Integration of Genetic and Imaging Data to Detect QTL for Root Traits in Interspecific Soybean Populations
Abstract
:1. Introduction
2. Results
2.1. Diversity of Root Traits in the RIL Population
2.2. QTLs for Root Traits
2.3. Root Trait QTLs with Positive Alleles from Wild Soybean
2.4. Putative Candidate Gene and Variant Analysis in Joint QTL Regions
2.5. Gene Expression and Candidate Gene Identification
3. Discussion
3.1. Phenotypic Variation in Root Morphological Traits
3.2. Candidate Genes Underlying QTLs
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Evaluation of Root Morphological Traits
4.3. Construction of Linkage Map
4.4. QTL Analysis
4.5. Putative Candidate Genes, Variants, and Expression Prediction
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Kumawat, G.; Yan, Y.; Fan, B.; Xu, D. Mapping and validation of a major QTL for primary root length of soybean seedlings grown in hydroponic conditions. BMC Genom. 2021, 22, 132. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P.; Strock, C.F.; Schneider, H.M.; Sidhu, J.S.; Ajmera, I.; Galindo-Castañeda, T.; Klein, S.P.; Hanlon, M.T. Root anatomy and soil resource capture. Plant Soil 2021, 466, 21–63. [Google Scholar] [CrossRef]
- Islam, M.S.; Ghimire, A.; Lay, L.; Khan, W.; Lee, J.-D.; Song, Q.; Jo, H.; Kim, Y. Identification of Quantitative Trait Loci Controlling Root Morphological Traits in an Interspecific Soybean Population Using 2D Imagery Data. Int. J. Mol. Sci. 2024, 25, 4687. [Google Scholar] [CrossRef]
- Maqbool, S.; Hassan, M.A.; Xia, X.; York, L.M.; Rasheed, A.; He, Z. Root system architecture in cereals: Progress, challenges and perspective. Plant J. 2022, 110, 23–42. [Google Scholar] [CrossRef]
- Malamy, J.E.; Ryan, K.S. Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol. 2001, 127, 899–909. [Google Scholar] [CrossRef]
- Lynch, J.P.; Brown, K.M. New roots for agriculture: Exploiting the root phenome. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1598–1604. [Google Scholar] [CrossRef]
- Rellán-Álvarez, R.; Lobet, G.; Dinneny, J.R. Environmental control of root system biology. Annu. Rev. Plant Biol. 2016, 67, 619–642. [Google Scholar] [CrossRef]
- Mishra, R.; Tripathi, M.K.; Sikarwar, R.S.; Singh, Y.; Tripathi, N. Soybean (Glycine max L. Merrill): A Multipurpose Legume Shaping Our World. Plant Cell Biotechnol. Mol. Biol. 2024, 25, 17–37. [Google Scholar] [CrossRef]
- Ramlal, A.; Mehta, S.; Nautiyal, A.; Baweja, P.; Shivam; Sharma, D.; Lal, S.K.; Vijayan, R.; Raju, D.; Subramaniam, S.; et al. Androgenesis in soybean (Glycine max (L.) Merr.): A critical revisit. In Vitr. Cell. Dev. Biol. Plant 2024, 60, 1–15. [Google Scholar] [CrossRef]
- Manavalan, L.P.; Guttikonda, S.K.; Nguyen, V.T.; Shannon, J.G.; Nguyen, H.T. Evaluation of diverse soybean germplasm for root growth and architecture. Plant Soil 2010, 330, 503–514. [Google Scholar] [CrossRef]
- Sun, G.; He, Y.; Zhang, R.; Zhang, D. Studies on growth and activities of soybean root. Soybean Sci. 1996, 15, 317–321. [Google Scholar]
- Ren, H.; Han, J.; Wang, X.; Zhang, B.; Yu, L.; Gao, H.; Hong, H.; Sun, R.; Tian, Y.; Qi, X. QTL mapping of drought tolerance traits in soybean with SLAF sequencing. Crop J. 2020, 8, 977–989. [Google Scholar] [CrossRef]
- Fried, H.G.; Narayanan, S.; Fallen, B. Characterization of a soybean (Glycine max L. Merr.) germplasm collection for root traits. PLoS ONE 2018, 13, e0200463. [Google Scholar] [CrossRef]
- Prince, S.J.; Valliyodan, B.; Ye, H.; Yang, M.; Tai, S.; Hu, W.; Murphy, M.; Durnell, L.A.; Song, L.; Joshi, T. Understanding genetic control of root system architecture in soybean: Insights into the genetic basis of lateral root number. Plant Cell Environ. 2019, 42, 212–229. [Google Scholar] [CrossRef]
- Prince, S.J.; Vuong, T.D.; Wu, X.; Bai, Y.; Lu, F.; Kumpatla, S.P.; Valliyodan, B.; Shannon, J.G.; Nguyen, H.T. Mapping quantitative trait loci for soybean seedling shoot and root architecture traits in an inter-specific genetic population. Front. Plant Sci. 2020, 11, 1284. [Google Scholar] [CrossRef]
- Diers, B.W.; Kim, K.-S. Improving soybean using exotic germplasm. In Proceedings of the 12th International Lupin Conference, Fremantle, Australia, 14–18 September 2008; pp. 222–225. [Google Scholar]
- Carter, T.E., Jr.; Nelson, R.L.; Sneller, C.H.; Cui, Z. Genetic Diversity in Soybean; Wiley Online Library: Madison, WI, USA, 2004; Volume 16, pp. 303–416. [Google Scholar]
- Lidder, P.; Sonnino, A. Biotechnologies for the management of genetic resources for food and agriculture. Adv. Genet. 2012, 78, 1–167. [Google Scholar]
- Wang, D.; Graef, G.L.; Procopiuk, A.M.; Diers, B.W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor. Appl. Genet. 2004, 108, 458–467. [Google Scholar] [CrossRef]
- Manavalan, L.P.; Prince, S.J.; Musket, T.A.; Chaky, J.; Deshmukh, R.; Vuong, T.D.; Song, L.; Cregan, P.B.; Nelson, J.C.; Shannon, J.G.; et al. Identification of novel QTL governing root architectural traits in an interspecific soybean population. PLoS ONE 2015, 10, e0120490. [Google Scholar] [CrossRef]
