High Expression Levels of the Long Non-Coding RNAs Lnc-IRF2-3 and Lnc-KIAA1755-4 Are Markers of Poor Prognosis in Chronic Lymphocytic Leukemia
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Cohort
2.2. Association of Lnc-IRF2-3 and Lnc-KIAA1755-4 Expression with the Clinical Variables and Prognostic Markers
2.3. Prognostic Significance of Lnc-IRF2-3 and Lnc-KIAA1755-4 Expression
3. Discussion
4. Materials and Methods
4.1. Study Cohort
4.2. Analytical Methods
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hallek, M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 2019, 94, 1266–1287. [Google Scholar] [CrossRef]
- Braish, J.; Cerchione, C.; Ferrajoli, A. An overview of prognostic markers in patients with CLL. Front. Oncol. 2024, 14, 1371057. [Google Scholar] [CrossRef]
- Urso, A.; Martino, E.A.; Cuneo, A.; Gentile, M.; Rigolin, G.M. Chronic Lymphocytic Leukemia: Prognostic Factors in the Era of Novel Drugs. Cancers 2024, 16, 2732. [Google Scholar] [CrossRef] [PubMed]
- Knisbacher, B.A.; Lin, Z.; Hahn, C.K.; Nadeu, F.; Duran-Ferrer, M.; Stevenson, K.E.; Tausch, E.; Delgado, J.; Barbera-Mourelle, A.; Taylor-Weiner, A.; et al. Molecular map of chronic lymphocytic leukemia and its impact on outcome. Nat. Genet. 2022, 54, 1664–1674. [Google Scholar] [CrossRef] [PubMed]
- Landau, D.A.; Tausch, E.; Taylor-Weiner, A.N.; Stewart, C.; Reiter, J.G.; Bahlo, J.; Kluth, S.; Bozic, I.; Lawrence, M.; Bottcher, S.; et al. Mutations driving CLL and their evolution in progression and relapse. Nature 2015, 526, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Stussi, G.; Bruscaggin, A.; Rossi, D. Genetics and epigenetics of CLL. Leuk. Lymphoma 2023, 64, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Fabris, L.; Juracek, J.; Calin, G. Non-Coding RNAs as Cancer Hallmarks in Chronic Lymphocytic Leukemia. Int. J. Mol. Sci. 2020, 21, 6720. [Google Scholar] [CrossRef]
- Lingua, M.F.; Carra, G.; Maffeo, B.; Morotti, A. Non-Coding RNAs: The "Dark Side Matter" of the CLL Universe. Pharmaceuticals 2021, 14, 168. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef] [PubMed]
- Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, W.; Zhu, W.; Dong, J.; Cheng, Y.; Yin, Z.; Shen, F. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int. J. Mol. Sci. 2019, 20, 5573. [Google Scholar] [CrossRef]
- Baghdadi, H.; Heidari, R.; Zavvar, M.; Ahmadi, N.; Shakouri Khomartash, M.; Vahidi, M.; Mohammadimehr, M.; Bashash, D.; Ghorbani, M. Long Non-Coding RNA Signatures in Lymphopoiesis and Lymphoid Malignancies. Noncoding RNA 2023, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Dahl, M.; Kristensen, L.S.; Gronbaek, K. Long Non-Coding RNAs Guide the Fine-Tuning of Gene Regulation in B-Cell Development and Malignancy. Int. J. Mol. Sci. 2018, 19, 2475. [Google Scholar] [CrossRef]
- Winkle, M.; Kluiver, J.L.; Diepstra, A.; van den Berg, A. Emerging roles for long noncoding RNAs in B-cell development and malignancy. Crit. Rev. Oncol. Hematol. 2017, 120, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zou, J.; Wan, X.; Sun, C.; Peng, F.; Chu, Z.; Hu, Y. The Role of Noncoding RNAs in B-Cell Lymphoma. Front. Oncol. 2020, 10, 577890. [Google Scholar] [CrossRef] [PubMed]
