Perspectives of Genome Editing Mediated Haploid Inducer Systems in Legumes
Abstract
:1. Introduction
2. Haploid Induction in Legume Crops
2.1. Spontaneous Haploid Production
2.2. Tissue Culture Techniques
2.3. Distant Hybridization-Induced Haploids
3. Haploid Inducer Lines in Legume Breeding
3.1. Mechanisms of Haploid Inducer Lines
3.2. Development of Haploid Inducer Lines in Legumes
4. Genome Editing-Mediated Haploid Inducer System
4.1. Advances of Haploid Inducer Lines in Plants
4.2. Genome Editing-Mediated Haploid Inducer Systems in Legumes
4.3. Challenges and Limitations
4.4. Future Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhargava, A.; Srivastava, S. Plant Breeding. In Participatory Plant Breeding: Concept and Applications; Springer: Singapore, 2019; pp. 29–68. [Google Scholar]
- Lamichhane, S.; Thapa, S. Advances from Conventional to Modern Plant Breeding Methodologies. Plant Breed. Biotechnol. 2022, 10, 1–14. [Google Scholar] [CrossRef]
- Anand, A.; Subramanian, M.; Kar, D. Breeding Techniques to Dispense Higher Genetic Gains. Front. Plant Sci. 2023, 13, 1076094. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Chen, B.; Li, M.; Wang, D.; Jiao, Y.; Qi, X.; Wang, M.; Liu, Z.; Chen, C.; Wang, Y.; et al. A DMP-Triggered in Vivo Maternal Haploid Induction System in the Dicotyledonous Arabidopsis. Nat. Plants 2020, 6, 466–472. [Google Scholar] [CrossRef]
- Murovec, J.; Bohanec, B.; Murovec, J.; Bohanec, B. Haploids and Doubled Haploids in Plant Breeding. In Plant Breeding; Abdurakhmonov, I.Y., Ed.; IntechOpen: London, UK, 2012; ISBN 978-953-307-932-5. [Google Scholar]
- Croser, J.; Lulsdorf, M.; Davies, P.; Clarke, H.; Bayliss, K.L.; Mallikarjuna, N.; Siddique, K.H.M. Toward Doubled Haploid Production in the Fabaceae: Progress, Constraints, and Opportunities. CRC Crit. Rev. Plant Sci. 2006, 25, 139–157. [Google Scholar] [CrossRef]
- Jacquier, N.M.A.; Gilles, L.M.; Pyott, D.E.; Martinant, J.-P.; Rogowsky, P.M.; Widiez, T. Puzzling out Plant Reproduction by Haploid Induction for Innovations in Plant Breeding. Nat. Plants 2020, 6, 610–619. [Google Scholar] [CrossRef]
- Chaikam, V.; Molenaar, W.; Melchinger, A.E.; Boddupalli, P.M. Doubled Haploid Technology for Line Development in Maize: Technical Advances and Prospects. Theor. Appl. Genet. 2019, 132, 3227–3243. [Google Scholar] [CrossRef]
- Zargar, M.; Zavarykina, T.; Voronov, S.; Pronina, I.; Bayat, M. The Recent Development in Technologies for Attaining Doubled Haploid Plants In Vivo. Agriculture 2022, 12, 1595. [Google Scholar] [CrossRef]
- Dunwell, J.M. Haploids in Flowering Plants: Origins and Exploitation. Plant Biotechnol. J. 2010, 8, 377–424. [Google Scholar] [CrossRef]
- Ravi, M.; Marimuthu, M.P.A.; Tan, E.H.; Maheshwari, S.; Henry, I.M.; Marin-Rodriguez, B.; Urtecho, G.; Tan, J.; Thornhill, K.; Zhu, F.; et al. A Haploid Genetics Toolbox for Arabidopsis Thaliana. Nat. Commun. 2014, 5, 5334. [Google Scholar] [CrossRef]
- Kuppu, S.; Ron, M.; Marimuthu, M.P.A.; Li, G.; Huddleson, A.; Siddeek, M.H.; Terry, J.; Buchner, R.; Shabek, N.; Comai, L.; et al. A Variety of Changes, Including CRISPR/Cas9-Mediated Deletions, in CENH3 Lead to Haploid Induction on Outcrossing. Plant Biotechnol. J. 2020, 18, 2068–2080. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, W.; Huang, Y.; Niu, X.; Zhao, Y.; Han, Y.; Liu, Y. Down-Regulation of a LBD-like Gene, OsIG1, Leads to Occurrence of Unusual Double Ovules and Developmental Abnormalities of Various Floral Organs and Megagametophyte in Rice. J. Exp. Bot. 2015, 66, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Saunders, J.W.; Bingham, E.T. Production of Alfalfa Plants from Callus Tissue 1. Crop Sci. 1972, 12, 804–808. [Google Scholar] [CrossRef]
