Investigation of Biotransformation Pathways in a Chimeric Mouse with a Humanized Liver
Abstract
:1. Introduction
2. Results and Discussion
2.1. Atorvastatin
2.2. Bosentan
2.3. Cerivastatin
2.4. Epristeride
2.5. Glipizide
2.6. Irbesartan
2.7. Moxifloxacin
2.8. PF-05089771
2.9. Pitavastatin
2.10. Repaglinide
2.11. Telmisartan
2.12. Tesaglitazar
2.13. General Discussion
3. Materials and Methods
3.1. Chemicals and Regents
3.2. Equipment
3.3. Hepatocyte Incubation
3.4. Animals
3.5. Animal Dosing
3.6. Sample Preparation of In Vivo Samples from PXB-Mice for Metabolite Profiling
3.7. UPLC–MS Method Used for Metabolite Profiling
3.8. Metabolite Identification by MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martignoni, M.; Groothuis, G.M.M.; de Kanter, R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin. Drug Metab. Toxicol. 2006, 875–894. [Google Scholar] [CrossRef]
- Anderson, S.; Luffer-Atlas, D.; Knadler, M.P. Predicting circulating human metabolites: How good are we? Chem. Res. Toxicol. 2009, 22, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, L.; Cuyckens, F.; Mannens, G.S.; de Vries, R.; Timmerman, P.; Evans, D.C. Which human metabolites have we MIST? Retrospective analysis, practical aspects, and perspectives for metabolite identification and quantification in pharmaceutical development. Chem. Res. Toxicol. 2009, 22, 280–293. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.; Brady, J.; Dalvie, D.; Davis, J.; Dowty, M.; Duncan, J.N.; Nedderman, A.; Obach, R.S.; Wright, P. A holistic strategy for characterizing the safety of metabolites through drug discovery and development. Chem. Res. Toxicol. 2009, 22, 1653–1662. [Google Scholar] [CrossRef]
- Guengerich, F.P.; MacDonald, J.S. Applying mechanisms of chemical toxicity to predict drug safety. Chem. Res. Toxicol. 2007, 20, 344–369. [Google Scholar] [CrossRef]
- Smith, D.A.; Obach, R.S. Metabolites in safety testing (MIST): Considerations of mechanisms of toxicity with dose, abundance, and duration of treatment. Chem. Res. Toxicol. 2009, 22, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Kawai, K.; Mitsui, T.; Taniguchi, K.; Monnai, M.; Wakui, M.; Ito, M.; Suematsu, M.; Peltz, G.; Nakamura, M.; et al. The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochem. Biophys. Res. Commun. 2011, 405, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Hu, Y.; Wu, M.; Pham, E.; Suemizu, H.; Elazar, M.; Liu, M.; Idilman, R.; Yurdaydin, C.; Angus, P.; et al. Using chimeric mice with humanized livers to predict human drug metabolism and a drug-drug interaction. J. Pharmacol. Exp. Ther. 2013, 344, 388–396. [Google Scholar] [CrossRef]
- de Jong, Y.P.; Rice, C.M.; Ploss, A. New horizons for studying human hepatotropic infections. J. Clin. Investig. 2010, 120, 650–653. [Google Scholar] [CrossRef]
- Katoh, M.; Yokoi, T. Application of chimeric mice with humanized liver for predictive ADME. Drug Metab. Rev. 2007, 39, 145–157. [Google Scholar] [CrossRef]
- Okumura, H.; Katoh, M.; Sawada, T.; Nakajima, M.; Soeno, Y.; Yabuuchi, H.; Ikeda, T.; Tateno, C.; Yoshizato, K.; Yokoi, T. Humanization of excretory pathway in chimeric mice with humanized liver. Toxicol. Sci. 2007, 97, 533–538. [Google Scholar] [CrossRef]
