, M.; Van Reijmersdal, S.V.; Jaeger, M.; et al. Presence of Genetic Variants Among Young Men With Severe COVID-19. JAMA 2020, 324, 663–673. [Google Scholar] [CrossRef]
- Martínez-Gómez, L.E.; Martinez-Armenta, C.; Medina-Luna, D.; Ordoñez-Sánchez, M.L.; Tusie-Luna, T.; Ortega-Peña, S.; Herrera-López, B.; Suarez-Ahedo, C.; Jimenez-Gutierrez, G.E.; Hidalgo-Bravo, A.; et al. Implication of Myddosome Complex Genetic Variants in Outcome Severity of COVID-19 Patients. J. Microbiol. Immunol. Infect. 2023, 56, 939–950. [Google Scholar] [CrossRef]
- Alimoradi, N.; Sharqi, M.; Firouzabadi, D.; Sadeghi, M.M.; Moezzi, M.I.; Firouzabadi, N. SNPs of ACE1 (Rs4343) and ACE2 (Rs2285666) Genes Are Linked to SARS-CoV-2 Infection but Not with the Severity of Disease. Virol. J. 2022, 19, 48. [Google Scholar] [CrossRef]
- Lee, I.H.; Lee, J.W.; Kong, S.W. A Survey of Genetic Variants in SARS-CoV-2 Interacting Domains of ACE2, TMPRSS2 and TLR3/7/8 across Populations. Infect. Genet. Evol. 2020, 85, 104507. [Google Scholar] [CrossRef] [PubMed]
- Bagci, G.; Gundogdu, O.; Pektas, A.N.; Bagci, B.; Avci, O.; Gursoy, S.; Kaygusuz, K.; Elaldi, N. The Investigation of Host Genetic Variants of Toll-like Receptor 7 and 8 in COVID-19. Nucleosides Nucleotides Nucleic Acids 2023, 42, 586–602. [Google Scholar] [CrossRef]
- Wang, C.H.; Eng, H.L.; Lin, K.H.; Chang, C.H.; Hsieh, C.A.; Lin, Y.L.; Lin, T.M. TLR7 and TLR8 Gene Variations and Susceptibility to Hepatitis C Virus Infection. PLoS ONE 2011, 6, e26235. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.Y.; Taube, S.; Hamouda, O.; Kücherer, C.; Poggensee, G.; Jessen, H.; Eckert, J.K.; Neumann, K.; Storek, A.; Pouliot, M.; et al. A Functional Toll-like Receptor 8 Variant Is Associated with HIV Disease Restriction. J. Infect. Dis. 2008, 198, 701–709. [Google Scholar] [CrossRef]
- Salamaikina, S.; Korchagin, V.; Kulabukhova, E.; Mironov, K.; Zimina, V.; Kravtchenko, A.; Akimkin, V. Association of Toll-Like Receptor Gene Polymorphisms with Tuberculosis in HIV-Positive Participants. Epigenomes 2023, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Mahallawi, W.H.; Suliman, B.A. TLR8 Is Highly Conserved among the Saudi Population and Its Mutations Have No Effect on the Severity of COVID-19 Symptoms. Am. J. Clin. Exp. Immunol. 2021, 10, 71. [Google Scholar]
- Ao, X.; Gan, Q.; Huang, X.; Bao, D.; Wu, X.; Lin, Q.; Lin, A.; Ding, Y.; Wang, L.; Chen, Y.; et al. TLR8 Agonist Partially Improves IFN-γ Deficiency of NK Cells in Chronic Hepatitis B through the Synergy of Monocytes. Aliment. Pharmacol. Ther. 2023, 57, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.; Tan, A.T.; Ussher, J.E.; Sandalova, E.; Tang, X.Z.; Tan-Garcia, A.; To, N.; Hong, M.; Chia, A.; Gill, U.S.; et al. Toll-Like Receptor 8 Agonist and Bacteria Trigger Potent Activation of Innate Immune Cells in Human Liver. PLoS Pathog. 2014, 10, e1004210. [Google Scholar] [CrossRef]
- Fricke-Galindo, I.; Buendia-Roldan, I.; Chavez-Galan, L.; Pérez-Rubio, G.; Hernández-Zenteno, R.d.J.; Ramos-Martinez, E.; Zazueta-Márquez, A.; Reyes-Melendres, F.; Alarcón-Dionet, A.; Guzmán-Vargas, J.; et al. SERPINE1 Rs6092 Variant Is Related to Plasma Coagulation Proteins in Patients with Severe COVID-19 from a Tertiary Care Hospital. Biology 2022, 11, 595. [Google Scholar] [CrossRef]