- Musial, K.; Bohanec, B.; Jakše, M.; Przywara, L. The Development of Onion (Allium Cepa L.) Embryo Sacs in Vitro and Gynogenesis Induction in Relation to Flower Size. Vitr. Cell. Dev. Biol.-Plant 2005, 41, 446–452. [Google Scholar] [CrossRef]
- Forster, B.P.; Heberle-Bors, E.; Kasha, K.J.; Touraev, A. The Resurgence of Haploids in Higher Plants. Trends Plant Sci. 2007, 12, 368–375. [Google Scholar] [CrossRef]
- Kiełkowska, A.; Kiszczak, W. History and Current Status of Haploidization in Carrot (Daucus Carota L.). Agronomy 2023, 13, 676. [Google Scholar] [CrossRef]
- GUHA, S.; Maheshwari, S.C. Cell Division and Differentiation of Embryos in the Pollen Grains of Datura in Vitro. Nature 1966, 212, 97–98. [Google Scholar] [CrossRef]
- Zagorska, N.; Dimitrov, B. Induced Androgenesis in Alfalfa (Medicago Sativa L.). Plant Cell Rep. 1995, 14, 249–252. [Google Scholar] [CrossRef]
- Ochatt, S.; Pech, C.; Grewal, R.; Conreux, C.; Lulsdorf, M.; Jacas, L. Abiotic Stress Enhances Androgenesis from Isolated Microspores of Some Legume Species (Fabaceae). J. Plant Physiol. 2009, 166, 1314–1328. [Google Scholar] [CrossRef]
- Mokhtarzadeh, A.; Constantin, M.J. Plant Regeneration from Hypocotyl- and Anther-Derived Callus of Berseem Clover 1. Crop Sci. 1978, 18, 567–572. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Britt, A.B.; Tripathi, L.; Sharma, S.; Upadhyaya, H.D.; Ortiz, R. Haploids: Constraints and Opportunities in Plant Breeding. Biotechnol. Adv. 2015, 33, 812–829. [Google Scholar] [CrossRef]
- Datta, S.K. Androgenic Haploids: Factors Controlling Development and Its Application in Crop Improvement. Curr. Sci. 2005, 89, 1870–1878. [Google Scholar]
- Kasha, K.J.; Kao, K.N. High Frequency Haploid Production in Barley (Hordeum Vulgare L.). Nature 1970, 225, 874–876. [Google Scholar] [CrossRef] [PubMed]
- Żur, I.; Adamus, A.; Cegielska-Taras, T.; Cichorz, S.; Dubas, E.; Gajecka, M.; Juzoń-Sikora, K.; Kiełkowska, A.; Malicka, M.; Oleszczuk, S. Doubled Haploids: Contributions of Poland’s Academies in Recognizing the Mechanism of Gametophyte Cell Reprogramming and Their Utilization in Breeding of Agricultural and Vegetable Species. Acta Soc. Bot. Pol. 2022, 91, 9128. [Google Scholar] [CrossRef]
- Kazimierski, T.; Kazimierska, E.M. Meiosis in Spontaneous Haploids of White Lupin (Lupinus albus L. Sl). Genet. Pol. 1989, 30, 47–60. [Google Scholar]
- Pratap, A.; Prajapati, U.; Singh, C.M.; Gupta, S.; Rathore, M.; Malviya, N.; Tomar, R.; Gupta, A.K.; Tripathi, S.; Singh, N.P. Potential, Constraints and Applications of in Vitro Methods in Improving Grain Legumes. Plant Breed. 2018, 137, 235–249. [Google Scholar] [CrossRef]
- Skrzypkowski, W.; Kiełkowska, A. Current Status of Haploidization in Cool-Season Grain Legume Crop Species. Agriculture 2024, 14, 1031. [Google Scholar] [CrossRef]
- Gritton, E.T.; Wierzbicka, B. An Embryological Study of a Pisum Sativum x Vicia Faba Cross. Euphytica 1975, 24, 277–284. [Google Scholar] [CrossRef]
- Watts, A.; Kumar, V.; Raipuria, R.K.; Bhattacharya, R.C. In Vivo Haploid Production in Crop Plants: Methods and Challenges. Plant Mol. Biol. Report. 2018, 36, 685–694. [Google Scholar] [CrossRef]