- Inoue, T.; Nitta, K.; Sugihara, K.; Horie, T.; Kitamura, S.; Ohta, S. CYP2C9-catalyzed metabolism of S-warfarin to 7-hydroxywarfarin in vivo and in vitro in chimeric mice with humanized liver. Drug Metab. Dispos. 2008, 36, 2429–2433. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Sugihara, K.; Ohshita, H.; Horie, T.; Kitamura, S.; Ohta, S. Prediction of human disposition toward S-3H-warfarin using chimeric mice with humanized liver. Drug Metab. Pharmacokinet. 2009, 24, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Kuribayashi, S.; Inoue, T.; Tateno, C.; Nishikura, Y.; Oofusa, K.; Harada, D.; Naito, S.; Horie, T.; Ohta, S. Approach for In Vivo Protein Binding of 5-n-Butyl-pyrazolo[1,5-a]pyrimidine Bioactivated in Chimeric Mice with Humanized Liver by Two-Dimensional Electrophoresis with Accelerator Mass Spectrometry. Chem. Res. Toxicol. 2010, 23, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, S.; Nitta, K.; Tayama, Y.; Tanoue, C.; Sugihara, K.; Inoue, T.; Horie, T.; Ohta, S. Aldehyde oxidase-catalyzed metabolism of N1-methylnicotinamide in vivo and in vitro in chimeric mice with humanized liver. Drug Metab. Dispos. 2008, 36, 1202–1205. [Google Scholar] [CrossRef]
- Sugahara, G.; Ishida, Y.; Sun, J.; Tateno, C.; Saito, T. Art of Making Artificial Liver: Depicting Human Liver Biology and Diseases in Mice. Semin. Liver Dis. 2020, 40, 189–212. [Google Scholar] [CrossRef]
- Tateno, C.; Kawase, Y.; Tobita, Y.; Hamamura, S.; Ohshita, H.; Yokomichi, H.; Sanada, H.; Kakuni, M.; Shiota, A.; Kojima, Y.; et al. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice. PLoS ONE 2015, 10, e0142145. [Google Scholar] [CrossRef]
- Nishimura, M.; Yoshitsugu, H.; Yokoi, T.; Tateno, C.; Kataoka, M.; Horie, T.; Yoshizato, K.; Naito, S. Evaluation of mRNA expression of human drug-metabolizing enzymes and transporters in chimeric mouse with humanized liver. Xenobiotica 2005, 35, 877–890. [Google Scholar] [CrossRef]
- Kakuni, M.; Yamasaki, C.; Tachibana, A.; Yoshizane, Y.; Ishida, Y.; Tateno, C. Chimeric Mice with Humanized Livers: A Unique Tool for in Vivo and in Vitro Enzyme Induction Studies. Int. J. Mol. Sci. 2014, 15, 58–74. [Google Scholar] [CrossRef]
- PhoenixBio PXB-mouse. Available online: https://www.phoenixbio.com/products/pxb-mouse (accessed on 22 January 2025).
- Stangier, J.; Schmid, J.; Turck, D.; Switek, H.; Verhagen, A.; Peeters, P.A.; van Marle, S.P.; Tamminga, W.J.; Sollie, F.A.; Jonkman, J.H. Absorption, metabolism, and excretion of intravenously and orally administered [14C]telmisartan in healthy volunteers. J. Clin. Pharmacol. 2000, 40, 1312–1322. [Google Scholar] [CrossRef]
- Black, A.E.; Sinz, M.W.; Hayes, R.N.; Woolf, T.F. Metabolism and excretion studies in mouse after single and multiple oral doses of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab. Dispos. 1998, 26, 755–763. [Google Scholar]