- Agirre, X.; Meydan, C.; Jiang, Y.; Garate, L.; Doane, A.S.; Li, Z.; Verma, A.; Paiva, B.; Martin-Subero, J.I.; Elemento, O.; et al. Long non-coding RNAs discriminate the stages and gene regulatory states of human humoral immune response. Nat. Commun. 2019, 10, 821. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, A.; Calin, G.A.; Fabbri, M.; Iorio, M.V.; Ferracin, M.; Shimizu, M.; Wojcik, S.E.; Aqeilan, R.I.; Zupo, S.; Dono, M.; et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 2005, 102, 13944–13949. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Wu, J.; Feng, J. Long noncoding RNA HULC predicts poor clinical outcome and represents pro-oncogenic activity in diffuse large B-cell lymphoma. Biomed. Pharmacother. 2016, 79, 188–193. [Google Scholar] [CrossRef]
- Sehgal, L.; Mathur, R.; Braun, F.K.; Wise, J.F.; Berkova, Z.; Neelapu, S.; Kwak, L.W.; Samaniego, F. FAS-antisense 1 lncRNA and production of soluble versus membrane Fas in B-cell lymphoma. Leukemia 2014, 28, 2376–2387. [Google Scholar] [CrossRef] [PubMed]
- Blume, C.J.; Hotz-Wagenblatt, A.; Hullein, J.; Sellner, L.; Jethwa, A.; Stolz, T.; Slabicki, M.; Lee, K.; Sharathchandra, A.; Benner, A.; et al. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia 2015, 29, 2015–2023. [Google Scholar] [CrossRef]
- Dimitrova, N.; Zamudio, J.R.; Jong, R.M.; Soukup, D.; Resnick, R.; Sarma, K.; Ward, A.J.; Raj, A.; Lee, J.T.; Sharp, P.A.; et al. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol. Cell 2014, 54, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Adriaens, C.; Standaert, L.; Barra, J.; Latil, M.; Verfaillie, A.; Kalev, P.; Boeckx, B.; Wijnhoven, P.W.; Radaelli, E.; Vermi, W.; et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat. Med. 2016, 22, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Han, J.; Li, Z.; Yang, H.; Sui, Y.; Wang, M. Elevated RNA expression of long non-coding HOTAIR promotes cell proliferation and predicts a poor prognosis in patients with diffuse large B cell lymphoma. Mol. Med. Rep. 2016, 13, 5125–5131. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Yan, Z.; Wang, X.; Cao, J.; Chen, W.; Qi, K.; Zhou, D.; Xia, J.; Qi, N.; Li, Z.; et al. Downregulation of long non-coding RNA TUG1 suppresses tumor growth by promoting ubiquitination of MET in diffuse large B-cell lymphoma. Mol. Cell. Biochem. 2019, 461, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, M.; Xu, H.; Wang, Y.; Li, Z.; Chang, Y.; Wang, X.; Fu, X.; Zhou, Z.; Yang, S.; et al. Discovery and validation of the tumor-suppressive function of long noncoding RNA PANDA in human diffuse large B-cell lymphoma through the inactivation of MAPK/ERK signaling pathway. Oncotarget 2017, 8, 72182–72196. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Tian, X. Knockdown of long noncoding RNA HOTAIR inhibits cell growth of human lymphoma cells by upregulation of miR-148b. J. Cell. Biochem. 2019, 120, 12348–12359. [Google Scholar] [CrossRef]