- Ober, E.S.; Alahmad, S.; Cockram, J.; Forestan, C.; Hickey, L.T.; Kant, J.; Maccaferri, M.; Marr, E.; Milner, M.; Pinto, F.; et al. Wheat root systems as a breeding target for climate resilience. Theor. Appl. Genet. 2021, 134, 1645–1662. [Google Scholar] [CrossRef]
- Xiong, R.; Liu, S.; Considine, M.J.; Siddique, K.H.M.; Lam, H.M.; Chen, Y. Root system architecture, physiological and transcriptional traits of soybean (Glycine max L.) in response to water deficit: A review. Physiol. Plant. 2021, 172, 405–418. [Google Scholar] [CrossRef]
- Masalia, R.R.; Temme, A.A.; Torralba, N.D.L.; Burke, J.M. Multiple genomic regions influence root morphology and seedling growth in cultivated sunflower (Helianthus annuus L.) under well-watered and water-limited conditions. PLoS ONE 2018, 13, e0204279. [Google Scholar] [CrossRef] [PubMed]
- Slovak, R.; Ogura, T.; Satbhai, S.B.; Ristova, D.; Busch, W. Genetic control of root growth: From genes to networks. Ann. Bot. 2016, 117, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Blanco, C.; Koornneef, M.; van Ooijen, J.W. QTL analysis. In Arabidopsis Protocols; Springer: Dordrecht, The Netherlands, 2006; Volume 323, pp. 79–99. [Google Scholar]
- Kulkarni, K.P.; Kim, M.; Shannon, J.G.; Lee, J.D. Identification of quantitative trait loci controlling soybean seed weight in recombinant inbred lines derived from PI 483463 (Glycine soja) × ‘Hutcheson’ (G. max). Plant Breed. 2016, 135, 614–620. [Google Scholar] [CrossRef]
- Liang, H.; Yu, Y.; Yang, H.; Xu, L.; Dong, W.; Du, H.; Cui, W.; Zhang, H. Inheritance and QTL mapping of related root traits in soybean at the seedling stage. Theor. Appl. Genet. 2014, 127, 2127–2137. [Google Scholar] [CrossRef]
- Zhou, R.; Chen, H.; Wang, X.; Wu, B.; Chen, S.; Zhang, X.; Wu, X.; Yang, Z.; Qiu, D.; Jiang, M. QTL analysis of root traits of soybean at seedling stage. Acta Agron. Sin. 2011, 37, 1151–1158. [Google Scholar] [CrossRef]
- Lee, J.-D.; Shannon, J.G.; Vuong, T.D.; Nguyen, H.T. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463. J. Hered. 2009, 100, 798–801. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, C.; Yong, B.; Wang, Y.; Li, B.; Gu, Y.; Wei, S.; An, Z.; Sun, W.; Qiu, L. An enhancing effect attributed to a nonsynonymous mutation in SOYBEAN SEED SIZE 1, a SPINDLY-like gene, is exploited in soybean domestication and improvement. New Phytol. 2022, 236, 1375–1392. [Google Scholar] [CrossRef]
- Puranik, S.; Sahu, P.P.; Srivastava, P.S.; Prasad, M. NAC proteins: Regulation and role in stress tolerance. Trends Plant Sci. 2012, 17, 369–381. [Google Scholar] [CrossRef]
- Xiao, H.; Hu, Y.; Wang, Y.; Cheng, J.; Wang, J.; Chen, G.; Li, Q.; Wang, S.; Wang, Y.; Wang, S.-S.; et al. Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth. Dev. Cell 2022, 57, 2638–2651. [Google Scholar] [CrossRef]
- Tariq, R.; Hussain, A.; Tariq, A.; Khalid, M.H.B.; Khan, I.; Basim, H.; Ingvarsson, P.K. Genome-wide analyses of the mung bean NAC gene family reveals orthologs, co-expression networking and expression profiling under abiotic and biotic stresses. BMC Plant Biol. 2022, 22, 343. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, P.; Qing, C.; Yang, C.; Shen, Y.; Ma, L. Comparative transcriptome analyses of maize seedling root responses to salt stress. PeerJ 2021, 9, e10765. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Long, Y.; Chen, X.; Zhang, B.; Xin, Y.; Li, L.; Cao, S.; Liu, F.; Wang, Z.; Huang, H.; et al. A NAC transcription factor OsNAC3 positively regulates ABA response and salt tolerance in rice. BMC Plant Biol. 2021, 21, 546. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Xie, Z.; Lei, S.; Li, H.; Xu, B.; Huang, B. The NAC factor LpNAL delays leaf senescence by repressing two chlorophyll catabolic genes in perennial ryegrass. Plant Physiol. 2022, 189, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Palanivelu, R.; Belostotsky, D.A.; Meagher, R.B. Conserved expression of Arabidopsis thaliana poly (A) binding protein 2 (PAB2) in distinct vegetative and reproductive tissues. Plant J. 2000, 22, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, B.; Harris, N.S.; Deyholos, M.K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J. Exp. Bot. 2007, 58, 3591–3607. [Google Scholar] [CrossRef]
- Jin, T.; Sun, Y.; Shan, Z.; He, J.; Wang, N.; Gai, J.; Li, Y. Natural variation in the promoter of GsERD15B affects salt tolerance in soybean. Plant Biotechnol. J. 2021, 19, 1155–1169. [Google Scholar] [CrossRef]
- Gallie, D.R. Class II members of the poly (A) binding protein family exhibit distinct functions during Arabidopsis growth and development. Translation 2017, 5, e1295129. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, J.; Yang, C.; Dong, L.; Ye, H.; Valliyodan, B.; Nguyen, H.T.; Song, L. The late embryogenesis abundant proteins in soybean: Identification, expression analysis, and the roles of GmLEA4_19 in drought stress. Int. J. Mol. Sci. 2023, 24, 14834. [Google Scholar] [CrossRef]