- Lennernas, H. Clinical pharmacokinetics of atorvastatin. Clin. Pharmacokinet. 2003, 42, 1141–1160. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.; Gasser, R.; Hopfgartner, G. Absorption, excretion, and metabolism of the endothelin receptor antagonist bosentan in healthy male subjects. Drug Metab. Dispos. 1999, 27, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Muck, W. Clinical pharmacokinetics of cerivastatin. Clin. Pharmacokinet. 2000, 39, 99–116. [Google Scholar] [PubMed]
- Tan, B.; Yang, A.; Yuan, W.; Li, Y.; Jiang, L.; Jiang, J.; Qiu, F. Simultaneous determination of glipizide and its four hydroxylated metabolites in human urine using LC-MS/MS and its application in urinary phenotype study. J. Pharm. Biomed. Anal. 2017, 139, 179–186. [Google Scholar] [CrossRef]
- Chando, T.J.; Everett, D.W.; Kahle, A.D.; Starrett, A.M.; Vachharajani, N.; Shyu, W.C.; Kripalani, K.J.; Barbhaiya, R.H. Biotransformation of irbesartan in man. Drug Metab. Dispos. 1998, 26, 408–417. [Google Scholar]
- Stass, H.; Kubitza, D. Pharmacokinetics and elimination of moxifloxacin after oral and intravenous administration in man. J. Antimicrob. Chemother. 1999, 43, 83–90. [Google Scholar] [CrossRef]
- Fujino, H.; Kojima, J.; Yamada, Y.; Kanda, H.; Kimata, H. Studies on the Metabolic Fate of NK-104, a New Inhibitor of HMG-CoA Reductase (4): Interspecies Variation in the Laboratory Animals and Humans. Xenobio. Metabol. Dispos. 1999, 14, 79–91. [Google Scholar] [CrossRef]
- van Heiningen, P.N.; Hatorp, V.; Kramer Nielsen, K.; Hansen, K.T.; van Lier, J.J.; De Merbel, N.C.; Oosterhuis, B.; Jonkman, J.H. Absorption, metabolism and excretion of a single oral dose of (14)C-repaglinide during repaglinide multiple dosing. Eur. J. Clin. Pharmacol. 1999, 55, 521–525. [Google Scholar] [CrossRef]
- Ericsson, H.; Hamren, B.; Bergstrand, S.; Elebring, M.; Fryklund, L.; Heijer, M.; Ohman, K.P. Pharmacokinetics and metabolism of tesaglitazar, a novel dual-acting peroxisome proliferator-activated receptor alpha/gamma agonist, after a single oral and intravenous dose in humans. Drug Metab. Dispos. 2004, 32, 923–929. [Google Scholar] [CrossRef]
- Dingemanse, J.; van Giersbergen, P.L. Clinical pharmacology of bosentan, a dual endothelin receptor antagonist. Clin. Pharmacokinet. 2004, 43, 1089–1115. [Google Scholar] [CrossRef]
- Boberg, M.; Angerbauer, R.; Kanhai, W.K.; Karl, W.; Kern, A.; Radtke, M.; Steinke, W. Biotransformation of cerivastatin in mice, rats, and dogs in vivo. Drug Metab. Dispos. 1998, 26, 640–652. [Google Scholar] [PubMed]
- Kaspera, R.; Naraharisetti, S.B.; Tamraz, B.; Sahele, T.; Cheesman, M.J.; Kwok, P.Y.; Marciante, K.; Heckbert, S.R.; Psaty, B.M.; Totah, R.A. Cerivastatin in vitro metabolism by CYP2C8 variants found in patients experiencing rhabdomyolysis. Pharmacogenet Genom. 2010, 20, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Boberg, M.; Angerbauer, R.; Fey, P.; Kanhai, W.K.; Karl, W.; Kern, A.; Ploschke, J.; Radtke, M. Metabolism of cerivastatin by human liver microsomes in vitro. Characterization of primary metabolic pathways and of cytochrome P450 isozymes involved. Drug Metab. Dispos. 1997, 25, 321–331. [Google Scholar] [PubMed]