- Garding, A.; Bhattacharya, N.; Claus, R.; Ruppel, M.; Tschuch, C.; Filarsky, K.; Idler, I.; Zucknick, M.; Caudron-Herger, M.; Oakes, C.; et al. Epigenetic upregulation of lncRNAs at 13q14.3 in leukemia is linked to the In Cis downregulation of a gene cluster that targets NF-kB. PLoS Genet. 2013, 9, e1003373. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Zhao, B.; Wang, Y. FOXM1-induced upregulation of lncRNA OR3A4 promotes the progression of diffuse large B-cell lymphoma via Wnt/beta-catenin signaling pathway. Exp. Mol. Pathol. 2020, 115, 104451. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Cui, Z.; Liu, X.; Wu, S.; Wu, Y.; Fang, F.; Zhao, H. LncRNA FIRRE is activated by MYC and promotes the development of diffuse large B-cell lymphoma via Wnt/beta-catenin signaling pathway. Biochem. Biophys. Res. Commun. 2019, 510, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.C.; Jiao, Y.; Zhang, Y.Y.; Ning, J.; Zhang, Y.R.; Xu, J.; Wei, W.; Kang-Sheng, G. Lnc SMAD5-AS1 as ceRNA inhibit proliferation of diffuse large B cell lymphoma via Wnt/beta-catenin pathway by sponging miR-135b-5p to elevate expression of APC. Cell Death Dis. 2019, 10, 252. [Google Scholar] [CrossRef] [PubMed]
- Ronchetti, D.; Manzoni, M.; Agnelli, L.; Vinci, C.; Fabris, S.; Cutrona, G.; Matis, S.; Colombo, M.; Galletti, S.; Taiana, E.; et al. lncRNA profiling in early-stage chronic lymphocytic leukemia identifies transcriptional fingerprints with relevance in clinical outcome. Blood Cancer J. 2016, 6, e468. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sehgal, L.; Jain, N.; Khashab, T.; Mathur, R.; Samaniego, F. LncRNA MALAT1 promotes development of mantle cell lymphoma by associating with EZH2. J. Transl. Med. 2016, 14, 346. [Google Scholar] [CrossRef]
- Peng, W.; Wu, J.; Feng, J. LincRNA-p21 predicts favorable clinical outcome and impairs tumorigenesis in diffuse large B cell lymphoma patients treated with R-CHOP chemotherapy. Clin. Exp. Med. 2017, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Feng, J. Long noncoding RNA LUNAR1 associates with cell proliferation and predicts a poor prognosis in diffuse large B-cell lymphoma. Biomed. Pharmacother. 2016, 77, 65–71. [Google Scholar] [CrossRef]
- Doose, G.; Haake, A.; Bernhart, S.H.; Lopez, C.; Duggimpudi, S.; Wojciech, F.; Bergmann, A.K.; Borkhardt, A.; Burkhardt, B.; Claviez, A.; et al. MINCR is a MYC-induced lncRNA able to modulate MYC’s transcriptional network in Burkitt lymphoma cells. Proc. Natl. Acad. Sci. USA 2015, 112, E5261–E5270. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Hu, Z.; Mangala, L.S.; Stine, Z.E.; Hu, X.; Jiang, D.; Xiang, Y.; Zhang, Y.; Pradeep, S.; Rodriguez-Aguayo, C.; et al. MYC Targeted Long Noncoding RNA DANCR Promotes Cancer in Part by Reducing p21 Levels. Cancer Res. 2018, 78, 64–74. [Google Scholar] [CrossRef]
- Hu, G.; Lou, Z.; Gupta, M. The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. PLoS ONE 2014, 9, e107016. [Google Scholar] [CrossRef]
- Xiao, X.; Gu, Y.; Wang, G.; Chen, S. c-Myc, RMRP, and miR-34a-5p form a positive-feedback loop to regulate cell proliferation and apoptosis in multiple myeloma. Int. J. Biol. Macromol. 2019, 122, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Ghesquieres, H.; Larrabee, B.R.; Casasnovas, O.; Maurer, M.J.; McKay, J.D.; Ansell, S.M.; Montgomery, D.; Asmann, Y.W.; Farrell, K.; Verney, A.; et al. A susceptibility locus for classical Hodgkin lymphoma at 8q24 near MYC/PVT1 predicts patient outcome in two independent cohorts. Br. J. Haematol. 2018, 180, 286–290. [Google Scholar] [CrossRef]
