NHERF2 as a Novel Biomarker for Distinguishing MAC Pulmonary Disease from Tuberculosis Based on Proteome Analysis of Serum Extracellular Vesicles
Abstract
:1. Introduction
2. Results
2.1. Discovery of a Novel Biomarker with Proteome Analysis
2.2. Selection of a Novel Biomarker Candidate
2.3. Confirmation of a Novel Biomarker
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Sample Collection and EV Isolation
4.3. Transmission Electron Microscopy
4.4. Protocol for Data-Dependent Acquisition
4.5. Protocol for Data-Independent Acquisition
4.6. Bioinformatic Analysis of the Proteome
4.7. Western Blotting
4.8. Immunohistochemistry
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NTM | Nontuberculous mycobacterium |
MAC | Mycobacterium avium complex |
TB | Tuberculosis |
NHERF2 | Na+/H+ exchanger regulatory factor 2 |
References
- Chakaya, J.; Khan, M.; Ntoumi, F.; Aklillu, E.; Fatima, R.; Mwaba, P.; Kapata, N.; Mfinanga, S.; Hasnain, S.E.; Katoto, P.D.; et al. Global Tuberculosis Report 2020—Reflections on the Global TB burden, treatment and prevention efforts. Int. J. Infect. Dis. 2021, 113 (Suppl. 1), S7–S12. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.; Kasaeva, T.; Swaminathan, S. Covid-19’s Devastating Effect on Tuberculosis Care—A Path to Recovery. N. Engl. J. Med. 2022, 386, 1490–1493. [Google Scholar] [CrossRef] [PubMed]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J., Jr.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur. Respir. J. 2020, 56, 2000535. [Google Scholar] [CrossRef] [PubMed]
- Namkoong, H.; Kurashima, A.; Morimoto, K.; Hoshino, Y.; Hasegawa, N.; Ato, M.; Mitarai, S. Epidemiology of Pulmonary Nontuberculous Mycobacterial Disease, Japan. Emerg. Infect. Dis. 2016, 22, 1116–1117. [Google Scholar] [CrossRef]
- Bents, S.J.; Mercaldo, R.A.; Powell, C.; Henkle, E.; Marras, T.K.; Prevots, D.R. Nontuberculous mycobacterial pulmonary disease (NTM PD) incidence trends in the United States, 2010–2019. BMC Infect. Dis. 2024, 24, 1094. [Google Scholar] [CrossRef]
- Pedersen, A.A.; Løkke, A.; Fløe, A.; Ibsen, R.; Johansen, I.S.; Hilberg, O. Nationwide Increasing Incidence of Nontuberculous Mycobacterial Diseases Among Adults in Denmark: Eighteen Years of Follow-Up. Chest 2024, 166, 271–280. [Google Scholar] [CrossRef]
- Prevots, D.R.; Marshall, J.E.; Wagner, D.; Morimoto, K. Global Epidemiology of Nontuberculous Mycobacterial Pulmonary Disease: A Review. Clin. Chest Med. 2023, 44, 675–721. [Google Scholar] [CrossRef]
- Marras, T.K.; Campitelli, M.A.; Lu, H.; Chung, H.; Brode, S.K.; Marchand-Austin, A.; Winthrop, K.L.; Gershon, A.S.; Kwong, J.C.; Jamieson, F.B. Pulmonary Nontuberculous Mycobacteria-Associated Deaths, Ontario, Canada, 2001–2013. Emerg. Infect. Dis. 2017, 23, 468–476. [Google Scholar] [CrossRef]
