Integrating Machine Learning with MALDI-TOF Mass Spectrometry for Rapid and Accurate Antimicrobial Resistance Detection in Clinical Pathogens
Abstract
:1. Introduction
2. Results
2.1. Database
2.2. Classification Models
2.3. Analysis of Significant Peaks by Using SHAP Values
3. Materials and Methods
3.1. Data Acquisition
3.1.1. Sample Acquisition and Characterization
3.1.2. Antimicrobial Susceptibility Testing
3.1.3. Machine Learning Datasets
3.2. Machine Learning Classification
3.2.1. Transfer Learning
- Selection of pre-trained models: Pre-trained models that addressed the same cases studied in this research were selected—specifically, for Staphylococcus aureus (oxacillin resistance), Escherichia coli (ceftriaxone resistance), and Klebsiella pneumoniae (ciprofloxacin resistance);
- Data alignment and preprocessing: Since the mass spectra used in the pre-trained models were obtained on a Bruker instrument, which provides a complete spectrum rather than just identified peaks, an alignment of the peaks reported by the VITEK® MS instrument was performed. This alignment was performed using the mass range from the previous study as a reference [25]. Since the VITEK® MS only reports about 200 peaks, the resulting spectrum was completed with zeros to adjust its length and resolution required by the pre-trained model;
- Transfer learning adjustments: Following the recommendations of the original deep learning study, both the convolutional and fully connected layers of the model were retrained using a learning rate of 0.0001. In addition, an “early stopping” technique was implemented to stop training when the AUPRC metric stopped improving, thus optimizing the fitting process;
- Cross-Validation: To ensure a fair comparison with the models trained from scratch, the same 10-fold cross-validation scheme used in the original machine learning models was applied, guaranteeing the consistency and robustness of the results obtained.
3.2.2. Metrics
3.2.3. Analysis of Features Contribution with Shapley Values
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Vaccines Could Avert Half a Million Deaths Associated with Anti-Microbial Resistance A Year; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903. [Google Scholar] [CrossRef] [PubMed]
- Instituto de Salud Pública de Chile. Boletín de Resistencia Antimicrobiana; Instituto de Salud Pública de Chile: Santiago, Chile, 2022. [Google Scholar]
- Instituto de Salud Pública de Chile. Informe de Vigilancia de Infecciones Asociadas a la Atención en Salud; Instituto de Salud Pública de Chile: Santiago, Chile, 2019. [Google Scholar]
- World Health Organization. Promoting Rational Use of Medicines; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Pandey, S.; Doo, H.; Keum, G.B.; Kim, E.S.; Kwak, J.; Ryu, S.; Choi, Y.; Kang, J.; Kim, S.; Lee, N.R.; et al. Antibiotic resistance in livestock, environment and humans: One Health perspective. J. Anim. Sci. Technol. 2024, 66, 266. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, G. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. Environ. Res. 2022, 212, 113267. [Google Scholar] [CrossRef] [PubMed]
- Stanton, I.C.; Bethel, A.; Leonard, A.F.C.; Gaze, W.H.; Garside, R. Existing evidence on antibiotic resistance exposure and transmission to humans from the environment: A systematic map. Environ. Evid. 2022, 11, 8. [Google Scholar] [CrossRef]
- Iskandar, K.; Murugaiyan, J.; Hammoudi Halat, D.; Hage, S.E.; Chibabhai, V.; Adukkadukkam, S.; Roques, C.; Molinier, L.; Salameh, P.; Van Dongen, M. Antibiotic discovery and resistance: The chase and the race. Antibiotics 2022, 11, 182. [Google Scholar] [CrossRef]