- Mahato, A.; Chaudhary, H.K. Relative Efficiency of Maize and Imperata Cylindrica for Haploid Induction in Triticum Durum Following Chromosome Elimination-Mediated Approach of Doubled Haploid Breeding. Plant Breed. 2015, 134, 379–383. [Google Scholar] [CrossRef]
- Kermicle, J.L. Androgenesis Conditioned by a Mutation in Maize. Science 1969, 166, 1422–1424. [Google Scholar] [CrossRef]
- Evans, M.M.S. The Indeterminate Gametophyte1 Gene of Maize Encodes a LOB Domain Protein Required for Embryo Sac and Leaf Development. Plant Cell 2007, 19, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Kermicle, J.L. Pleiotropic Effects on Seed Development of the Indeterminate Gametophyte Gene in Maize. Am. J. Bot. 1971, 58, 1–7. [Google Scholar] [CrossRef]
- Kelliher, T.; Starr, D.; Richbourg, L.; Chintamanani, S.; Delzer, B.; Nuccio, M.L.; Green, J.; Chen, Z.; McCuiston, J.; Wang, W.; et al. MATRILINEAL, a Sperm-Specific Phospholipase, Triggers Maize Haploid Induction. Nature 2017, 542, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Khammona, K.; Dermail, A.; Suriharn, K.; Lübberstedt, T.; Wanchana, S.; Thunnom, B.; Poncheewin, W.; Toojinda, T.; Ruanjaichon, V.; Arikit, S. Accelerating Haploid Induction Rate and Haploid Validation Through Marker-Assisted Selection for Qhir1 and Qhir8 in Maize. Front. Plant Sci. 2024, 15, 1337463. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Z.Y.; Yang, Y.; Zhao, H.; Fei, X.; Lizhu, E.; Liu, C.; Chen, S.; Lai, J.; Song, W. Loss-of-Function Alleles of ZmPLD3 Cause Haploid Induction in Maize. Nat. Plants 2021, 7, 1579–1588. [Google Scholar] [CrossRef]
- Li, X.; Meng, D.; Chen, S.; Luo, H.; Zhang, Q.; Jin, W.; Yan, J. Single Nucleus Sequencing Reveals Spermatid Chromosome Fragmentation as a Possible Cause of Maize Haploid Induction. Nat. Commun. 2017, 8, 991. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Meng, D.; Zhong, Y.; Chen, C.; Dong, X.; Xu, X.; Chen, B.; Li, W.; Li, L.; et al. A 4-Bp Insertion at ZmPLA1 Encoding a Putative Phospholipase A Generates Haploid Induction in Maize. Mol. Plant 2017, 10, 520–522. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, C.; Qi, X.; Jiao, Y.; Wang, D.; Wang, Y.; Liu, Z.; Chen, C.; Chen, B.; Tian, X.; et al. Mutation of ZmDMP Enhances Haploid Induction in Maize. Nat. Plants 2019, 5, 575–580. [Google Scholar] [CrossRef]
- McKinley, K.L.; Cheeseman, I.M. The Molecular Basis for Centromere Identity and Function. Nat. Rev. Mol. Cell Biol. 2016, 17, 16–29. [Google Scholar] [CrossRef]
- Lermontova, I.; Schubert, V.; Fuchs, J.; Klatte, S.; Macas, J.; Schubert, I. Loading of Arabidopsis Centromeric Histone CENH3 Occurs Mainly during G2 and Requires the Presence of the Histone Fold Domain. Plant Cell 2006, 18, 2443–2451. [Google Scholar] [CrossRef]
- Ravi, M.; Shibata, F.; Ramahi, J.S.; Nagaki, K.; Chen, C.; Murata, M.; Chan, S.W.L. Meiosis-Specific Loading of the Centromere-Specific Histone CENH3 in Arabidopsis Thaliana. PLoS Genet. 2011, 7, e1002121. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, S.; Tan, E.H.; West, A.; Franklin, F.C.H.; Comai, L.; Chan, S.W.L. Naturally Occurring Differences in CENH3 Affect Chromosome Segregation in Zygotic Mitosis of Hybrids. PLoS Genet. 2015, 11, e1004970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, X.; Marshall, J.B.; Zhong, C.X.; Dawe, R.K. Phosphoserines on Maize CENTROMERIC HISTONE H3 and Histone H3 Demarcate the Centromere and Pericentromere during Chromosome Segregation. Plant Cell 2005, 17, 572–583. [Google Scholar] [CrossRef]