- Shida, T.; Fukuda, A.; Saito, T.; Ito, H.; Kato, A. AtRBP1, which encodes an RNA-binding protein containing RNA-recognition motifs, regulates root growth in Arabidopsis thaliana. Plant Physiol. Biochem. 2015, 92, 62–70. [Google Scholar] [CrossRef]
- Baldoni, E.; Bagnaresi, P.; Locatelli, F.; Mattana, M.; Genga, A. Comparative leaf and root transcriptomic analysis of two rice japonica cultivars reveals major differences in the root early response to osmotic stress. Rice 2016, 9, 25. [Google Scholar] [CrossRef]
- Terasaka, K.; Blakeslee, J.J.; Titapiwatanakun, B.; Peer, W.A.; Bandyopadhyay, A.; Makam, S.N.; Lee, O.R.; Richards, E.L.; Murphy, A.S.; Sato, F. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 2005, 17, 2922–2939. [Google Scholar] [CrossRef] [PubMed]
- Kamimoto, Y.; Terasaka, K.; Hamamoto, M.; Takanashi, K.; Fukuda, S.; Shitan, N.; Sugiyama, A.; Suzuki, H.; Shibata, D.; Wang, B.; et al. Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant Cell Physiol. 2012, 53, 2090–2100. [Google Scholar] [CrossRef]
- Uragami, T.; Kiba, T.; Kojima, M.; Takebayashi, Y.; Tozawa, Y.; Hayashi, Y.; Kinoshita, T.; Sakakibara, H. Arabidopsis ABCC4 encodes a cytokinin efflux transporter and is involved in root system development. bioRxiv 2024. [Google Scholar] [CrossRef]
- Hwang, J.-U.; Song, W.-Y.; Hong, D.; Ko, D.; Yamaoka, Y.; Jang, S.; Yim, S.; Lee, E.; Khare, D.; Kim, K.; et al. Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol. Plant 2016, 9, 338–355. [Google Scholar] [CrossRef]
- Saha, A.; Das, S.; Moin, M.; Dutta, M.; Bakshi, A.; Madhav, M.S.; Kirti, P.B. Genome-wide identification and comprehensive expression profiling of ribosomal protein small subunit (RPS) genes and their comparative analysis with the large subunit (RPL) genes in rice. Front. Plant Sci. 2017, 8, 1553. [Google Scholar] [CrossRef]
- Bakshi, A.; Moin, M.; Madhav, M.S.; Gayatri, M.B.; Reddy, A.B.M.; Datla, R.; Kirti, P.B. Target of rapamycin: Function in abiotic stress tolerance in Arabidopsis and its involvement in a possible cross-talk with ribosomal proteins. bioRxiv 2020. [Google Scholar] [CrossRef]
- Chen, S.-J.; Su, H.-Y.; Xing, H.; Yang, D.-L.; Mao, J.; Sun, P.; Li, M.-F. Comparative Proteomics Reveals Differential Mechanism of Root Cold-resistance between Vitis. riparia × V. labrusca and Cabernet Sauvignon. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Chakraborty, S.; Nguyen, B.; Wasti, S.D.; Xu, G. Plant leucine-rich repeat receptor kinase (LRR-RK): Structure, ligand perception, and activation mechanism. Molecules 2019, 24, 3081. [Google Scholar] [CrossRef]
- Ngaki, M.N.; Srivastava, S.K.; Feifei, W.; Bhattacharyya, M.K. The soybean plasma membrane GmDR1 protein conferring broad-spectrum disease and pest resistance regulates several receptor kinases and NLR proteins. Sci. Rep. 2024, 14, 12253. [Google Scholar] [CrossRef]
- Meng, J.; Yang, J.; Peng, M.; Liu, X.; He, H. Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Medicago truncatula. Life 2020, 10, 176. [Google Scholar] [CrossRef]
- Amano, Y.; Tsubouchi, H.; Shinohara, H.; Ogawa, M.; Matsubayashi, Y. Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc. Natl. Acad. Sci. USA 2007, 104, 18333–18338. [Google Scholar] [CrossRef] [PubMed]
- Uzair, M.; Long, H.; Zafar, S.A.; Patil, S.B.; Chun, Y.; Li, L.; Fang, J.; Zhao, J.; Peng, L.; Yuan, S. Narrow Leaf21, encoding ribosomal protein RPS3A, controls leaf development in rice. Plant Physiol. 2021, 186, 497–518. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.-K.; Li, Y.; Mo, H.; Chapple, C. Assembly of an evolutionarily new pathway for α-pyrone biosynthesis in Arabidopsis. Science 2012, 337, 960–964. [Google Scholar] [CrossRef]
- Feng, W.; Han, S. lncRNA ADAMTS9-AS1/circFN1 Competitively Binds to miR-206 to Elevate the Expression of ACTB, Thus Inducing Hypertrophic Cardiomyopathy. Oxid. Med. Cell. Longev. 2022, 2022, 1450610. [Google Scholar] [CrossRef]
- Santos, C.S.; Silva, A.I.; Serrão, I.; Carvalho, A.L.; Vasconcelos, M.W. Transcriptomic analysis of iron deficiency related genes in the legumes. Food Res. Int. 2013, 54, 1162–1171. [Google Scholar] [CrossRef]
- Hyten, D.L.; Choi, I.Y.; Song, Q.; Specht, J.E.; Carter, T.E.; Shoemaker, R.C.; Hwang, E.Y.; Matukumalli, L.K.; Cregan, P.B. A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci. 2010, 50, 960–968. [Google Scholar] [CrossRef]
- Ha, B.-K.; Vuong, T.D.; Velusamy, V.; Nguyen, H.T.; Grover Shannon, J.; Lee, J.-D. Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica 2013, 193, 79–88. [Google Scholar] [CrossRef]
- Asekova, S.; Kulkarni, K.P.; Kim, M.; Kim, J.H.; Song, J.T.; Shannon, J.G.; Lee, J.D. Novel quantitative trait loci for forage quality traits in a cross between PI 483463 and ‘Hutcheson’ in soybean. Crop Sci. 2016, 56, 2600–2611. [Google Scholar] [CrossRef]