- Chinemerem Nwobodo, D.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.; Chinedu Ikem, J.; Victor Chigozie, U.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef]
- Pinto-de Sá, R.; Sousa-Pinto, B.; Costa-de Oliveira, S. Brave New World of Artificial Intelligence: Its Use in Antimicrobial Stewardship—A Systematic Review. Antibiotics 2024, 13, 307. [Google Scholar] [CrossRef]
- Coxe, T.; Azad, R.K. Silicon versus Superbug: Assessing Machine Learning’s Role in the Fight against Antimicrobial Resistance. Antibiotics 2023, 12, 1604. [Google Scholar] [CrossRef]
- Wong, F.; Zheng, E.J.; Valeri, J.A.; Donghia, N.M.; Anahtar, M.N.; Omori, S.; Li, A.; Cubillos-Ruiz, A.; Krishnan, A.; Jin, W.; et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 2023, 626, 177–185. [Google Scholar] [CrossRef]
- Van Camp, P.J.; Haslam, D.B.; Porollo, A. Prediction of antimicrobial resistance in Gram-negative bacteria from whole-genome sequencing data. Front. Microbiol. 2020, 11, 530987. [Google Scholar] [CrossRef]
- Meng, L.; Liu, H.; Lan, T.; Dong, L.; Hu, H.; Zhao, S.; Zhang, Y.; Zheng, N.; Wang, J. Antibiotic resistance patterns of Pseudomonas spp. isolated from raw milk revealed by whole genome sequencing. Front. Microbiol. 2020, 11, 1005. [Google Scholar] [CrossRef] [PubMed]
- Oviaño, M.; Rodríguez-Sánchez, B. MALDI-TOF mass spectrometry in the 21st century clinical microbiology laboratory. Enfermedades Infecc. Microbiol. Clin. (Engl. Ed.) 2021, 39, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, S.; Nakayama, T. MALDI-Based Mass Spectrometry in Clinical Testing: Focus on Bacterial Identification. Appl. Sci. 2022, 12, 2814. [Google Scholar] [CrossRef]
- Janiszewska, D.; Szultka-Młyńska, M.; Pomastowski, P.; Buszewski, B. “Omic” Approaches to Bacteria and Antibiotic Resistance Identification. Int. J. Mol. Sci. 2022, 23, 9601. [Google Scholar] [CrossRef]
- Yoon, E.J.; Jeong, S.H. MALDI-TOF Mass Spectrometry Technology as a Tool for the Rapid Diagnosis of Antimicrobial Resistance in Bacteria. Antibiotics 2021, 10, 982. [Google Scholar] [CrossRef]
- Chung, C.R.; Wang, H.Y.; Chou, P.H.; Wu, L.C.; Lu, J.J.; Horng, J.T.; Lee, T.Y. Towards accurate identification of antibiotic-resistant pathogens through the ensemble of multiple preprocessing methods based on MALDI-TOF spectra. Int. J. Mol. Sci. 2023, 24, 998. [Google Scholar] [CrossRef]
- Astudillo, C.A.; López-Cortés, X.A.; Ocque, E.; Manríquez-Troncoso, J.M. Multi-label classification to predict antibiotic resistance from raw clinical MALDI-TOF mass spectrometry data. Sci. Rep. 2024, 14, 31283. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2023. [Google Scholar]
- López-Cortés, X.A.; Manríquez-Troncoso, J.M.; Kandalaft-Letelier, J.; Cuadros-Orellana, S. Machine learning and matrix-assisted laser desorption/ionization time-of-flight mass spectra for antimicrobial resistance prediction: A systematic review of recent advancements and future development. J. Chromatogr. A 2024, 1734, 465262. [Google Scholar] [CrossRef]
- Hwang, Y.; Song, J. Recent deep learning methods for tabular data. Commun. Stat. Appl. Methods 2023, 30, 215–226. [Google Scholar] [CrossRef]
- López-Cortés, X.A.; Manríquez-Troncoso, J.M.; Hernández-García, R.; Peralta, D. MSDeepAMR: Antimicrobial resistance prediction based on deep neural networks and transfer learning. Front. Microbiol. 2024, 15, 1361795. [Google Scholar] [CrossRef]