- Allshire, R.C.; Karpen, G.H. Epigenetic Regulation of Centromeric Chromatin: Old Dogs, New Tricks? Nat. Rev. Genet. 2008, 9, 923–937. [Google Scholar] [CrossRef]
- Ravi, M.; Chan, S.W.L. Haploid Plants Produced by Centromere-Mediated Genome Elimination. Nature 2010, 464, 615–618. [Google Scholar] [CrossRef]
- Kelliher, T.; Starr, D.; Wang, W.; McCuiston, J.; Zhong, H.; Nuccio, M.L.; Martin, B. Maternal Haploids Are Preferentially Induced by CENH3-Tailswap Transgenic Complementation in Maize. Front. Plant Sci. 2016, 7, 414. [Google Scholar] [CrossRef]
- Lv, J.; Yu, K.; Wei, J.; Gui, H.; Liu, C.; Liang, D.; Wang, Y.; Zhou, H.; Carlin, R.; Rich, R.; et al. Generation of Paternal Haploids in Wheat by Genome Editing of the Centromeric Histone CENH3. Nat. Biotechnol. 2020, 38, 1397–1401. [Google Scholar] [CrossRef]
- Kuppu, S.; Tan, E.H.; Nguyen, H.; Rodgers, A.; Comai, L.; Chan, S.W.L.; Britt, A.B. Point Mutations in Centromeric Histone Induce Post-Zygotic Incompatibility and Uniparental Inheritance. PLoS Genet. 2015, 11, e1005494. [Google Scholar] [CrossRef]
- Marimuthu, M.P.A.; Maruthachalam, R.; Bondada, R.; Kuppu, S.; Tan, E.H.; Britt, A.; Chan, S.W.L.; Comai, L. Epigenetically Mismatched Parental Centromeres Trigger Genome Elimination in Hybrids. Sci. Adv. 2021, 7, eabk1151. [Google Scholar] [CrossRef]
- Wang, N.; Gent, J.I.; Dawe, R.K. Haploid Induction by a Maize Cenh3 Null Mutant. Sci. Adv. 2021, 7, eabe2299. [Google Scholar] [CrossRef]
- Demidov, D.; Lermontova, I.; Moebes, M.; Kochevenko, A.; Fuchs, J.; Weiss, O.; Rutten, T.; Sorge, E.; Zuljan, E.; Giehl, R.F.H.; et al. Haploid Induction by Nanobody-Targeted Ubiquitin-Proteasome-Based Degradation of EYFP-Tagged CENH3 in Arabidopsis Thaliana. J. Exp. Bot. 2022, 73, 7243–7254. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Z.; Wang, J.; Jia, S.-G.; Wang, K.; Li, H.-J. Synthetic Apomixis: From Genetic Basis to Agricultural Application. Seed Biol. 2023, 2, 10. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, Y.; Yang, Y.; Huang, L.; Tang, B.; Zhang, H.; Hao, F.; Liu, W.; Li, Y.; Liu, Y.; et al. Allele-Aware Chromosome-Level Genome Assembly and Efficient Transgene-Free Genome Editing for the Autotetraploid Cultivated Alfalfa. Nat. Commun. 2020, 11, 2494. [Google Scholar] [CrossRef]
- Zhong, Y.; Yang, M.; Cheng, D.; Liu, J.; Han, Q.; Liu, C.; Qi, X.; Yan, T.; Teng, L.; Xv, C.; et al. Mutation of GmDMP Genes Triggers Haploid Induction in Soybean. bioRxiv 2024. [Google Scholar] [CrossRef]
- Wang, N.; Xia, X.; Jiang, T.; Li, L.; Zhang, P.; Niu, L.; Cheng, H.; Wang, K.; Lin, H. In Planta Haploid Induction by Genome Editing of DMP in the Model Legume Medicago Truncatula. Plant Biotechnol. J. 2022, 20, 22. [Google Scholar] [CrossRef]
- Qi, X.; Gao, H.; Lv, R.; Mao, W.; Zhu, J.; Liu, C.; Mao, L.; Li, X.; Xie, C. CRISPR/DCas-Mediated Gene Activation Toolkit Development and Its Application for Parthenogenesis Induction in Maize. Plant Commun. 2023, 4, 100449. [Google Scholar] [CrossRef]
- Kermicle, J.L. Indeterminate Gametophyte (Ig): Biology and Use. In The Maize Handbook; Springer: Berlin/Heidelberg, Germany, 1994; pp. 388–393. [Google Scholar]
- Liu, H.; Wang, K.; Jia, Z.; Gong, Q.; Lin, Z.; Du, L.; Pei, X.; Ye, X. Efficient Induction of Haploid Plants in Wheat by Editing of TaMTL Using an Optimized Agrobacterium-Mediated CRISPR System. J. Exp. Bot. 2020, 71, 1337–1349. [Google Scholar] [CrossRef]