- Fricke-Galindo, I.; Buendía-Roldán, I.; Ruiz, A.; Palacios, Y.; Pérez-Rubio, G.; De Jesus Hernández-Zenteno, R.; Reyes-Melendres, F.; Zazueta-Márquez, A.; Alarcón-DIonet, A.; Guzmán-Vargas, J.; et al. TNFRSF1B and TNF Variants Are Associated With Differences in Levels of Soluble Tumor Necrosis Factor Receptors in Patients With Severe COVID-19. J. Infect. Dis. 2022, 226, 778–787. [Google Scholar] [CrossRef]
- Picot, J.; Guerin, C.L.; Le Van Kim, C.; Boulanger, C.M. Flow Cytometry: Retrospective, Fundamentals and Recent Instrumentation. Cytotechnology 2012, 64, 109–130. [Google Scholar] [CrossRef] [PubMed]
- Flores-Gonzalez, J.; Cancino-Díaz, J.C.; Chavez-Galan, L. Flow Cytometry: From Experimental Design to Its Application in the Diagnosis and Monitoring of Respiratory Diseases. Int. J. Mol. Sci. 2020, 21, 8830. [Google Scholar] [CrossRef]
Group | Total (n = 125) | TNFHIFNγH (n = 22) | TNFHIFNγN-L (n = 20) | TNFN-LIFNγH (n = 44) | TNFN-LIFNγN-L (n = 39) | p * |
---|---|---|---|---|---|---|
Age (years) | 55 (45–64) | 56 (50–65) | 58 (49–69) | 57 (42–65) | 53 (37–63) | 0.4597 |
Sex | ||||||
Male, n (%) | 86 (69) | 17 (77) | 16 (80) | 27 (61) | 26 (67) | 0.9813 |
Leukocyte, ×109/L | 8.5 (6.3–11.48) | 9.2 (6.57–13.45) | 8.6 (6.4–13.13) | 7.8 (5.14–9.47) | 8.4 (6.95–11.20) | 0.0778 |
D-dimer (ng/mL) | 0.88 (0.4–2.4) | 1.5 (0.2–2.2) | 3.1 (1.2–6.2) | 0.6 (0.3–2.3) | 0.9 (0.4–2.3) | 0.0042 ** |
LDH (U/L) | 361 (292.3–545.8) | 417.0 (288.3–676.5) | 339.0 (232–365) | 435.0 (304–676.5) | 345.0 (269–534) | 0.0732 |
Disease severity | <0.0001 | |||||
Mild, n (%) | 2 (9) | 4 (20) | 15 (34) | 9 (23) | ||
Severe, n (%) | 7 (32) | 11 (55) | 20 (45.5) | 15 (38.5) | ||
Critical, n (%) | 13 (59) | 5 (25) | 9 (20.5) | 15 (38.5) | ||
IMV, n (%) | 16 (73) | 17 (85) | 9 (20.5) | 8 (20.5) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramón-Luing, L.A.; Martínez-Gómez, L.E.; Martinez-Armenta, C.; Martínez-Nava, G.A.; Medina-Quero, K.; Pérez-Rubio, G.; Falfán-Valencia, R.; Buendia-Roldan, I.; Flores-Gonzalez, J.; Ocaña-Guzmán, R.; et al. TNF/IFN-γ Co-Signaling Induces Differential Cellular Activation in COVID-19 Patients: Implications for Patient Outcomes. Int. J. Mol. Sci. 2025, 26, 1139. https://doi.org/10.3390/ijms26031139
Ramón-Luing LA, Martínez-Gómez LE, Martinez-Armenta C, Martínez-Nava GA, Medina-Quero K, Pérez-Rubio G, Falfán-Valencia R, Buendia-Roldan I, Flores-Gonzalez J, Ocaña-Guzmán R, et al. TNF/IFN-γ Co-Signaling Induces Differential Cellular Activation in COVID-19 Patients: Implications for Patient Outcomes. International Journal of Molecular Sciences. 2025; 26(3):1139. https://doi.org/10.3390/ijms26031139
Chicago/Turabian StyleRamón-Luing, Lucero A., Laura Edith Martínez-Gómez, Carlos Martinez-Armenta, Gabriela Angélica Martínez-Nava, Karen Medina-Quero, Gloria Pérez-Rubio, Ramcés Falfán-Valencia, Ivette Buendia-Roldan, Julio Flores-Gonzalez, Ranferi Ocaña-Guzmán, and et al. 2025. "TNF/IFN-γ Co-Signaling Induces Differential Cellular Activation in COVID-19 Patients: Implications for Patient Outcomes" International Journal of Molecular Sciences 26, no. 3: 1139. https://doi.org/10.3390/ijms26031139
APA StyleRamón-Luing, L. A., Martínez-Gómez, L. E., Martinez-Armenta, C., Martínez-Nava, G. A., Medina-Quero, K., Pérez-Rubio, G., Falfán-Valencia, R., Buendia-Roldan, I., Flores-Gonzalez, J., Ocaña-Guzmán, R., Selman, M., López-Reyes, A., & Chavez-Galan, L. (2025). TNF/IFN-γ Co-Signaling Induces Differential Cellular Activation in COVID-19 Patients: Implications for Patient Outcomes. International Journal of Molecular Sciences, 26(3), 1139. https://doi.org/10.3390/ijms26031139