- Weis, C.; Cuénod, A.; Rieck, B.; Dubuis, O.; Graf, S.; Lang, C.; Oberle, M.; Brackmann, M.; Søgaard, K.K.; Osthoff, M.; et al. Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning. Nat. Med. 2022, 28, 164–174. [Google Scholar] [CrossRef] [PubMed]
- González, C.; Astudillo, C.A.; López-Cortés, X.A.; Maldonado, S. Semi-supervised learning for MALDI–TOF mass spectrometry data classification: An application in the salmon industry. Neural Comput. Appl. 2023, 35, 9381–9391. [Google Scholar] [CrossRef]
- Chung, C.R.; Wang, H.Y.; Yao, C.H.; Wu, L.C.; Lu, J.J.; Horng, J.T.; Lee, T.Y. Data-driven two-stage framework for identification and characterization of different antibiotic-resistant escherichia coli isolates based on mass spectrometry data. Microbiol. Spectr. 2023, 11, e03479-22. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Wang, H.Y.; Chung, C.R.; Horng, J.T.; Lu, J.J.; Lee, T.Y. Large-scale samples based rapid detection of ciprofloxacin resistance in Klebsiella pneumoniae using machine learning methods. Front. Microbiol. 2022, 13, 827451. [Google Scholar] [CrossRef]
- Kim, J.M.; Kim, I.; Chung, S.H.; Chung, Y.; Han, M.; Kim, J.S. Rapid discrimination of methicillin-resistant Staphylococcus aureus by MALDI-TOF MS. Pathogens 2019, 8, 214. [Google Scholar] [CrossRef]
- Wang, H.Y.; Lee, T.Y.; Tseng, Y.J.; Liu, T.P.; Huang, K.Y.; Chang, Y.T.; Chen, C.H.; Lu, J.J. A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach. PLoS ONE 2018, 13, e0194289. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, J.; Rao, X.; Yu, J.; Chu, M.; Ren, W.; Wang, L.; Xue, W. Analysis of methicillin-resistant Staphylococcus aureus major clonal lineages by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI–TOF MS). J. Microbiol. Methods 2015, 117, 122–127. [Google Scholar] [CrossRef]
- Mojica, M.F.; Rossi, M.A.; Vila, A.J.; Bonomo, R.A. The urgent need for metallo-β-lactamase inhibitors: An unattended global threat. Lancet Infect. Dis. 2022, 22, e28–e34. [Google Scholar] [CrossRef]
- Moller, A. Understanding Phage-Host Interactions in Staphylococcus aureus Through Population Genomics and Bioinformatics. Ph.D. Thesis, Emory University, Atlanta, GA, USA, 2021. [Google Scholar]
- Nakamura, A.; Komatsu, M.; Ohno, Y.; Noguchi, N.; Kondo, A.; Hatano, N. Identification of specific protein amino acid substitutions of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli ST131: A proteomics approach using mass spectrometry. Sci. Rep. 2019, 9, 8555. [Google Scholar] [CrossRef]
- Li, D.X.; Zhai, Y.; Zhang, Z.; Guo, Y.T.; Wang, Z.W.; He, Z.L.; Hu, S.N.; Chen, Y.S.; Kang, Y.; Gao, Z.C. Genetic factors related to the widespread dissemination of ST11 extensively drug-resistant carbapenemase-producing Klebsiella pneumoniae strains within hospital. Chin. Med J. 2020, 133, 2573–2585. [Google Scholar] [CrossRef]
- Panda, L.; Prashanth, K. The Silent Architect: Nucleoid Associated Proteins’ Influence on the ESKAPE Pathogens. Microbe 2024, 4, 100121. [Google Scholar] [CrossRef]
- Giamarellou, H.; Galani, L.; Karavasilis, T.; Ioannidis, K.; Karaiskos, I. Antimicrobial stewardship in the hospital setting: A narrative review. Antibiotics 2023, 12, 1557. [Google Scholar] [CrossRef] [PubMed]
- Allel, K.; García, P.; Labarca, J.; Munita, J.M.; Rendic, M.; de Resistencia Bacteriana, G.C.; Undurraga, E.A. Socioeconomic factors associated with antimicrobial resistance of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli in Chilean hospitals (2008–2017). Rev. Panam. Salud Pública 2020, 44, e30. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Antunes, W.; Mota, S.; Madureira-Carvalho, Á.; Dinis-Oliveira, R.J.; da Silva, D.D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024, 12, 1920. [Google Scholar] [CrossRef]