- Hu, G.; Gupta, S.K.; Troska, T.P.; Nair, A.; Gupta, M. Long non-coding RNA profile in mantle cell lymphoma identifies a functional lncRNA ROR1-AS1 associated with EZH2/PRC2 complex. Oncotarget 2017, 8, 80223–80234. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.R.; Ruppert, A.S.; Fobare, S.; Chen, T.L.; Liu, C.; Lehman, A.; Blachly, J.S.; Zhang, X.; Lucas, D.M.; Grever, M.R.; et al. The long noncoding RNA, treRNA, decreases DNA damage and is associated with poor response to chemotherapy in chronic lymphocytic leukemia. Oncotarget 2017, 8, 25942–25954. [Google Scholar] [CrossRef] [PubMed]
- Bettin, N.; Oss Pegorar, C.; Cusanelli, E. The Emerging Roles of TERRA in Telomere Maintenance and Genome Stability. Cells 2019, 8, 246. [Google Scholar] [CrossRef] [PubMed]
- Pyfrom, S.C.; Quinn, C.C.; Dorando, H.K.; Luo, H.; Payton, J.E. BCALM (AC099524.1) Is a Human B Lymphocyte-Specific Long Noncoding RNA That Modulates B Cell Receptor-Mediated Calcium Signaling. J. Immunol. 2020, 205, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Yuan, H.; Liu, S.; Hu, Z.; Xiao, H. Exosome-transmitted LINC00461 promotes multiple myeloma cell proliferation and suppresses apoptosis by modulating microRNA/BCL-2 expression. Cytotherapy 2019, 21, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Syrett, C.M.; Sindhava, V.; Hodawadekar, S.; Myles, A.; Liang, G.; Zhang, Y.; Nandi, S.; Cancro, M.; Atchison, M.; Anguera, M.C. Loss of Xist RNA from the inactive X during B cell development is restored in a dynamic YY1-dependent two-step process in activated B cells. PLoS Genet. 2017, 13, e1007050. [Google Scholar] [CrossRef]
- Matis, S.; Rossi, M.; Brondolo, L.; Cardillo, M.; Reverberi, D.; Massara, R.; Colombo, M.; Ibatici, A.; Angelucci, E.; Vaisitti, T.; et al. LINC00152 expression in normal and Chronic Lymphocytic Leukemia B cells. Hematol. Oncol. 2022, 40, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.G.; Jares, P.; Rico, D.; Gomez-Lopez, G.; Martinez-Trillos, A.; Villamor, N.; Ecker, S.; Gonzalez-Perez, A.; Knowles, D.G.; Monlong, J.; et al. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res. 2014, 24, 212–226. [Google Scholar] [CrossRef]
- Subhash, S.; Andersson, P.-O.; Kosalai, S.T.; Kanduri, C.; Kanduri, M. Global DNA methylation profiling reveals new insights into epigenetically deregulated protein coding and long noncoding RNAs in CLL. Clin. Epigenetics 2016, 8, 106. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Garnacho, E.M.; Nadeu, F.; Martin, S.; Mozas, P.; Rivero, A.; Delgado, J.; Gine, E.; Lopez-Guillermo, A.; Duran-Ferrer, M.; Salaverria, I.; et al. MALAT1 expression is associated with aggressive behavior in indolent B-cell neoplasms. Sci. Rep. 2023, 13, 16839. [Google Scholar] [CrossRef] [PubMed]
- Tomic Vujovic, K.; Ugrin, M.; Tosic, N.; Vukovic, V.; Marjanovic, I.; Kostic, T.; Stankovic, S.; Otasevic, V.; Sarac, S.; Antic, D.; et al. Expression Pattern and Prognostic Significance of the Long Non-Coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 in Chronic Lymphocytic Leukemia. Int. J. Mol. Sci. 2024, 25, 922. [Google Scholar] [CrossRef]