- Lewinsohn, D.M.; Leonard, M.K.; LoBue, P.A.; Cohn, D.L.; Daley, C.L.; Desmond, E.; Keane, J.; Lewinsohn, D.A.; Loeffler, A.M.; Mazurek, G.H.; et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin. Infect. Dis. 2017, 64, 111–115. [Google Scholar] [CrossRef]
- Anderson, N.L.; Anderson, N.G. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell. Proteom. 2002, 1, 845–867. [Google Scholar] [CrossRef]
- Pegtel, D.M.; Gould, S.J. Exosomes. Annu. Rev. Biochem. 2019, 88, 487–514. [Google Scholar] [CrossRef] [PubMed]
- Tkach, M.; Théry, C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 2016, 164, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Goberdhan, D.C.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.; Erdbrügger, U.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, A.; Kim, H.S.; Bojmar, L.; Gyan, K.E.; Cioffi, M.; Hernandez, J.; Zambirinis, C.P.; Rodrigues, G.; Molina, H.; Heissel, S.; et al. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell 2020, 182, 1044–1061.e18. [Google Scholar] [CrossRef] [PubMed]
- Shiromizu, T.; Kume, H.; Ishida, M.; Adachi, J.; Kano, M.; Matsubara, H.; Tomonaga, T. Quantitation of putative colorectal cancer biomarker candidates in serum extracellular vesicles by targeted proteomics. Sci. Rep. 2017, 7, 12782. [Google Scholar] [CrossRef]
- Donowitz, M.; Cha, B.; Zachos, N.C.; Brett, C.L.; Sharma, A.; Tse, C.M.; Li, X. NHERF family and NHE3 regulation. J. Physiol. 2005, 567, 3–11. [Google Scholar] [CrossRef]
- Kitada, S.; Kobayashi, K.; Ichiyama, S.; Takakura, S.; Sakatani, M.; Suzuki, K.; Takashima, T.; Nagai, T.; Sakurabayashi, I.; Ito, M.; et al. Serodiagnosis of Mycobacterium avium-complex pulmonary disease using an enzyme immunoassay kit. Am. J. Respir. Crit. Care Med. 2008, 177, 793–797. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, Y.; Li, S.; Ye, X.; Jiang, Y.; Tang, L.; Wang, J. Proteomics Analysis of Exosomes From Patients With Active Tuberculosis Reveals Infection Profiles and Potential Biomarkers. Front. Microbiol. 2021, 12, 800807. [Google Scholar] [CrossRef]
- Mehaffy, C.; Kruh-Garcia, N.A.; Graham, B.; Jarlsberg, L.G.; Willyerd, C.E.; Borisov, A.; Sterling, T.R.; Nahid, P.; Dobos, K.M. Identification of Mycobacterium tuberculosis Peptides in Serum Extracellular Vesicles from Persons with Latent Tuberculosis Infection. J. Clin. Microbiol. 2020, 58, e00393-20. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Schorey, J.S. Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. J. Biol. Chem. 2007, 282, 25779–25789. [Google Scholar] [CrossRef]