- Schmidt, H.A.; Schoog, M.; Schweer, K.H.; Winkler, E. Pharmacokinetics and pharmacodynamics as well as metabolism following orally and intravenously administered C14-glipizide, a new antidiabetic. Diabetologia 1973, 9, 320–330. [Google Scholar] [CrossRef]
- Balant, L.; Zahnd, G.; Gorgia, A.; Schwarz, R.; Fabre, J. Pharmacokinetics of glipizide in man: Influence of renal insufficiency. Diabetologia 1973, 9, 331–338. [Google Scholar] [CrossRef]
- Fuccella, L.M.; Tamassia, V.; Valzelli, G. Metabolism and kinetics of the hypoglycemic agent glipizide in man--comparison with glibenclamide. J. Clin. Pharmacol. New Drugs 1973, 13, 68–75. [Google Scholar] [CrossRef]
- Chiu, S.H.; Huskey, S.W. Species differences in N-glucuronidation. Drug Metab. Dispos. 1998, 26, 838–847. [Google Scholar]
- Kaivosaari, S.; Finel, M.; Koskinen, M. N-glucuronidation of drugs and other xenobiotics by human and animal UDP-glucuronosyltransferases. Xenobiotica 2011, 41, 652–669. [Google Scholar] [CrossRef]
- Fujino, H.; Yamada, I.; Shimada, S.; Yoneda, M.; Kojima, J. Metabolic fate of pitavastatin, a new inhibitor of HMG-CoA reductase: Human UDP-glucuronosyltransferase enzymes involved in lactonization. Xenobiotica 2003, 33, 27–41. [Google Scholar] [CrossRef]
- Yamada, I.; Fujino, H.; Shimada, S.; Kojima, J. Metabolic fate of pitavastatin, a new inhibitor of HMG-CoA reductase: Similarities and difference in the metabolism of pitavastatin in monkeys and humans. Xenobiotica 2003, 33, 789–803. [Google Scholar] [CrossRef]
- Bidstrup, T.B.; Bjornsdottir, I.; Sidelmann, U.G.; Thomsen, M.S.; Hansen, K.T. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br. J. Clin. Pharmacol. 2003, 56, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Gan, J.; Chen, W.; Shen, H.; Gao, L.; Hong, Y.; Tian, Y.; Li, W.; Zhang, Y.; Tang, Y.; Zhang, H.; et al. Repaglinide-gemfibrozil drug interaction: Inhibition of repaglinide glucuronidation as a potential additional contributing mechanism. Br. J. Clin. Pharmacol. 2010, 70, 870–880. [Google Scholar] [CrossRef] [PubMed]
- Bauer, E.; Beschke, K.; Ebner, T.; Greischel, A.; Heinle, R.; Prox, A. Biotransformation of [14C] repaglinide in human, cynomolgus monkey, dog, rabbit, rat and mouse (abstract 1282). Diabetologia 1997, 40, A326. [Google Scholar]
- Chen, A.A.; Thomas, D.K.; Ong, L.L.; Schwartz, R.E.; Golub, T.R.; Bhatia, S.N. Humanized mice with ectopic artificial liver tissues. Proc. Natl. Acad. Sci. USA 2011, 108, 11842–11847. [Google Scholar] [CrossRef]
- Tateno, C.; Yoshizane, Y.; Saito, N.; Kataoka, M.; Utoh, R.; Yamasaki, C.; Tachibana, A.; Soeno, Y.; Asahina, K.; Hino, H.; et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am. J. Pathol. 2004, 165, 901–912. [Google Scholar] [CrossRef]
- Samuelsson, K.; Pickup, K.; Sarda, S.; Swales, J.G.; Morikawa, Y.; Schulz-Utermoehl, T.; Hutchison, M.; Wilson, I.D. Pharmacokinetics and metabolism of midazolam in chimeric mice with humanised livers. Xenobiotica 2012, 42, 1128–1137. [Google Scholar] [CrossRef]