- Lee, E.J.; Choi, H.J.; Shin, D.H.; Kwon, C.H.; Shannon, J.G.; Lee, J.D. Evaluation of forage yield and quality for the accessions derived from inter-specific cross between wild and cultivated soybeans. Korean J. Breed. Sci. 2014, 46, 66–77. [Google Scholar] [CrossRef]
- Asekova, S.; Kulkarni, K.P.; Patil, G.; Kim, M.; Song, J.T.; Nguyen, H.T.; Grover Shannon, J.; Lee, J.-D. Genetic analysis of shoot fresh weight in a cross of wild (G. soja) and cultivated (G. max) soybean. Mol. Breed. 2016, 36, 103. [Google Scholar] [CrossRef]
- Song, Q.; Yan, L.; Quigley, C.; Fickus, E.; Wei, H.; Chen, L.; Dong, F.; Araya, S.; Liu, J.; Hyten, D.; et al. Soybean BARCSoySNP6K: An assay for soybean genetics and breeding research. Plant J. 2020, 104, 800–811. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, A.P. Quality of soybean and its food products. Int. Food Res. J. 2009, 16, 11–19. [Google Scholar]
- Khan, W.; Amos, S.A.; Islam, M.S.; Ghimire, A.; Lay, L.; Kim, Y. Exploring the Root Morphological Traits of Diverse-Origin Cultivated Soybean. Agronomy 2023, 13, 2666. [Google Scholar] [CrossRef]
- Prince, S.J.; Song, L.; Qiu, D.; Maldonado dos Santos, J.V.; Chai, C.; Joshi, T.; Patil, G.; Valliyodan, B.; Vuong, T.D.; Murphy, M.; et al. Genetic variants in root architecture-related genes in a Glycine soja accession, a potential resource to improve cultivated soybean. BMC Genom. 2015, 16, 132. [Google Scholar] [CrossRef]
- Orman-Ligeza, B.; Civava, R.; de Dorlodot, S.; Draye, X. Root system architecture. In Root Engineering: Basic and Applied Concepts; Springer: Berlin/Heidelberg, Germany, 2014; pp. 39–56. [Google Scholar]
- Kim, Y.; Chung, Y.S.; Lee, E.; Tripathi, P.; Heo, S.; Kim, K.-H. Root response to drought stress in rice (Oryza sativa L.). Int. J. Mol. Sci. 2020, 21, 1513. [Google Scholar] [CrossRef]
- Kim, K.-S.; Kim, S.-H.; Kim, J.; Tripathi, P.; Lee, J.-D.; Chung, Y.S.; Kim, Y. A large root phenome dataset wide-opened the potential for underground breeding in soybean. Front. Plant Sci. 2021, 12, 704239. [Google Scholar] [CrossRef]
- Kato, Y.; Abe, J.; Kamoshita, A.; Yamagishi, J. Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant Soil 2006, 287, 117–129. [Google Scholar] [CrossRef]
- Singh, V.; van Oosterom, E.J.; Jordan, D.R.; Hunt, C.H.; Hammer, G.L. Genetic variability and control of nodal root angle in sorghum. Crop Sci. 2011, 51, 2011–2020. [Google Scholar] [CrossRef]
- Kashiwagi, J.; Krishnamurthy, L.; Purushothaman, R.; Upadhyaya, H.D.; Gaur, P.M.; Gowda, C.L.L.; Ito, O.; Varshney, R.K. Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crops Res. 2015, 170, 47–54. [Google Scholar] [CrossRef]
- Abdel-Haleem, H.; Lee, G.-J.; Boerma, R.H. Identification of QTL for increased fibrous roots in soybean. Theor. Appl. Genet. 2011, 122, 935–946. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, C.; Niu, Y.; Yung, W.-S.; Xiao, Z.; Wong, F.-L.; Huang, M.; Wang, X.; Man, C.-K.; Sze, C.-C.; et al. QTL analyses of soybean root system architecture revealed genetic relationships with shoot-related traits. Theor. Appl. Genet. 2022, 135, 4507–4522. [Google Scholar] [CrossRef] [PubMed]
- Chandnani, R.; Qin, T.; Ye, H.; Hu, H.; Panjvani, K.; Tokizawa, M.; Macias, J.M.; Medina, A.A.; Bernardino, K.; Pradier, P.-L.; et al. Application of an Improved 2-Dimensional High-Throughput Soybean Root Phenotyping Platform to Identify Novel Genetic Variants Regulating Root Architecture Traits. Plant Phenomics 2023, 5, 0097. [Google Scholar] [CrossRef]
- Kim, S.-H.; Tayade, R.; Kang, B.-H.; Hahn, B.-S.; Ha, B.-K.; Kim, Y.-H. Genome-wide association studies of seven root traits in soybean (Glycine max L.) landraces. Int. J. Mol. Sci. 2023, 24, 873. [Google Scholar] [CrossRef]
- Liu, Y.; Gai, J.; Lu, H. Identification of rhizosphere abiotic stress tolerance and related root traits in soybean [{Glycine max}(L.) Merr.]. Zuo Wu Xue Bao 2005, 31, 1132–1137. [Google Scholar]
- Suji, K.K.; Prince, K.S.J.; Mankhar, P.S.; Kanagaraj, P.; Poornima, R.; Amutha, K.; Kavitha, S.; Biji, K.R.; Gomez, S.M.; Babu, R.C. Evaluation of rice (Oryza sativa L.) near iso-genic lines with root QTLs for plant production and root traits in rainfed target populations of environment. Field Crops Res. 2012, 137, 89–96. [Google Scholar] [CrossRef]
- Bengough, A.G.; McKenzie, B.M.; Hallett, P.D.; Valentine, T.A. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 2011, 62, 59–68. [Google Scholar] [CrossRef]
- Shi, T.; Huang, H.; Sanderson, M.J.; Tax, F.E. Evolutionary dynamics of leucine-rich repeat receptor-like kinases and related genes in plants: A phylogenomic approach. J. Integr. Plant Biol. 2014, 56, 648–662. [Google Scholar] [CrossRef]
- Ou, Y.; Lu, X.; Zi, Q.; Xun, Q.; Zhang, J.; Wu, Y.; Shi, H.; Wei, Z.; Zhao, B.; Zhang, X.; et al. RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res. 2016, 26, 686–698. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Ogawa-Ohnishi, M.; Mori, A.; Matsubayashi, Y. Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science 2010, 329, 1065–1067. [Google Scholar] [CrossRef]