- Li, L.; Cheng, Y.; Emrich, S.; Schorey, J. Activation of endothelial cells by extracellular vesicles derived from Mycobacterium tuberculosis infected macrophages or mice. PLoS ONE 2018, 13, e0198337. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zheng, X.; Ma, J.; Gu, J.; Sha, W. Comparative Proteomic Analysis of Exosomes Derived from Patients Infected with Non-Tuberculous Mycobacterium and Mycobacterium tuberculosis. Microorganisms 2023, 11, 2334. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K.; Kitada, S.; Matsumoto, Y.; Komukai, S.; Kuge, T.; Kawasaki, T.; Matsuki, T.; Motooka, D.; Tsujino, K.; Miki, M.; et al. Serum GPL core antibody levels are associated with disease activity and treatment outcomes in Mycobacterium avium complex lung disease following first line antibiotic treatment. Respir. Med. 2021, 187, 106585. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.C.; Ato, M.; Wang, J.T.; Jou, R.; Wang, J.Y.; Kobayashi, K.; Lai, H.C.; Yu, C.J.; Lee, L.N.; Luh, K.T. Sero-diagnosis of Mycobacterium avium complex lung disease using serum immunoglobulin A antibody against glycopeptidolipid antigen in Taiwan. PLoS ONE 2013, 8, e80473. [Google Scholar] [CrossRef]
- Weinman, E.J.; Steplock, D.; Shenolikar, S. CAMP-mediated inhibition of the renal brush border membrane Na+-H+ exchanger requires a dissociable phosphoprotein cofactor. J. Clin. Investig. 1993, 92, 1781–1786. [Google Scholar] [CrossRef]
- Voltz, J.W.; Weinman, E.J.; Shenolikar, S. Expanding the role of NHERF, a PDZ-domain containing protein adapter, to growth regulation. Oncogene 2001, 20, 6309–6314. [Google Scholar] [CrossRef]
- Kim, J.S.; Tanaka, N.; Newell, J.D.; DeGroote, M.A.; Fulton, K.; Huitt, G.; Lynch, D.A. Nontuberculous mycobacterial infection: CT scan findings, genotype, and treatment responsiveness. Chest 2005, 128, 3863–3869. [Google Scholar] [CrossRef]
- Okuda, K.; Shaffer, K.M.; Ehre, C. Mucins and CFTR: Their Close Relationship. Int. J. Mol. Sci. 2022, 23, 10232. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Zhang, Y.; Naren, A.P. CFTR-NHERF2-LPA2 Complex in the Airway and Gut Epithelia. Int. J. Mol. Sci. 2017, 18, 1896. [Google Scholar] [CrossRef]
- Singh, A.K.; Riederer, B.; Krabbenhöft, A.; Rausch, B.; Bonhagen, J.; Lehmann, U.; De Jonge, H.R.; Donowitz, M.; Yun, C.; Weinman, E.J.; et al. Differential roles of NHERF1, NHERF2, and PDZK1 in regulating CFTR-mediated intestinal anion secretion in mice. J. Clin. Investig. 2009, 119, 540–550. [Google Scholar] [CrossRef]
- Ekinci, İ.B.; Hızal, M.; Emiralioğlu, N.; Özçelik, U.; Yalçın, E.; Doğru, D.; Kiper, N.; Dayangaç-Erden, D. Differentially expressed genes associated with disease severity in siblings with cystic fibrosis. Pediatr. Pulmonol. 2021, 56, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Sarker, R.; Valkhoff, V.E.; Zachos, N.C.; Lin, R.; Cha, B.; Chen, T.E.; Guggino, S.; Zizak, M.; de Jonge, H.; Hogema, B.; et al. NHERF1 and NHERF2 are necessary for multiple but usually separate aspects of basal and acute regulation of NHE3 activity. Am. J. Physiol. Cell Physiol. 2011, 300, C771–C782. [Google Scholar] [CrossRef] [PubMed]