- Serres, M.D.; Bowers, G.; Boyle, G.; Beaumont, C.; Castellino, S.; Sigafoos, J.; Dave, M.; Roberts, A.; Shah, V.; Olson, K.; et al. Evaluation of a chimeric (uPA+/+)/SCID mouse model with a humanized liver for prediction of human metabolism. Xenobiotica 2011, 41, 464–475. [Google Scholar] [CrossRef]
- Alcock, S. An anti-inflammatory compound: Non-toxic to animals but with an adverse action in man. Proc. Eur. Soc. Study Drug Toxic. 1970, 12, 7. [Google Scholar]
- Hart, F.D.; Bain, L.S.; Huskisson, E.C.; Littler, T.R.; Taylor, R.T. Hepatic effects of fenclozic acid. Ann. Rheum. Dis. 1970, 29, 684. [Google Scholar] [CrossRef]
- Ekdahl, A.; Weidolf, L.; Baginski, M.; Morikawa, Y.; Thompson, R.A.; Wilson, I.D. The metabolic fate of fenclozic acid in chimeric mice with a humanized liver. Arch. Toxicol. 2018, 92, 2819–2828. [Google Scholar] [CrossRef]
Compound | Transformation | PXB blood | PXB urine | Human heps | Mouse heps | Human plasma [21] | Human urine |
Atorvastatin | Parent | + | + | +++ | + | +++ | N/A |
M1 | 4-Hydroxylation | – | – | ++ | + | + | N/A |
M2 | 2-Hydroxylation | +++ | + | ++ | + | ++ | N/A |
M3 | Lactone | – | – | + | – | + | N/A |
M4 | 4-Hydroxylated Lactone | – | – | + | – | + | N/A |
M5 | 2-Hydroxylated Lactone | +++ | + | + | + | + | N/A |
m6 | β-Oxidation | – | – | ++ | +++ | – | N/A |
m7 | β-Oxidation and 4-Hydroxylation | – | – | + | – | – | N/A |
m8 | β-Oxidation and 2-Hydroxylation | + | – | + | +++ | – | N/A |
m9 | β-Oxidation and Desaturation and Hydroxylation | – | – | – | + | – | N/A |
Compound | Transformation | PXB blood | PXB urine | Human heps | Mouse heps | Human plasma [23] | Human urine [23] |
Bosentan | Parent | +++ | ++ | +++ | +++ | +++ | + |
M1 | Hydroxylation | ++ | +++ | +++ | +++ | +++ | +++ |
M2 | Demethylation | – | + | ++ | + | + | + |
M3 | Hydroxylation and Demethylation | – | + | + | + | – | ++ |
m4 | 2 x Oxidation and Dehydrogenation | – | ++ | – | ++ | – | – |
m5 | Oxidation and Glucuronidation | – | – | – | + | – | – |
m6 | Hydroxylation | – | – | – | + | – | – |
Other Metabolites | – | – | – | – | + a | + a | |
Compound | Transformation | PXB blood | PXB urine | Human heps | Mouse heps | Human plasma [24] | Human urine [24] |
Cerivastatin | Parent | +++ | + | +++ | ++ | +++ | – |
M1 | Demethylation | ++ | +++ | ++ | + | + | ++ |
M23 | Hydroxylation | ++ | +++ | ++ | + | ++ | +++ |
M24 | Demethylation and Hydroxylation | + | +++ | + | + | – | + |
m27 | Deoxygenation | ++ | – | – | +++ | – | – |
m28 | Deoxygenation and Demethylation | ++ | + | – | +++ | – | – |
Compound | Transformation | PXB blood | PXB urine | Human heps | Mouse heps | Human plasma | Human urine |
Epristeride | Parent | +++ | +++ | +++ | +++ | N/A | N/A |
m1 | Glucuronidation | – | +++ | ++ | +++ | N/A | N/A |
m2 | Hydroxylation | – | – | + | – | N/A | N/A |
m3 | Hydroxylation | – | – | + | – | N/A | N/A |
Compound | Transformation | PXB blood | PXB urine | Human heps | Mouse heps | Human plasma [25] | Human urine [25] |
Glipizide | Parent | +++ | + | +++ | +++ | +++ | + |
M1 | Hydroxylation | + | +++ | ++ | ++ | + | ++ |
M2 | Hydroxylation | + | ++ | + | +++ | + | + |
M3 | Hydroxylation | + | ++ | + | ++ | – | ++ |
M4 | Hydroxylation | + | ++ | + | +++ | – | + |