- Whitford, R.; Fernandez, A.; Tejos, R.; Pérez, A.C.; Kleine-Vehn, J.; Vanneste, S.; Drozdzecki, A.; Leitner, J.; Abas, L.; Aerts, M.; et al. GOLVEN Secretory Peptides Regulate Auxin Carrier Turnover during Plant Gravitropic Responses. Dev. Cell 2012, 22, 678–685. [Google Scholar] [CrossRef]
- He, X.; Feng, T.; Zhang, D.; Zhuo, R.; Liu, M. Identification and comprehensive analysis of the characteristics and roles of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in Sedum alfredii Hance responding to cadmium stress. Ecotoxicol. Environ. Saf. 2019, 167, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C. Involvement of iron-containing proteins in genome integrity in Arabidopsis thaliana. Genome Integr. 2015, 6, 2. [Google Scholar] [CrossRef]
- El-Hasan, A.; Buchenauer, H. Actions of 6-pentyl-alpha-pyrone in controlling seedling blight incited by Fusarium moniliforme and inducing defence responses in maize. J. Phytopathol. 2009, 157, 697–707. [Google Scholar] [CrossRef]
- Kottb, M.; Gigolashvili, T.; Großkinsky, D.K.; Piechulla, B. Trichoderma volatiles effecting Arabidopsis: From inhibition to protection against phytopathogenic fungi. Front. Microbiol. 2015, 6, 995. [Google Scholar] [CrossRef]
- He, M.; Yao, Y.; Li, Y.; Yang, M.; Li, Y.; Wu, B.; Yu, D. Comprehensive transcriptome analysis reveals genes potentially involved in isoflavone biosynthesis in Pueraria thomsonii Benth. PLoS ONE 2019, 14, e0217593. [Google Scholar] [CrossRef]
- Shen, H.; Yin, Y.; Chen, F.; Xu, Y.; Dixon, R.A. A Bioinformatic Analysis of NAC Genes for Plant Cell Wall Development in Relation to Lignocellulosic Bioenergy Production. BioEnergy Res. 2009, 2, 217–232. [Google Scholar] [CrossRef]
- Endo, H.; Yamaguchi, M.; Tamura, T.; Nakano, Y.; Nishikubo, N.; Yoneda, A.; Kato, K.; Kubo, M.; Kajita, S.; Katayama, Y.; et al. Multiple Classes of Transcription Factors Regulate the Expression of VASCULAR-RELATED NAC-DOMAIN7, a Master Switch of Xylem Vessel Differentiation. Plant Cell Physiol. 2015, 56, 242–254. [Google Scholar] [CrossRef]
- Li, M.; Hwarari, D.; Li, Y.; Ahmad, B.; Min, T.; Zhang, W.; Wang, J.; Yang, L. The bZIP transcription factors in Liriodendron chinense: Genome-wide recognition, characteristics and cold stress response. Front. Plant Sci. 2022, 13, 1035627. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, Y.; Jiang, L.; Niu, Y.; Yang, Y.; Chen, D.; Niu, S. Identification of stress-related characteristics of the WRKY gene family: A case study of Dendrobium catenatum. Ornam. Plant Res. 2022, 2, 21. [Google Scholar] [CrossRef]
- Hu, H.; He, B.; Ma, L.; Chen, X.; Han, P.; Luo, Y.; Liu, Y.; Fei, X.; Wei, A. Physiological and transcriptome analyses reveal the photosynthetic response to drought stress in drought-sensitive (Fengjiao) and drought-tolerant (Hanjiao) Zanthoxylum bungeanum cultivars. Front. Plant Sci. 2022, 13, 968714. [Google Scholar] [CrossRef]
- Zhang, P.; Li, F.; Tian, Y.; Wang, D.; Fu, J.; Rong, Y.; Wu, Y.; Gao, T.; Zhang, H. Transcriptome Analysis of Sesame (Sesamum indicum L.) Reveals the LncRNA and mRNA Regulatory Network Responding to Low Nitrogen Stress. Int. J. Mol. Sci. 2024, 25, 5501. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.-S.P.; Quach, T.N.; Guttikonda, S.K.; Aldrich, D.L.; Kumar, R.; Neelakandan, A.; Valliyodan, B.; Nguyen, H.T. Molecular characterization of stress-inducible GmNAC genes in soybean. Mol. Gene Genom. 2009, 281, 647–664. [Google Scholar] [CrossRef]
- Hao, Y.J.; Wei, W.; Song, Q.X.; Chen, H.W.; Zhang, Y.Q.; Wang, F.; Zou, H.F.; Lei, G.; Tian, A.G.; Zhang, W.K.; et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J. 2011, 68, 302–313. [Google Scholar] [CrossRef]
- Le, D.T.; Nishiyama, R.; Watanabe, Y.; Mochida, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.-S.P. Genome-Wide Survey and Expression Analysis of the Plant-Specific NAC Transcription Factor Family in Soybean During Development and Dehydration Stress. DNA Res. 2011, 18, 263–276. [Google Scholar] [CrossRef]
- Ofori, P.A.; Geisler, M.; Di Donato, M.; Pengchao, H.; Otagaki, S.; Matsumoto, S.; Shiratake, K. Tomato ATP-binding cassette transporter SlABCB4 is involved in auxin transport in the developing fruit. Plants 2018, 7, 65. [Google Scholar] [CrossRef]
- Cho, M.; Lee, S.H.; Cho, H.-T. P-Glycoprotein4 displays auxin efflux transporter–like action in Arabidopsis root hair cells and tobacco cells. Plant Cell 2007, 19, 3930–3943. [Google Scholar] [CrossRef]
- Blakeslee, J.J.; Bandyopadhyay, A.; Lee, O.R.; Mravec, J.; Titapiwatanakun, B.; Sauer, M.; Makam, S.N.; Cheng, Y.; Bouchard, R.; Adamec, J.I.; et al. Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 2007, 19, 131–147. [Google Scholar] [CrossRef]
- Geisler, M.; Blakeslee, J.J.; Bouchard, R.; Lee, O.R.; Vincenzetti, V.; Bandyopadhyay, A.; Titapiwatanakun, B.; Peer, W.A.; Bailly, A.; Richards, E.L.; et al. Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J. 2005, 44, 179–194. [Google Scholar] [CrossRef]