- Jung, J.H.; Seo, Y.W. Challenges in Wide Implementation of Genome Editing for Crop Improvement. J. Crop Sci. Biotechnol. 2017, 20, 129–135. [Google Scholar] [CrossRef]
- Uliana Trentin, H.; Frei, U.K.; Lübberstedt, T. Breeding Maize Maternal Haploid Inducers. Plants 2020, 9, 614. [Google Scholar] [CrossRef]
- Jiang, C.; Sun, J.; Li, R.; Yan, S.; Chen, W.; Guo, L.; Qin, G.; Wang, P.; Luo, C.; Huang, W.; et al. A Reactive Oxygen Species Burst Causes Haploid Induction in Maize. Mol. Plant 2022, 15, 943–955. [Google Scholar] [CrossRef]
- Tao, J.; Bauer, D.E.; Chiarle, R. Assessing and Advancing the Safety of CRISPR-Cas Tools: From DNA to RNA Editing. Nat. Commun. 2023, 14, 212. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ouyang, K. Rapid Creation of CENH3-Mediated Haploid Induction Lines Using a Cytosine Base Editor (CBE). Plant Biol. 2023, 25, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Ashtiyani, R.; Ishii, T.; Niessen, M.; Stein, N.; Heckmann, S.; Gurushidze, M.; Banaei-Moghaddam, A.M.; Fuchs, J.; Schubert, V.; Koch, K.; et al. Point Mutation Impairs Centromeric CENH3 Loading and Induces Haploid Plants. Proc. Natl. Acad. Sci. USA 2015, 112, 11211–11216. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yuan, K.; Liu, Y.; Zhang, N.; Yang, L.; Zhang, Y.; Wang, Y.; Ji, J.; Fang, Z.; Han, F.; et al. In Vivo Maternal Haploid Induction Based on Genome Editing of in Brassica Oleracea. Plant Biotechnol. J. 2022, 20, 2242–2244. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, Y.; Chen, B.; Liu, J.; Wang, D.; Li, M.; Qi, X.; Liu, C.; Boutilier, K.; Chen, S. Establishment of a Dmp Based Maternal Haploid Induction System for Polyploid Brassica Napus and Nicotiana Tabacum. J. Integr. Plant Biol. 2022, 64, 1281–1294. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.; Xiao, Q.; Wang, H.; Wen, J.; Tu, J.; Shen, J.; Fu, T.; Yi, B. An in Planta Haploid Induction System in Brassica Napus. J. Integr. Plant Biol. 2022, 64, 1140–1144. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, J.; Zhao, H.; Zong, M.; Li, M.; Gong, G.; Wang, J.; Zhang, J.; Ren, Y.; Zhang, H.; et al. Production of Double Haploid Watermelon via Maternal Haploid Induction. Plant Biotechnol. J. 2023, 21, 1308–1310. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhang, J.; Jia, M.; Cao, L.; Yu, J.; Zhao, D. Haploid Induction in Allotetraploid Tobacco Using DMPs Mutation. Planta 2022, 255, 98. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, Y.; Liu, C.; Liu, Y.; Wang, Y.; Liang, D.; Liu, J.; Sahoo, G.; Kelliher, T. OsMATL Mutation Induces Haploid Seed Formation in Indica Rice. Nat. Plants 2018, 4, 530–533. [Google Scholar] [CrossRef]
- Marin-Montes, I.M.; Rodríguez-Pérez, J.E.; Robledo-Paz, A.; de la Cruz-Torres, E.; Peña-Lomelí, A.; Sahagún-Castellanos, J. Haploid Induction in Tomato (Solanum lycopersicum L.) via Gynogenesis. Plants 2022, 11, 1595. [Google Scholar] [CrossRef]
- Dong, L.; Li, L.; Liu, C.; Liu, C.; Geng, S.; Li, X.; Huang, C.; Mao, L.; Chen, S.; Xie, C. Genome Editing and Double-Fluorescence Proteins Enable Robust Maternal Haploid Induction and Identification in Maize. Mol. Plant 2018, 11, 1214–1217. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Zhao, H.; Song, W.; Cui, Y. Method for Propagating Sterile Male Plant Line. WO2014063442A1, 1 May 2014. Available online: https://patents.google.com/patent/WO2014063442A1/en (accessed on 25 January 2025).