- Namkoong, H.; Omae, Y.; Asakura, T.; Ishii, M.; Suzuki, S.; Morimoto, K.; Kawai, Y.; Emoto, K.; Oler, A.J.; Szymanski, E.P.; et al. Genome-wide association study in patients with pulmonary Mycobacterium avium complex disease. Eur. Respir. J. 2021, 58, 1902269. [Google Scholar] [CrossRef]
- Matsuyama, M.; Matsumura, S.; Nonaka, M.; Nakajima, M.; Sakai, C.; Arai, N.; Ueda, K.; Hizawa, N. Pathophysiology of pulmonary nontuberculous mycobacterial (NTM) disease. Respir. Investig. 2023, 61, 135–148. [Google Scholar] [CrossRef]
Healthy Control | MAC | TB | |
---|---|---|---|
n | 10 | 10 | 7 |
Age, y | 47.8 ± 9.53 | 62.8 ± 6.69 | 42 ± 10.6 |
Male/Female | 6(60)/4(40) | 0(0)/10(100) | 5(71)/2(29) |
BMI | 23.0 ± 2.14 | 20.0 ± 1.48 | 20.3 ± 1.42 |
Upregulated only in MAC | ||||||||
---|---|---|---|---|---|---|---|---|
Protein ID | Gene | Protein name | Fold change (MAC vs. HC) | p-value (MAC vs. HC) | Fold change (TB vs. HC) | p-value (TB vs. HC) | Fold change (MAC vs. TB) | p-value (MAC vs. TB) |
Q9NSB4 | KRT82 | Keratin, type II cuticular Hb2 | 5.72 | 0.04178 | 1.48 | 0.62821 | 3.86 | 0.01758 |
Q9NQ79 | CRTAC1 | Cartilage acidic protein 1 | 4.55 | 0.00041 | 1.32 | 0.95465 | 3.46 | 0.00300 |
O15230 | LAMA5 | Laminin subunit alpha-5 | 3.16 | 0.02051 | 0.85 | 0.80478 | 3.74 | 0.02051 |
Q96CX2 | KCTD12 | BTB/POZ domain-containing protein KCTD12 | 2.56 | 0.00799 | 1.07 | 1.00000 | 2.39 | 0.03810 |
Q16602 | CALCRL | Calcitonin gene-related peptide type 1 receptor | 2.35 | 0.04262 | 0.84 | 0.69913 | 2.80 | 0.01998 |
Q04756 | HGFAC | Hepatocyte growth factor activator | 2.35 | 0.03147 | 0.87 | 0.60639 | 2.70 | 0.02897 |
O15482 | TEX28 | Testis-specific protein TEX28 | 2.31 | 0.01399 | 0.65 | 0.05128 | 3.54 | 0.00466 |
Q15599 | SLC9A3R2 | Na(+)/H(+) exchange regulatory cofactor NHE-RF2 | 2.30 | 0.01721 | 0.90 | 0.68059 | 2.55 | 0.01357 |
Q9NPD3 | EXOSC4 | Exosome complex component RRP41 | 2.01 | 0.01768 | 1.01 | 0.87626 | 2.00 | 0.00794 |
Upregulated only in TB | ||||||||
Protein ID | Gene | Protein name | Fold change (MAC vs. HC) | p-value (MAC vs. HC) | Fold change (TB vs. HC) | p-value (TB vs. HC) | Fold change (TB vs. MAC) | p-value (TB vs. MAC) |
P02741 | CRP | C-reactive protein | 0.73 | 0.97051 | 21.57 | 0.00041 | 29.57 | 0.00463 |
Q8NC44 | RETREG2 | Reticulophagy regulator 2 | 0.78 | 0.66072 | 8.67 | 0.00021 | 11.11 | 0.00787 |
P41218 | MNDA | Myeloid cell nuclear differentiation antigen | 0.99 | 0.60481 | 6.76 | 0.00480 | 6.86 | 0.00480 |
P02747 | C1QC | Complement C1q subcomponent subunit C | 1.84 | 0.02323 | 5.87 | 0.00010 | 3.19 | 0.01851 |
Q6P1N9 | TATDN1 | Putative deoxyribonuclease TATDN1 | 0.99 | 0.91818 | 2.63 | 0.03357 | 2.65 | 0.02424 |
Upregulated in both MAC and TB | ||||||||
Protein ID | Gene | Protein name | Fold change (MAC vs. HC) | p-value (MAC vs. HC) | Fold change (TB vs. HC) | p-value (TB vs. HC) | Fold change (TB vs. MAC) | p-value (TB vs. MAC) |