- Song, Q.; Quigley, C.; He, R.; Wang, D.; Nguyen, H.; Miranda, C.; Li, Z. Development and implementation of nested single-nucleotide polymorphism (SNP) assays for breeding and genetic research applications. Plant Genom. 2024, 17, e20491. [Google Scholar] [CrossRef]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef]
- Wang, S. Windows QTL Cartographer 2.5; Department of Statistics, North Carolina State University: Raleigh, NC, USA, 2012. [Google Scholar]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed]
Traits | Parents | RIL Population | ||||||
---|---|---|---|---|---|---|---|---|
Hutcheson | PI483463 | Minimum | Maximum | Mean | Range | Skewness | Kurtosis | |
2022 | ||||||||
TRL | 1144.03 | 220.27 | 153.65 | 2166.03 | 934.46 | 2012.38 | 0.52 | 0.01 |
SA | 94.93 | 27.69 | 17.02 | 228.61 | 98.93 | 211.59 | 0.57 | 0.3 |
LTL | 144.98 | 77.61 | 32.68 | 244.53 | 149.37 | 211.85 | 0.23 | 0.03 |
NT | 1023.5 | 218.33 | 170 | 2492 | 1019.55 | 2322 | 0.71 | 0.44 |
2023 | ||||||||
TRL | 1043.78 | 255.03 | 246.91 | 1849.63 | 861.87 | 1602.72 | 0.35 | −0.19 |
SA | 87.31 | 27.7 | 25.42 | 219.12 | 107.51 | 193.7 | 0.28 | −0.27 |
LTL | 135.74 | 105.19 | 56.3 | 249.17 | 157.1 | 192.87 | 0.11 | −0.2 |
NT | 903 | 162.33 | 162.33 | 1841.5 | 780.7 | 1679.17 | 0.6 | 0.32 |
2022 and 2023 Combined | ||||||||
TRL | 1093.91 | 237.65 | 237.65 | 1791.69 | 898.16 | 1554.04 | 0.44 | 0.12 |
SA | 91.12 | 27.7 | 22.81 | 201.42 | 103.22 | 178.61 | 0.37 | −0.04 |
LTL | 140.36 | 91.4 | 68.25 | 233.62 | 153.23 | 165.37 | 0.14 | −0.1 |
NT | 963.25 | 190.33 | 190.33 | 1987.42 | 900.12 | 1797.09 | 0.69 | 0.66 |
Source | df | TRL | SA | LTL | NT |
---|---|---|---|---|---|
Genotype | 184 | 146.58 *** | 303.70 *** | 1.78 *** | 40.75 *** |
Environment | 1 | 368.36 *** | 853.29 *** | 3.26 ns | 1043.11 *** |
Replication | 3 | 0.995 ns | 1.37 ns | 0.91 ns | 0.91 ns |
Genotype × Environment | 184 | 61.08 *** | 97.30 *** | 1.66 *** | 17.52 *** |
H2 | 70.8% | 75.7% | 68.2% | 70.0% |
TRL | SA | LTL | NT | |
---|---|---|---|---|
TRL | 1 | 0.97 *** | 0.77 *** | 0.91 *** |
SA | 0.96 *** | 1 | 0.75 *** | 0.85 *** |
LTL | 0.72 *** | 0.73 *** | 1 | 0.72 *** |
NT | 0.91 *** | 0.86 *** | 0.67 *** | 1 |
Trait | QTL Name | Chr. | Left Marker | Right Marker | Position (cM) | LOD | R2 (%) | Additive |
---|---|---|---|---|---|---|---|---|
LTL-2022 | qLTL-2022-3-1 | 3 | 03_39915523_C_T | 03_40052612_T_C | 154.83 | 4.48 | 10.69 | −12.99 |
NT-COM | qNT-COM-5-1 | 5 | 05_33843473_C_T | 05_34294649_G_T | 58.70 | 5.59 | 14.36 | 109.60 |
LTL-COM | qLTL-COM-5-1 | 5 | 05_33843473_C_T | 05_34294649_G_T | 58.70 | 5.17 | 13.30 | 9.81 |
NT-2023 | qNT-2023-5-1 | 5 | 05_33843473_C_T | 05_34294649_G_T | 58.70 | 3.49 | 6.49 | 1.87 |
SA-COM | qSA-COM-5-1 | 5 | 05_32327497_T_C | 05_3284858_A_G | 45.74 | 3.11 | 5.52 | 0.44 |
SA-2022 | qSA-2022-6-1 | 6 | 06_16390152_A_G | 06_17399306_A_C | 32.37 | 3.79 | 7.18 | 11.06 |
SA-COM | qSA-COM-7-1 | 7 | 07_2267894_G_A | 07_2704982_G_A | 41.46 | 4.05 | 8.50 | −9.81 |
LTL-COM | qLTL-COM-7-1 | 7 | 07_8488086_A_G | 07_8887938_C_T | 127.08 | 3.34 | 6.55 | −7.77 |
TRL-COM | qTRL-COM-7-1 | 7 | 07_43946876_A_G | 07_4562451_T_C | 99.80 | 3.07 | 5.12 | 87.04 |
SA-2023 | qSA-2023-8-1 | 8 | 08_2547323_A_G | 08_2671408_T_C | 87.27 | 5.18 | 12.73 | −12.31 |
TRL-COM | qTRL-COM-8-1 | 8 | 08_13640846_A_G | 08_14646649_A_G | 27.96 | 4.65 | 10.77 | 92.40 |
LTL-2023 | qLTL-2023-8-1 | 8 | 08_10621107_C_A | 08_10947242_C_T | 6.46 | 4.21 | 9.05 | −9.86 |
TRL-2023 | qTRL-2023-8-1 | 8 | 08_2547323_A_G | 08_2671408_T_C | 87.27 | 3.66 | 7.01 | −84.62 |
LTL-COM | qLTL-COM-8-1 | 8 | 08_10621107_C_A | 08_13109130_A_G | 7.46 | 3.42 | 6.40 | −8.18 |
NT-2023 | qNT-2023-8-1 | 8 | 08_2547323_A_G | 08_2671408_T_C | 87.27 | 3.25 | 6.53 | −78.61 |
SA-COM | qSA-COM-8-1 | 8 | 08_10621107_C_A | 08_13109130_A_G | 8.46 | 3.17 | 6.38 | 9.32 |
SA-2022 | qSA-2022-14-1 | 14 | 14_7387315_T_G | 14_7778233_G_A | 136.56 | 6.66 | 19.92 | −17.39 |
TRL-2022 | qTRL-2022-14-1 | 14 | 14_7387315_T_G | 14_7778233_G_A | 136.56 | 6.23 | 17.58 | −170.18 |
LTL-2022 | qLTL-2022-14-1 | 14 | 14_7387315_T_G | 14_7778233_G_A | 134.34 | 5.10 | 12.06 | −14.29 |
NT-COM | qNT-COM-14-1 | 14 | 14_7387315_T_G | 14_7778233_G_A | 136.56 | 3.36 | 6.32 | −100.07 |
LTL-COM | qLTL-COM-15-1 | 15 | 15_11927735_T_C | 15_1209819_T_C | 9.66 | 5.44 | 13.39 | −11.76 |
LTL-COM | qLTL-COM-15-2 | 15 | 15_11192460_G_A | 15_11496274_T_C | 2.64 | 4.95 | 11.78 | −9.77 |
SA-COM | qSA-COM-15-1 | 15 | 15_12140462_T_G | 15_12611331_A_G | 20.35 | 4.72 | 10.83 | 10.75 |
TRL-COM | qTRL-COM-15-1 | 15 | 15_12140462_T_G | 15_12611331_A_G | 20.66 | 4.15 | 8.90 | 88.42 |
LTL-2023 | qLTL-2023-15-1 | 15 | 15_2391075_G_A | 15_2729636_A_C | 42.93 | 4.03 | 7.38 | 9.80 |
NT-2022 | qNT-2022-15-1 | 15 | 15_12140462_T_G | 15_12611331_A_G | 20.66 | 3.15 | 6.34 | 120.09 |
TRL-2023 | qTRL-2023-15-1 | 15 | 15_45725175_G_A | 15_46014592_T_C | 85.36 | 3.12 | 6.16 | 79.04 |
SA-2022 | qSA-2022-16-1 | 16 | 16_36413821_C_A | 16_36809255_A_C | 121.46 | 5.92 | 14.49 | −14.17 |