- Ouillette, P.; Erba, H.; Kujawski, L.; Kaminski, M.; Shedden, K.; Malek, S.N. Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res. 2008, 68, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Lerner, M.; Harada, M.; Loven, J.; Castro, J.; Davis, Z.; Oscier, D.; Henriksson, M.; Sangfelt, O.; Grander, D.; Corcoran, M.M. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp. Cell Res. 2009, 315, 2941–2952. [Google Scholar] [CrossRef] [PubMed]
- El-Khazragy, N.; Esmaiel, M.A.; Mohamed, M.M.; Hassan, N.S. Upregulation of long noncoding RNA Lnc-IRF2-3 and Lnc-ZNF667-AS1 is associated with poor survival in B-chronic lymphocytic leukemia. Int. J. Lab. Hematol. 2020, 42, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Bahlo, J.; Fink, A.M.; Goede, V.; Herling, C.D.; Cramer, P.; Langerbeins, P.; von Tresckow, J.; Engelke, A.; Maurer, C.; et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: Updated results of the CLL8 trial. Blood 2016, 127, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Sylvan, S.E.; Asklid, A.; Johansson, H.; Klintman, J.; Bjellvi, J.; Tolvgard, S.; Kimby, E.; Norin, S.; Andersson, P.O.; Karlsson, C.; et al. First-line therapy in chronic lymphocytic leukemia: A Swedish nation-wide real-world study on 1053 consecutive patients treated between 2007 and 2013. Haematologica 2019, 104, 797–804. [Google Scholar] [CrossRef]
- Lindstrom, V. Real-World Outcomes of Chemoimmunotherapy in Chronic Lymphocytic Leukemia (CLL) Clinical Practice: Results from a Decade of Practice in Helsinki 2005–2015. Blood 2017, 130, 5663. [Google Scholar] [CrossRef]
- Ronchetti, D.; Agnelli, L.; Taiana, E.; Galletti, S.; Manzoni, M.; Todoerti, K.; Musto, P.; Strozzi, F.; Neri, A. Distinct lncRNA transcriptional fingerprints characterize progressive stages of multiple myeloma. Oncotarget 2016, 7, 14814–14830. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.H.; Du, Y.P.; Wen, J.T.; Lu, B.F.; Zhao, Y. snoRNAs: Functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discov. 2022, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tao, Y.; Hua, Q.; Cai, J.; Ye, X.; Li, H. SNORA71A Promotes Colorectal Cancer Cell Proliferation, Migration, and Invasion. Biomed. Res. Int. 2020, 2020, 8284576. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Zhou, Y.; Wu, H.; Lei, H.; Ding, T.; Shen, X.; Li, J. SNORA71A Downregulation Enhances Gemcitabine Sensitivity in Gallbladder Cancer Cells by Inducing Ferroptosis Through Inhibiting the AKT/NRF2/GPX4 Pathway. DNA Cell Biol. 2024, 43, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Lu, C.; Xia, Y.; Wu, L.; Song, J.; Chen, C.; Wang, Q. Small nucleolar RNA SNORA71A promotes epithelial-mesenchymal transition by maintaining ROCK2 mRNA stability in breast cancer. Mol. Oncol. 2022, 16, 1947–1965. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Zeng, Z.; Sun, W.; Li, S.; You, C.; Tang, F.; Peng, S.; Ma, S.; Luo, Y.; Xu, J.; et al. Small Nucleolar RNA 71A Promotes Lung Cancer Cell Proliferation, Migration and Invasion via MAPK/ERK Pathway. J. Cancer 2019, 10, 2261–2275. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, Z.; Zhang, S.; Zhou, L.; Xu, Q.; Zhou, D.; Li, Y.; Han, X.; Xu, H.; Bai, Y.; et al. Identification of snoRNA SNORA71A as a Novel Biomarker in Prognosis of Hepatocellular Carcinoma. Dis. Markers 2020, 2020, 8879944. [Google Scholar] [CrossRef]