P22352 | GPX3 | Glutathione peroxidase 3 | 13.12 | 0.00001 | 19.40 | 0.00041 | 1.48 | 0.88677 |
Q15166 | PON3 | Serum paraoxonase/lactonase 3 | 7.97 | 0.00032 | 2.91 | 0.02499 | 0.36 | 0.10880 |
Q53SZ7 | PRR30 | Proline-rich protein 30 | 4.37 | 0.00866 | 8.73 | 0.00253 | 2.00 | 0.18065 |
Q3MII6 | TBC1D25 | TBC1 domain family member 25 | 3.62 | 0.00684 | 2.94 | 0.04309 | 0.81 | 0.53620 |
Q8NHS2 | GOT1L1 | Putative aspartate aminotransferase, cytoplasmic 2 | 3.40 | 0.00021 | 2.22 | 0.00309 | 0.65 | 0.07024 |
P82987 | ADAMTSL3 | ADAMTS-like protein 3 | 2.84 | 0.00001 | 2.24 | 0.00041 | 0.79 | 0.26985 |
P23381 | WARS | Tryptophan--tRNA ligase, cytoplasmic | 2.38 | 0.00001 | 4.79 | 0.00010 | 2.01 | 0.00679 |
O14709 | ZNF197 | Zinc finger protein 197 | 2.26 | 0.01851 | 6.49 | 0.00200 | 2.87 | 0.02424 |
P02745 | C1QA | Complement C1q subcomponent subunit A | 2.07 | 0.01522 | 8.38 | 0.00210 | 4.05 | 0.09386 |
P02746 | C1QB | Complement C1q subcomponent subunit B | 2.00 | 0.01150 | 7.69 | 0.00010 | 3.84 | 0.00967 |
Healthy Control | MAC | |
---|---|---|
n | 11 | 7 |
Age, y | 61.2.8 ± 9.58 | 67.3 ± 8.38 |
Male/Female | 4(40)/6(60) | 2(29)/5(71) |
BMI | 23.3 ± 3.71 | 19.0 ± 2.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naito, M.; Takeda, Y.; Edahiro, R.; Shirai, Y.; Enomoto, T.; Nakayama, M.; Nojima, S.; Nogami-Ito, M.; Mori, M.; Yano, Y.; et al. NHERF2 as a Novel Biomarker for Distinguishing MAC Pulmonary Disease from Tuberculosis Based on Proteome Analysis of Serum Extracellular Vesicles. Int. J. Mol. Sci. 2025, 26, 1155. https://doi.org/10.3390/ijms26031155
Naito M, Takeda Y, Edahiro R, Shirai Y, Enomoto T, Nakayama M, Nojima S, Nogami-Ito M, Mori M, Yano Y, et al. NHERF2 as a Novel Biomarker for Distinguishing MAC Pulmonary Disease from Tuberculosis Based on Proteome Analysis of Serum Extracellular Vesicles. International Journal of Molecular Sciences. 2025; 26(3):1155. https://doi.org/10.3390/ijms26031155
Chicago/Turabian StyleNaito, Maiko, Yoshito Takeda, Ryuya Edahiro, Yuya Shirai, Takatoshi Enomoto, Mana Nakayama, Satoshi Nojima, Mari Nogami-Ito, Masahide Mori, Yukihiro Yano, and et al. 2025. "NHERF2 as a Novel Biomarker for Distinguishing MAC Pulmonary Disease from Tuberculosis Based on Proteome Analysis of Serum Extracellular Vesicles" International Journal of Molecular Sciences 26, no. 3: 1155. https://doi.org/10.3390/ijms26031155
APA StyleNaito, M., Takeda, Y., Edahiro, R., Shirai, Y., Enomoto, T., Nakayama, M., Nojima, S., Nogami-Ito, M., Mori, M., Yano, Y., Matsuki, T., Yoshimura, H., Hara, R., Yamamoto, M., Masuhiro, K., Naito, Y., Koyama, S., Iwahori, K., Nagatomo, I., ... Kumanogoh, A. (2025). NHERF2 as a Novel Biomarker for Distinguishing MAC Pulmonary Disease from Tuberculosis Based on Proteome Analysis of Serum Extracellular Vesicles. International Journal of Molecular Sciences, 26(3), 1155. https://doi.org/10.3390/ijms26031155