m5 | Glucuronidation | + | – | – | – | + | – |
m6 | Dehydrogenation | ++ | – | – | – | – | – |
m7 | Hydroxylation | – | + | – | + | – | – |
m8 | Hydroxylation | – | – | – | + | – | – |
m9 | Hydroxylation | – | – | – | + | – | – |
m10 | Hydroxylation | – | – | – | + | – | – |
m11 | 2 x Oxidation and Dehydrogenation | – | – | – | + | – | – |
Other Metabolites | – | + | – | – | + a | + a | |
Compound | Transformation | PXB blood | PXB urine | Human heps | Mouse heps | Human plasma [26] | Human urine [26] |
Irbesartan | Parent | +++ | ++ | +++ | + | +++ | ++ |
M1 | Cyclopentane Hydroxylation and Butyl hydroxylation | – | +++ | – | ++ | + | +++ |
M2 | Cyclopentane Hydroxylation and Butyl Carbonylation | – | ++ | – | – | + | +++ |
M3 | Carboxylation | – | ++ | – | + | + | +++ |
M4 | Butyl Hydroxylation | + | ++ | + | +++ | + | +++ |
M5/M7 | Cyclopentane Hydroxylation | + | ++ | ++ | ++ | ++ | +++ |
M6 | Butyl Carbonylation | + | + | – | +++ | ++ | +++ |
M8 | N-Glucuronidation | + | ++ | +++ | –b | ++ | ++ |
m9 | N-Dealkylation and Butyl Hydroxylation | ++ | ++ | – | +++ | – | – c |
m10 | N-Dealkylation | ++ | – | – | ++ | – | – c |
m11 | N-Dealkylation and Hydrolysis | + | ++ | – | ++ | – | – c |
Compound | Transformation | PXB blood | PXB urine | Human heps | Mouse heps | Human plasma [27] | Human urine [27] |
Moxifloxacin | Parent | +++ | +++ | +++ | +++ | +++ | +++ |
M1 | N-Sulphation | + | + | + | + | + | + |
M2 | Glucuronidation | ++ | ++ | + | ++ | ++ | ++ |
m3 | Taurine Conjugation | – | + | – | + | – | – |
Compound | Transformation | PXB blood | PXB urine | Human heps | Mouse heps | Human plasma | Human urine |
PF-05089771 | Parent | +++ | +++ | +++ | +++ | N/A | N/A |
m1 | N-Glucuronidation | + | + | + | – | N/A | N/A |
m2 | N-Glucuronidation | + | + | + | – | N/A | N/A |
m3 | N-Dealkylation | ++ | + | + | + | N/A | N/A |
m4 | Oxygenation | + | ++ | ++ | ++ | N/A | N/A |
Compound | Transformation | PXB blood | PXB urine | Human heps | Mouse heps | Human plasma [28] | Human urine [28] |
Pitavastatin | Parent | +++ | +++ | +++ | + | +++ | ++ |
P. lactone | Lactone | ++ | ++ | +++ | – | +++ | +++ |
P. gluc. | Glucuronidation | – | – | ++ | – | –– | +++ |
P. lactone gluc. | Lactone and Glucuronidation | + | ++ | ++ | – | – | +++ |
M2 | Lactone and Dehydrogenation | – | – | – | – | + | – |
M9 | β-Oxidation | – | – | – | – | – | + |
m10 | β-Oxidation and Taurine Conjugation | – | – | – | +++ | – | – |
m11 | β-Oxidation and Taurine Conjugation | – | – | – | +++ | – | – |
m13 | Aromatic Hydroxylation | – | ++ | – | ++ | – | – |
m14 | Quinolone Dihydrodiol | – | +++ | ++ | - | – | – |
Compound | Transformation | PXB blood | PXB urine | Human heps | Mouse heps | Human plasma [29] | Human urine [29] |
Repaglinide | Parent | +++ | ++ | +++ | + | +++ | + |
M1 | Ring-Opening and Dealkylation | – | – | + | + | ++ | +++ |
M2 | Ring-Opening and Carboxylation | – | ++ | +++ | +++ | +++ | +++ |
M4 | Piperidine Hydroxylation | + | +++ | +++ | + | + | + |
M5 | Deethylation | – | – | + | ++ | + | + |
M7 | Glucuronidation | + | +++ | +++ | ++ | ++ | ++ |