TRL-2022 | qTRL-2022-16-1 | 16 | 16_36413821_C_A | 16_36809255_A_C | 121.46 | 4.91 | 11.52 | −127.04 |
LTL-2022 | qLTL-2022-16-1 | 16 | 16_2800650_C_T | 16_28232079_A_G | 88.73 | 4.06 | 8.77 | −14.42 |
NT-COM | qNT-COM-16-1 | 16 | 16_35322776_G_A | 16_35700223_G_T | 117.00 | 3.91 | 7.57 | 90.85 |
TRL-COM | qTRL-COM-16-1 | 16 | 16_35322776_G_A | 16_35700223_G_T | 116.14 | 3.01 | 5.25 | 89.83 |
SA-2022 | qSA-2022-17-1 | 17 | 17_33637862_T_C | 17_34217947_T_C | 45.49 | 4.75 | 10.92 | −12.86 |
SA-2022 | qSA-2022-17-2 | 17 | 17_20787666_A_G | 17_22702978_G_T | 36.16 | 4.42 | 9.35 | −12.49 |
TRL-2022 | qTRL-2022-17-1 | 17 | 17_33637862_T_C | 17_34217947_T_C | 45.49 | 3.61 | 6.59 | −109.42 |
NT-2023 | qNT-2023-17-1 | 17 | 17_6576837_G_T | 17_6778459_T_G | 108.67 | 3.56 | 6.64 | 82.83 |
TRL-COM | qTRL-COM-17-1 | 17 | 17_1736595_A_G | 17_17971540_A_G | 34.80 | 3.15 | 6.35 | 80.00 |
NT-2023 | qNT-2023-18-1 | 18 | 18_8937974_T_C | 18_9382031_T_C | 180.94 | 3.77 | 7.26 | 86.07 |
SA-2023 | qSA-2023-18-1 | 18 | 18_8937974_T_C | 18_9382031_T_C | 180.94 | 3.25 | 6.41 | −9.83 |
SNP Position | Gene Name | Hut-Cheson | PI483463 | Ref. | Mutation Type | Start Physical Position of the Gene (bp) | End Physical Position of the Gene (bp) | Strand |
---|---|---|---|---|---|---|---|---|
Chr08:2550484 | Glyma.08g031900 | G | T | T | Missense variant | 2,547,941 | 2,553,643 | + |
Chr08:2576236 | Glyma.08g032200 | A | T | T | Missense variant | 2,575,678 | 2,578,818 | − |
Chr08:2589180 | Glyma.08g032300 | G | C | C | Missense variant | 2,587,418 | 2,590,621 | + |
Chr08:2621158 | Glyma.08g032900 | G | T | G | Missense variant | 2,618,659 | 2,623,500 | + |
Chr08:2634722 | Glyma.08g033100 | G | T | T | Missense variant | 2,634,444 | 2,637,284 | − |
Chr08:2650616 | Glyma.08g033200 | A | G | G | Missense variant | 2,649,700 | 2,651,523 | − |
Chr14:7401505 | Glyma.14g084400 | T | G | T | Missense variant | 7,400,306 | 7,405,768 | + |
Chr14:7401758 | Glyma.14g084400 | A | T | A | Missense variant | 7,400,306 | 7,405,768 | + |
Chr14:7402135 | Glyma.14g084400 | G | C | G | Missense variant | 7,400,306 | 7,405,768 | + |
Chr14:7409761 | Glyma.14g084500 | C | T | C | Splice region variant | 7,409,216 | 7,414,343 | + |
Chr14:7426690 | Glyma.14g084600 | A | C | A | Splice region variant | 7,425,379 | 7,427,280 | − |
Chr14:7478433 | Glyma.14g084800 | C | T | C | Missense variant | 7,473,827 | 7,479,302 | + |
Chr14:7481634 | Glyma.14g084900 | C | G | C | Missense variant | 7,480,720 | 7,481,721 | − |
Chr14:7587937 | Glyma.14g085600 | C | A | C | Missense variant | 7,587,535 | 7,588,825 | + |
Chr14:7596878 | Glyma.14g085700 | G | A | G | Missense variant | 7,596,635 | 7,597,069 | + |
Chr14:7730748 | Glyma.14g086400 | G | A | A | Missense variant | 7,728,210 | 7,731,282 | − |
Chr14:7747716 | Glyma.14g086600 | A | T | T | Missense variant | 7,747,225 | 7,748,170 | − |
Chr14:7747723 | Glyma.14g086600 | C | G | G | Missense variant | 7,747,225 | 7,748,170 | − |
Chr14:7754046 | Glyma.14g086700 | T | G | G | Splice region variant | 7,753,865 | 7,755,101 | − |
Chr15:11951066 | Glyma.15g145200 | A | G | G | Splice region variant | 11,947,682 | 11,957,050 | − |
Chr15:11984075 | Glyma.15g145500 | T | C | T | Missense variant | 11,983,796 | 11,985,371 | − |
Chr15:11994025 | Glyma.15g145600 | T | C | T | Missense variant | 11,992,826 | 11,994,293 | + |
Chr15:12015158 | Glyma.15g145800 | A | C | A | Missense variant | 12,015,121 | 12,015,979 | + |
Chr15:12039437 | Glyma.15g146200 | A | C | A | Splice region variant | 12,035,374 | 12,039,865 | − |
Chr15:12076661 | Glyma.15g146800 | T | A | T | Missense variant | 12,076,031 | 12,079,129 | − |
Chr15:12154491 | Glyma.15g147400 | T | C | T | Missense variant | 12,152,905 | 12,154,821 | + |
Chr15:12218870 | Glyma.15g148500 | C | G | G | Missense variant | 12,216,661 | 12,226,663 | + |
Chr15:12372053 | Glyma.15g149600 | C | T | C | Missense variant | 12,371,767 | 12,375,710 | − |
Chr15:12487011 | Glyma.15g150900 | T | C | T | Missense variant | 12,477,309 | 12,487,462 | − |
Chr15:12557945 | Glyma.15g151500 | A | G | A | Missense variant | 12,557,700 | 12,567,175 | − |
Chr17:33655483 | Glyma.17g206200 | G | T | G | Missense variant | 33,655,181 | 33,655,853 | + |
Chr17:33655511 | Glyma.17g206200 | T | G | T | Missense variant | 33,655,181 | 33,655,853 | + |
Chr17:33737053 | Glyma.17g206300 | G | C | G | Missense variant | 33,730,503 | 33,738,647 | − |
Chr17:33737055 | Glyma.17g206300 | A | T | A | Missense variant | 33,730,503 | 33,738,647 | − |
Chr17:33885152 | Glyma.17g206800 | A | G | A | Missense + Splice region variant | 33,884,210 | 33,886,354 | − |
Chr17:33930371 | Glyma.17g207000 | A | G | A | Missense variant | 33,925,621 | 33,935,113 | + |
Chr17:34058444 | Glyma.17g208000 | T | G | T | Missense variant | 34,093,823 | 34,096,844 | − |
Chr17:34108428 | Glyma.17g208100 | C | T | C | Missense variant | 34,108,328 | 34,108,849 | − |
Chr17:34108738 | Glyma.17g208100 | T | C | T | Missense variant | 34,108,328 | 34,108,849 | − |