- Liu, L.; Li, W.; Liu, C.; Chen, B.; Tian, X.; Chen, C.; Li, J.; Chen, S. In Vivo Haploid Induction Leads to Increased Frequency of Twin-Embryo and Abnormal Fertilization in Maize. BMC Plant Biol. 2018, 18, 313. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, F.; Bermejo, C.J.; Guindon, M.F.; Cointry, E. Speed Breeding in Pea (Pisum Sativum L.), an Efficient and Simple System to Accelerate Breeding Programs. Euphytica 2020, 216, 178. [Google Scholar] [CrossRef]
- Deswal, K. Progress and Opportunities in Double Haploid Production in Lentil (Lens Culinaris Medik.), Soybean (Glycine Max L. Merr.) and Chickpea (Cicer Arietinum L.). J. Pharmacogn. Phytochem. 2018, 7, 3105–3109. [Google Scholar]
- Kozak, K.; Galek, R.; Waheed, M.T.; Sawicka-Sienkiewicz, E. Anther Culture of Lupinus Angustifolius: Callus Formation and the Development of Multicellular and Embryo-Like Structures. Plant Growth Regul. 2011, 66, 145–153. [Google Scholar] [CrossRef]
- Cengiz, R. The Effect of Donors Used in In Vivo Maternal Haploid Technique on Haploid Induction Rate. Black Sea J. Agric. 2023, 6, 528–532. [Google Scholar] [CrossRef]
- Meng, D.; Luo, H.; Dong, Z.; Huang, W.; Liu, F.; Li, F.; Chen, S.; Yu, H.; Jin, W. Overexpression of Modified CENH3 in Maize Stock6-Derived Inducer Lines Can Effectively Improve Maternal Haploid Induction Rates. Front. Plant Sci. 2022, 13, 892055. [Google Scholar] [CrossRef]
- Nawade, B.; Bosamia, T.C.; Lee, J.H.; Jang, J.H.; Lee, O.R. Genome-Wide Characterization of the Soybean DOMAIN OF UNKNOWN FUNCTION 679 Membrane Protein Gene Family Highlights Their Potential Involvement in Growth and Stress Response. Front. Plant Sci. 2023, 14, 1216082. [Google Scholar] [CrossRef]
- Jin, C.; Dong, L.; Wei, C.; Wani, M.A.; Yang, C.; Li, S.; Li, F. Creating Novel Ornamentals via New Strategies in the Era of Genome Editing. Front. Plant Sci. 2023, 14, 1142866. [Google Scholar] [CrossRef]
- Liu, C.; Li, J.; Chen, M.; Li, W.; Zhong, Y.; Dong, X.; Xu, X.; Chen, C.; Tian, X.; Chen, S. Development of High-Oil Maize Haploid Inducer with a Novel Phenotyping Strategy. Crop J. 2022, 10, 524–531. [Google Scholar] [CrossRef]
- Wang, S.; Jin, W.; Wang, K. Centromere Histone H3- and Phospholipase-Mediated Haploid Induction in Plants. Plant Methods 2019, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- Ferrie, A.M.R.; Bhowmik, P.; Rajagopalan, N.; Kagale, S. CRISPR/Cas9-Mediated Targeted Mutagenesis in Wheat Doubled Haploids. Methods Mol. Biol. 2020, 2072, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Gudi, S.; Amandeep; Upadhyay, P.; Shekhawat, P.K.; Nayak, G.; Goyal, L.; Kumar, D.; Kumar, P.; Kamboj, A.; et al. Unlocking the Hidden Variation from Wild Repository for Accelerating Genetic Gain in Legumes. Front. Plant Sci. 2022, 13, 1035878. [Google Scholar] [CrossRef] [PubMed]
Conventional Plant Breeding | Modern Plant Breeding |
---|---|
Phenotype selection, leading to less accuracy | Genotype and phenotype selection, higher accuracy |