- Lutge, A.; Lu, J.; Hullein, J.; Walther, T.; Sellner, L.; Wu, B.; Rosenquist, R.; Oakes, C.C.; Dietrich, S.; Huber, W.; et al. Subgroup-specific gene expression profiles and mixed epistasis in chronic lymphocytic leukemia. Haematologica 2023, 108, 2664–2676. [Google Scholar] [CrossRef] [PubMed]
- Meier-Abt, F.; Lu, J.; Cannizzaro, E.; Pohly, M.F.; Kummer, S.; Pfammatter, S.; Kunz, L.; Collins, B.C.; Nadeu, F.; Lee, K.S.; et al. The protein landscape of chronic lymphocytic leukemia. Blood 2021, 138, 2514–2525. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, F.K.; Forconi, F.; Packham, G. The meaning and relevance of B-cell receptor structure and function in chronic lymphocytic leukemia. Semin. Hematol. 2014, 51, 158–167. [Google Scholar] [CrossRef]
- Stamatopoulos, K.; Agathangelidis, A.; Rosenquist, R.; Ghia, P. Antigen receptor stereotypy in chronic lymphocytic leukemia. Leukemia 2017, 31, 282–291. [Google Scholar] [CrossRef]
- Vervoordeldonk, M.Y.L.; Hengeveld, P.J.; Levin, M.D.; Langerak, A.W. B cell receptor signaling proteins as biomarkers for progression of CLL requiring first-line therapy. Leuk. Lymphoma 2024, 65, 1031–1043. [Google Scholar] [CrossRef]
- Zeni, P.F.; Mraz, M. LncRNAs in adaptive immunity: Role in physiological and pathological conditions. RNA Biol. 2021, 18, 619–632. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Luo, L.; Gu, Z.; Yang, N.; Wang, L.; Gao, C. Integrative Analysis of Long Noncoding RNAs in Patients with Graft-versus-Host Disease. Acta Haematol. 2020, 143, 533–551. [Google Scholar] [CrossRef] [PubMed]
- International CLL-IPI Working Group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): A meta-analysis of individual patient data. Lancet Oncol. 2016, 17, 779–790. [Google Scholar] [CrossRef]
- Gentile, M.; Shanafelt, T.D.; Cutrona, G.; Molica, S.; Tripepi, G.; Alvarez, I.; Mauro, F.R.; Di Renzo, N.; Di Raimondo, F.; Vincelli, I.; et al. A progression-risk score to predict treatment-free survival for early stage chronic lymphocytic leukemia patients. Leukemia 2016, 30, 1440–1443. [Google Scholar] [CrossRef]
- Yang, G.; Lu, X.; Yuan, L. LncRNA: A link between RNA and cancer. Biochim. Biophys. Acta 2014, 1839, 1097–1109. [Google Scholar] [CrossRef] [PubMed]
- Wood, B.L.; Arroz, M.; Barnett, D.; DiGiuseppe, J.; Greig, B.; Kussick, S.J.; Oldaker, T.; Shenkin, M.; Stone, E.; Wallace, P. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: Optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytom. B Clin. Cytom. 2007, 72 (Suppl. S1), S14–S22. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.H.; Holden, J.T.; Bene, M.C.; Borowitz, M.J.; Braylan, R.C.; Cornfield, D.; Gorczyca, W.; Lee, R.; Maiese, R.; Orfao, A.; et al. 2006 Bethesda International Consensus recommendations on the flow cytometric immunophenotypic analysis of hematolymphoid neoplasia: Medical indications. Cytometry B Clin. Cytom. 2007, 72 (Suppl. S1), S5–S13. [Google Scholar] [CrossRef] [PubMed]