Chr16:35333627 | Glyma.16g190900 | C | G | C | Missense variant | 35,333,029 | 35,336,258 | + |
Chr16:35374182 | Glyma.16g191300 | T | A | A | Missense variant | 35,372,401 | 35,375,711 | + |
Chr16:35545878 | Glyma.16g193200 | T | C | C | Missense variant | 35,545,733 | 35,547,841 | + |
Chr16:35550031 | Glyma.16g193600 | G | C | G | Missense variant | 35,576,270 | 35,580,207 | + |
Chr16:35663355 | Glyma.16g194400 | G | A | G | Missense variant | 35,659,212 | 35,664,619 | + |
Chr16:36412977 | Glyma.16g203000 | T | G | G | Missense variant | 36,412,774 | 36,413,868 | − |
Chr16:36412983 | Glyma.16g203000 | A | G | G | Missense variant | 36,412,774 | 36,413,868 | − |
Chr16:36413223 | Glyma.16g203000 | G | A | A | Missense variant | 36,412,774 | 36,413,868 | − |
Chr16:36451102 | Glyma.16g203400 | C | A | C | Missense variant | 36,449,021 | 36,451,535 | + |
Chr16:36457878 | Glyma.16g203600 | A | T | A | Missense variant | 36,457,598 | 36,461,359 | + |
Chr16:36511200 | Glyma.16g204000 | A | G | G | Missense variant | 36,507,514 | 36,511,554 | − |
Chr16:36570923 | Glyma.16g204700 | A | G | A | Missense variant | 36,570,193 | 36,572,473 | + |
Chr16:36583397 | Glyma.16g204800 | C | T | C | Missense variant | 36,583,127 | 36,586,048 | + |
Chr16:36607850 | Glyma.16g205100 | G | A | G | Missense variant | 36,607,332 | 36,611,337 | − |
Chr16:36664087 | Glyma.16g206200 | T | A | A | Missense variant | 36,663,932 | 36,664,834 | − |
Chr16:36678618 | Glyma.16g206500 | G | A | A | Missense variant | 36,675,871 | 36,679,332 | + |
Chr16:36684470 | Glyma.16g206800 | G | T | T | Missense variant | 36,684,395 | 36,684,947 | - |
Chr16:36688416 | Glyma.16g206900 | C | T | C | Missense variant | 36,686,943 | 36,688,802 | - |
Chr16:36719823 | Glyma.16g207300 | G | T | G | Splice region variant | 36,718,287 | 36,720,700 | + |
Chr16:36751621 | Glyma.16g207800 | A | T | T | Missense variant | 36,750,028 | 36,751,833 | − |
Chr16:36777525 | Glyma.16g208100 | T | G | G | Missense variant | 36,776,806 | 36,778,169 | + |
Gene | Start Physical Position (bp) | End Physical Position (bp) | Gene Annotation | Gene Roles | References |
---|---|---|---|---|---|
Glyma.08g031900 | 2547941 | 2553643 | NAC Domain Containing Protein 75 (NAC075) | promotes lateral root growth, root elongation, shoot apical meristem, ABA regulation, and abiotic stress response. | [31,32,33,34,35,36] |
Glyma.14g084500 | 7409216 | 7414343 | Polyadenylate-Binding Protein 2 (PABP2) | increase root length, root hairs, flower development, and response to salt stress. | [37,38,39,40] |
Glyma.15g149600 | 12350959 | 12352153 | Drought Induced 21 (Di21) | plays a vital role in root growth by increasing root tip and root meristem, induced ABA, and drought and salt stress response | [41,42,43] |
Glyma.15g148500 | 12216661 | 12226663 | ATP-Binding Cassette (ABC) Transporter | regulates root growth by modulating auxin and cytokinin levels and helps in adaptation and defense response. | [44,45,46,47] |
Glyma.15g147700 | 12165892 | 12167660 | 40S Ribosomal Protein S21 (RPS21) | controls primary root and shoot development, ensures stronger root activity against cold resistance, and enhances drought and salt resistance | [48,49,50] |
Glyma.16g205100 | 36607332 | 36611337 | Leucine-Rich Repeat Receptor Protein Kinase Family Protein (LRR-RPKs) | regulates auxin transport, root, nodule, root meristem development, and response in salt, drought, cold, and heat stresses. | [51,52,53,54] |
Glyma.16g207300 | 36718287 | 36720700 | 40S Ribosomal Protein S3 (RPS3) | helps in auxin signaling, narrow leaf development, lateral and crown root formation, and cold and drought stress response. | [48,49,50,55] |
Glyma.16g207800 | 36750028 | 36751833 | Catalytic LigB Dioxygenase | regulates iron, zinc uptake, α-pyrone, and isoflavonoid biosynthesis. | [56,57,58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.S.; Lee, J.-D.; Song, Q.; Jo, H.; Kim, Y. Integration of Genetic and Imaging Data to Detect QTL for Root Traits in Interspecific Soybean Populations. Int. J. Mol. Sci. 2025, 26, 1152. https://doi.org/10.3390/ijms26031152
Islam MS, Lee J-D, Song Q, Jo H, Kim Y. Integration of Genetic and Imaging Data to Detect QTL for Root Traits in Interspecific Soybean Populations. International Journal of Molecular Sciences. 2025; 26(3):1152. https://doi.org/10.3390/ijms26031152
Chicago/Turabian StyleIslam, Mohammad Shafiqul, Jeong-Dong Lee, Qijian Song, Hyun Jo, and Yoonha Kim. 2025. "Integration of Genetic and Imaging Data to Detect QTL for Root Traits in Interspecific Soybean Populations" International Journal of Molecular Sciences 26, no. 3: 1152. https://doi.org/10.3390/ijms26031152
APA StyleIslam, M. S., Lee, J.-D., Song, Q., Jo, H., & Kim, Y. (2025). Integration of Genetic and Imaging Data to Detect QTL for Root Traits in Interspecific Soybean Populations. International Journal of Molecular Sciences, 26(3), 1152. https://doi.org/10.3390/ijms26031152