m8 | Piperidine Hydroxylation and Leucinol Hydroxylation | + | +++ | ++ | – | – | – d |
m9 | Leucinol Hydroxylation | + | – | ++ | – | – | – d |
m10 | Piperidine Dehydrogenation | ++ | – | + | + | – | – |
Secondary glucuron. | Oxidation and Glucuronidation | – | +++ | ++ | +++ | – | – d |
Compound | Transformation | PXB blood | PXB urine | Human heps | Mouse heps | Human plasma [30] | Human urine [30] |
Telmisartan | Parent | +++ | +++ | +++ | +++ | +++ | + |
M1 | Glucuronidation | ++ | +++ | ++ | + | + | + |
m2 | Hydroxylation | – | – | – | + | – | – |
m3 | Hydroxylation | ++ | ++ | – | – | – | – |
m4 | N-dealkylation and Glucuronidation | – | ++ | – | – | – | – |
Compound | Transformation | PXB blood | PXB urine | Human heps | Mouse heps | Human plasma [31] | Human urine [31] |
Tesaglitazar | Parent | +++ | ++ | +++ | +++ | +++ | ++ |
M1 | Glucuronidation | + | + | + | + | + | ++ |
Compound | PXB Blood | Human Heps | Mouse Heps |
---|---|---|---|
Atorvastatin | Green | Green | Amber * |
Bosentan | Amber | Green | Green |
Cerivastatin | Green | Green | Green |
Epristeride | N/A | N/A | N/A |
Glipizide | Green | Green | Green |
Irbesartan | Amber | Red | Amber |
Moxifloxacin | Green | Green | Green |
PF-05089771 | N/A | N/A | N/A |
Pitavastatin | Green | Green | Red |
Repaglinide | Red | Green | Green |
Telmisartan | Green | Green | Green |
Tesaglitazar | Green | Green | Green |
Compound | PXB Blood | Human Heps | Mouse Heps |
---|---|---|---|
Atorvastatin | N/A | N/A | N/A |
Bosentan | Green | Green | Green |
Cerivastatin | Green | Green | Amber * |
Epristeride | N/A | N/A | N/A |
Glipizide | Green | Green | Green |
Irbesartan | Green | Red | Amber |
Moxifloxacin | Green | Green | Green |
PF-05089771 | N/A | N/A | N/A |
Pitavastatin | Amber | Green | Red |
Repaglinide | Amber | Green | Green |
Telmisartan | Green | Green | Green |
Tesaglitazar | Green | Green | Green |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlsson, I.B.; Ekdahl, A.; Etchingham-Coll, H.; Li, X.-Q.; Ericsson, C.; Ahlqvist, M.; Samuelsson, K. Investigation of Biotransformation Pathways in a Chimeric Mouse with a Humanized Liver. Int. J. Mol. Sci. 2025, 26, 1141. https://doi.org/10.3390/ijms26031141
Karlsson IB, Ekdahl A, Etchingham-Coll H, Li X-Q, Ericsson C, Ahlqvist M, Samuelsson K. Investigation of Biotransformation Pathways in a Chimeric Mouse with a Humanized Liver. International Journal of Molecular Sciences. 2025; 26(3):1141. https://doi.org/10.3390/ijms26031141
Chicago/Turabian StyleKarlsson, Isabella B., Anja Ekdahl, Hugh Etchingham-Coll, Xue-Qing Li, Cecilia Ericsson, Marie Ahlqvist, and Kristin Samuelsson. 2025. "Investigation of Biotransformation Pathways in a Chimeric Mouse with a Humanized Liver" International Journal of Molecular Sciences 26, no. 3: 1141. https://doi.org/10.3390/ijms26031141
APA StyleKarlsson, I. B., Ekdahl, A., Etchingham-Coll, H., Li, X.-Q., Ericsson, C., Ahlqvist, M., & Samuelsson, K. (2025). Investigation of Biotransformation Pathways in a Chimeric Mouse with a Humanized Liver. International Journal of Molecular Sciences, 26(3), 1141. https://doi.org/10.3390/ijms26031141