- Agathangelidis, A.; Chatzidimitriou, A.; Chatzikonstantinou, T.; Tresoldi, C.; Davis, Z.; Giudicelli, V.; Kossida, S.; Belessi, C.; Rosenquist, R.; Ghia, P.; et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: The 2022 update of the recommendations by ERIC, the European Research Initiative on CLL. Leukemia 2022, 36, 1961–1968. [Google Scholar] [CrossRef] [PubMed]
- Malcikova, J.; Pavlova, S.; Baliakas, P.; Chatzikonstantinou, T.; Tausch, E.; Catherwood, M.; Rossi, D.; Soussi, T.; Tichy, B.; Kater, A.P.; et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia-2024 update. Leukemia 2024, 38, 1455–1468. [Google Scholar] [CrossRef]
Variable | Whole Cohort (n = 112) | lnc-IRF2-3low Group (n = 56) | lnc-IRF2-3high Group (n = 56) | p-Value | lnc-KIAA1755-4low Group (n = 56) | lnc-KIAA1755-4high Group (n = 56) | p-Value |
---|---|---|---|---|---|---|---|
Sex (n = 112) a, male/female | 79/33 | 39/17 | 40/16 | 1.000 d | 36/20 | 43/13 | 0.213 d |
Age (years) (n = 111) a, median (range) | 59 (33–80) | 60 (33–80) | 58.5 (38–75) | 0.127 e | 59.5 (33–80) | 59 (38–75) | 0.593 e |
WBC [×109/L], (n = 98) a, median (range) | 38.6 (6.8–570) | 26.4 (6.8–570) | 46.2 (10.1–476) | 0.005 f | 29.6 (6.8–476) | 46 (8.4–570) | 0.038 f |
Ly [×109/L], (n = 89) a, median (range) | 29 (2.7–558.6) | 19.6 (2.7–558.6) | 39 (6.6–447.4) | 0.004 f | 20.2 (2.7–447.4) | 39.1 (4.7–558.6) | 0.013 f |
Platelets [×109/L], (n = 96) a, median (range) | 173.5 (1–432) | 175 (4–320) | 172.5 (1–432) | 0.540 e | 171 (3–361) | 174 (1–432) | 0.872 e |
Hb [g/L], (n = 97) a, median (range) | 138 (44–178) | 138.5 (84–178) | 138 (44–173) | 0.382 f | 144 (84–178) | 130.5 (44–163) | 0.004 f |
β2M [mg/L] (n = 57) a, median (range) | 3.2 (0.2–11.5) | 2.5 (0.2–11.5) | 3.6 (2–11.3) | 0.017 f | 2.5 (0.2–8.7) | 3.9 (1.5–11.5) | 0.012 f |
LDH level b, (n = 75) a, median (range) | 1.4 (0.3–4.2) | 1.3 (0.5–3.7) | 1.5 (0.3–4.2) | 0.424 f | 1.2 (0.3–3.6) | 1.5 (0.5–4.2) | 0.064 f |
Binet stage (n = 111) a, n (%) | 0.011 d | 0.465 d | |||||
A | 52 (46.9) | 32 (57.1) | 20 (36.4) | 26 (46.4) | 26 (47.3) | ||
B | 43 (38.7) | 14 (25) | 29 (52.7) | 24 (42.9) | 19 (34.5) | ||
C | 16 (14.4) | 10 (17.9) | 6 (10.9) | 6 (10.7) | 10 (18.2) | ||
CD38 status (n = 101) a, n (%) | 0.082 d | 0.277 d | |||||
positive (≥30%) | 30 (29.7) | 10 (20.8) | 20 (37.7) | 12 (24) | 18 (35.3) | ||
negative (˂30%) | 71 (70.3) | 38 (79.2) | 33 (62.3) | 38 (76) | 33 (64.7) | ||
Cytogenetic risk (n = 97) a, n (%) | 0.007 d | 0.352 d | |||||
favorable (del13q14) c | 31 (32) | 21 (46.7) | 10 (19.2) | 17 (37.8) | 14 (26.9) | ||
intermediate (no aberrations, trisomy 12) | 42 (43.3) | 13 (28.9) | 29 (55.8) | 16 (35.5) | 26 (50) | ||
unfavorable (del11q22-23, del17p13) | 24 (24.7) | 11 (24.4) | 13 (25) | 12 (26.7) | 12 (23.1) | ||
TP53 mutational status (n = 60) a, n (%) | 0.736 d | 0.612 d | |||||
wt | 49 (81.7) | 17 (85) | 32 (80) | 19 (65.5) | 30 (71.4) | ||
mutated | 11 (18.3) | 3 (15) | 8 (20) | 10 (34.5) | 12 (28.6) | ||
IGHV SHM status (n = 112) a, n (%) | <0.001d | 0.034 d | |||||
mutated | 46 (41.1) | 39 (69.6) | 7 (12.5) | 29 (51.8) | 17 (30.4) | ||