Slow to develop and release new varieties | Faster development of new varieties |
Relies on hybridization for various varieties | Uses advanced tools such as genomic selection and high-throughput phenotyping (HTP) |
Recessive alleles take longer | Efficiently incorporates recessive alleles using markers |
Depends on the breeder's skill, often inconsistent | Based on scientific data, making it more producible |
Requires minimal technical expertise | Requires advanced technical and genetic knowledge |
Low cost due to basic tools | High cost due to advanced technologies |
Plant Species | Gene Editing Method | References |
---|---|---|
Arabidopsis thaliana | CENH3, GFP-CENH3-tailswap (N-terminal fusion green fluorescent protein-tagged) CENH3, CENH3-tailswap (tail switching) | [47] |
CENH3 point mutation | [50,66] | |
BrCENH3/LoCENH3 complement AtCENH3 (heterologous complementation and N-terminal heterologous exchange) | [44] | |
AtDMP9 knockout, Atdmp/Atdmp | [4] | |
Brassica napus | BnaDMP knockout, Bnadmp/Bnadmp | [67,68,69] |
B. oleracea | BoC03.DMP9 knockout, BoC03.dmp9/BoC03.dmp9 | [68] |
Citrullus lanatus | DMP point mutation | [70] |
G. max | DMP point mutation | [4] |
M. sativa | MtDMP knockout, Mtdmp/Mtdmp | [57] |
N. tabacum | NtDMP knockout, Ntdmp/Ntdmp | [71] |
O. sativa | OsPLA1 knockout, Ospla1/Ospla1 | [72] |
T. aestivum | CENH3 knockout, +/Tacenh3α | [49] |
CENH3 knockout, Tamtl/Tamtl | [60] | |
Solanum lycopersicum | SlDMP knockout, Sldmp/Sldmp | [73] |
S. tuberosum | StDMP knockout, Stdmp/Stdmp | [73] |
Z. mays | CENH3, N-terminal modification | [48] |
ZmPLA1 knockout, Zmpla1/Zmpla1 | [74] | |
CENH3 knockout, +/cenh3 | [52] | |
ZmPLD3 knockout, Zmpld3/Zmpld3 | [70] | |
ZmKNL2 knockout, Zmknl2/Zmknl2 | [75] | |
ZmPOD65 knockout, Zmpod65/Zmpod65 | [63] | |
ClDMP4 knockout, Cldmp4/Cldmp4 CENH3 point mutation | [63] | |
MTL/NLD/ZMPLA1 point mutation | [40,76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Elshan, M.; Li, G.; Han, X.; Chen, X.; Feng, X. Perspectives of Genome Editing Mediated Haploid Inducer Systems in Legumes. Int. J. Mol. Sci. 2025, 26, 1154. https://doi.org/10.3390/ijms26031154
Liu Y, Elshan M, Li G, Han X, Chen X, Feng X. Perspectives of Genome Editing Mediated Haploid Inducer Systems in Legumes. International Journal of Molecular Sciences. 2025; 26(3):1154. https://doi.org/10.3390/ijms26031154
Chicago/Turabian StyleLiu, Yiqian, Musazade Elshan, Geng Li, Xiao Han, Xiao Chen, and Xianzhong Feng. 2025. "Perspectives of Genome Editing Mediated Haploid Inducer Systems in Legumes" International Journal of Molecular Sciences 26, no. 3: 1154. https://doi.org/10.3390/ijms26031154
APA StyleLiu, Y., Elshan, M., Li, G., Han, X., Chen, X., & Feng, X. (2025). Perspectives of Genome Editing Mediated Haploid Inducer Systems in Legumes. International Journal of Molecular Sciences, 26(3), 1154. https://doi.org/10.3390/ijms26031154