Algorithm | AUROC | AUPRC | B. Accuracy | F1 Score | |
---|---|---|---|---|---|
S. aureus Oxacillin | SVM | 0.78 ± 0.08 | 0.63 ± 0.11 | 0.64 ± 0.09 | 0.40 ± 0.21 |
RF | 0.86 ± 0.06 | 0.68 ± 0.09 | 0.74 ± 0.07 | 0.56 ± 0.11 | |
LR | 0.81 ± 0.08 | 0.63 ± 0.09 | 0.73 ± 0.09 | 0.54 ± 0.12 | |
CatBoost | 0.86 ± 0.06 | 0.73 ± 0.09 | 0.77 ± 0.07 | 0.61 ± 0.12 | |
TL | 0.78 ± 0.09 | 0.56 ± 0.14 | 0.61 ± 0.09 | 0.34 ± 0.25 | |
E. coli Ciprofloxacin | SVM | 0.77 ± 0.09 | 0.74 ± 0.09 | 0.67 ± 0.09 | 0.58 ± 0.14 |
RF | 0.70 ± 0.07 | 0.77 ± 0.06 | 0.66 ± 0.07 | 0.63 ± 0.06 | |
LR | 0.68 ± 0.11 | 0.66 ± 0.09 | 0.64 ± 0.11 | 0.58 ± 0.12 | |
CatBoost | 0.91 ± 0.07 | 0.91 ± 0.06 | 0.81 ± 0.08 | 0.78 ± 0.08 | |
TL | 0.70 ± 0.06 | 0.72 ± 0.14 | 0.68 ± 0.07 | 0.58 ± 0.11 | |
K. pneumoniae Ciprofloxacin | SVM | 0.65 ± 0.17 | 0.76 ± 0.11 | 0.62 ± 0.13 | 0.73 ± 0.12 |
RF | 0.69 ± 0.13 | 0.79 ± 0.09 | 0.58 ± 0.05 | 0.78 ± 0.02 | |
LR | 0.60 ± 0.11 | 0.72 ± 0.07 | 0.57 ± 0.11 | 0.70 ± 0.08 | |
CatBoost | 0.73 ± 0.08 | 0.83 ± 0.07 | 0.65 ± 0.07 | 0.78 ± 0.05 | |
TL | 0.58 ± 0.12 | 0.71 ± 0.07 | 0.50 ± 0.09 | 0.76 ± 0.02 |
Bacteria | Antibiotic | Rank | Feature (Mass Da) | Uniprot Annotation | Uniprot ID |
---|---|---|---|---|---|
S. aureus | Oxacillin | 1 | 3890 | RNA-metabolizing metallo-beta-lactamase | A0A4P7P589 |
2 | 5670 | Uncharacterized protein | A0AAN0QQJ4 | ||
3 | 2450 | Nothing found | Nothing found | ||
4 | 6550 | Membrane protein | A0AAE8TIP2 | ||
5 | 3120 | Phage head–tail adapter protein | A0A6G4JAS6 | ||
E. coli | Ciprofloxacin | 1 | 5890 | Inner membrane protein | A0A2X1JG16 |
2 | 5230 | Uncharacterized protein | A0A890DJW7 | ||
3 | 3850 | Phosphoenolpyruvate synthase | A0A3L9HBW1 | ||
4 | 9225 | DNA-binding protein HU-beta | P0ACF4 | ||
5 | 8350 | Plasmid maintenance protein CcdA | A0A074N0X8 | ||
K. pneumoniae | Ciprofloxacin | 1 | 6590 | dTDP-4-dehydrorhamnose 3,5-epimerase | A0A9Q4WW37 |
2 | 5065 | Mobile element protein | A0A2U8T1Q0 | ||
3 | 6550 | Uncharacterized protein | A0A0G2ST16 | ||
4 | 4515 | IS110 family transposase | A0A6M3YYK3 | ||
5 | 8305 | Transcription modulator YdgT | A0A0W8AUU2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Cortés, X.A.; Manríquez-Troncoso, J.M.; Sepúlveda, A.Y.; Soto, P.S. Integrating Machine Learning with MALDI-TOF Mass Spectrometry for Rapid and Accurate Antimicrobial Resistance Detection in Clinical Pathogens. Int. J. Mol. Sci. 2025, 26, 1140. https://doi.org/10.3390/ijms26031140
López-Cortés XA, Manríquez-Troncoso JM, Sepúlveda AY, Soto PS. Integrating Machine Learning with MALDI-TOF Mass Spectrometry for Rapid and Accurate Antimicrobial Resistance Detection in Clinical Pathogens. International Journal of Molecular Sciences. 2025; 26(3):1140. https://doi.org/10.3390/ijms26031140
Chicago/Turabian StyleLópez-Cortés, Xaviera A., José M. Manríquez-Troncoso, Alejandra Yáñez Sepúlveda, and Patricio Suazo Soto. 2025. "Integrating Machine Learning with MALDI-TOF Mass Spectrometry for Rapid and Accurate Antimicrobial Resistance Detection in Clinical Pathogens" International Journal of Molecular Sciences 26, no. 3: 1140. https://doi.org/10.3390/ijms26031140
APA StyleLópez-Cortés, X. A., Manríquez-Troncoso, J. M., Sepúlveda, A. Y., & Soto, P. S. (2025). Integrating Machine Learning with MALDI-TOF Mass Spectrometry for Rapid and Accurate Antimicrobial Resistance Detection in Clinical Pathogens. International Journal of Molecular Sciences, 26(3), 1140. https://doi.org/10.3390/ijms26031140