unmutated | 66 (58.9) | 17 (30.4) | 49 (87.5) | 27 (48.2) | 39 (69.6) | ||
CLL-IPI (n = 53) a, n (%) | 0.004 d | 0.031 d | |||||
low risk (score 0–1) | 8 (15.1) | 8 (33.3) | 0 (0) | 7 (30.4) | 1 (3.3) | ||
intermediate risk (score 2–3) | 18 (34) | 6 (25) | 12 (41.4) | 8 (34.8) | 10 (33.3) | ||
high risk (score 4–6) | 22 (41.5) | 9 (37.5) | 13 (44.8) | 6 (26.1) | 16 (53.3) | ||
very high risk (score 6–10) | 5 (9.4) | 1 (4.2) | 4 (13.8) | 2 (8.7) | 3 (10) |
Covariates * | TTFT | OS | |||||
---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||
lnc-IRF2-3 and lnc-KIAA1755-4 expression (low/low vs. low/high) | 1.416 | 0.734–2.733 | 0.300 | 3.538 | 1.394–8.981 | 0.008 | |
lnc-IRF2-3 and lnc-KIAA1755-4 expression (low/low vs. high/high) | 1.304 | 0.640–2.657 | 0.465 | 3.866 | 1.484–10.074 | 0.006 | |
Binet stage (A vs. B + C) | 2.371 | 1.461–3.848 | <0.001 | 1.263 | 0.711–2.245 | 0.426 | |
CD38 status (positive vs. negative) | 1.035 | 0.629–1.702 | 0.893 | 1.138 | 0.644–2.010 | 0.657 | |
cytogenetic risk (favorable vs. intermediate + unfavorable) | 1.331 | 0.743–2.384 | 0.336 | 0.987 | 0.488–1.996 | 0.970 | |
IGHV SHM status (mutated vs. unmutated) | 1.713 | 0.916–3.202 | 0.092 | 1.236 | 0.588–2.600 | 0.576 | |
lnc-IRF2-3 and lnc-KIAA1755-4 expression (low/low vs. low/high) | 2.581 | 1.021–6.526 | 0.045 | 7.016 | 2.028–24.268 | 0.002 | |
lnc-IRF2-3 and lnc-KIAA1755-4 expression (low/low vs. high/high) | 3.195 | 1.289–7.923 | 0.012 | 6.165 | 1.846–20.591 | 0.003 | |
CLL-IPI (low vs. intermediate + high + very high) | 4.188 | 0.90–19.490 | 0.068 | 0.323 | 0.089–1.167 | 0.085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosic, N.; Tomic Vujovic, K.; Vukovic, V.; Kotur, N.; Stankovic, B.; Marjanovic, I.; Antic, D.; Sarac, S.; Bibic, T.; Ivanovic, J.; et al. High Expression Levels of the Long Non-Coding RNAs Lnc-IRF2-3 and Lnc-KIAA1755-4 Are Markers of Poor Prognosis in Chronic Lymphocytic Leukemia. Int. J. Mol. Sci. 2025, 26, 1153. https://doi.org/10.3390/ijms26031153
Tosic N, Tomic Vujovic K, Vukovic V, Kotur N, Stankovic B, Marjanovic I, Antic D, Sarac S, Bibic T, Ivanovic J, et al. High Expression Levels of the Long Non-Coding RNAs Lnc-IRF2-3 and Lnc-KIAA1755-4 Are Markers of Poor Prognosis in Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences. 2025; 26(3):1153. https://doi.org/10.3390/ijms26031153
Chicago/Turabian StyleTosic, Natasa, Kristina Tomic Vujovic, Vojin Vukovic, Nikola Kotur, Biljana Stankovic, Irena Marjanovic, Darko Antic, Sofija Sarac, Tamara Bibic, Jelena Ivanovic, and et al. 2025. "High Expression Levels of the Long Non-Coding RNAs Lnc-IRF2-3 and Lnc-KIAA1755-4 Are Markers of Poor Prognosis in Chronic Lymphocytic Leukemia" International Journal of Molecular Sciences 26, no. 3: 1153. https://doi.org/10.3390/ijms26031153
APA StyleTosic, N., Tomic Vujovic, K., Vukovic, V., Kotur, N., Stankovic, B., Marjanovic, I., Antic, D., Sarac, S., Bibic, T., Ivanovic, J., Zukic, B., & Karan-Djurasevic, T. (2025). High Expression Levels of the Long Non-Coding RNAs Lnc-IRF2-3 and Lnc-KIAA1755-4 Are Markers of Poor Prognosis in Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences, 26(3), 1153. https://doi.org/10.3390/ijms26031153