Structure-Based Screening and Optimization of PafA Inhibitors with Potent Anti-Tuberculosis Activity
Abstract
:1. Introduction
2. Results
2.1. PafA Inhibitor Identified by the Computer-Aided Drug Screening
2.2. Structural Basis for the Inhibition of PafA-Catalyzed Pupylation by Pi-1-58
2.3. Structure-Based Development of Pi-1-58 Analogs
2.4. Pi-1-58 and Pi-2-26 Inhibit Mtb Growth Under Nitric Oxide Stress
3. Discussion
4. Methods
4.1. Protein Cloning, Expression, and Purification
4.2. Sequence Alignment and Homology Modeling
4.3. Structure-Based Virtual Screening
4.4. Similarity Searching
4.5. IC50 Determination
4.6. Inhibitor Profile of Pupylation Activity of PafA
4.7. Pupylation Assays with PafA Inhibitors
4.8. Co-Immunoprecipitation
4.9. Mycobactericidal Activity
4.10. Abbreviations Table
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cilloni, L.; Fu, H.; Vesga, J.F.; Dowdy, D.; Pretorius, C.; Ahmedov, S.; Nair, S.A.; Mosneaga, A.; Masini, E.; Sahu, S.; et al. The potential impact of the COVID-19 pandemic on the tuberculosis epidemic a modelling analysis. eClinicalMedicine 2020, 28, 100603. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Tuberculosis Report 2021. 2021. Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 17 December 2023).
- Goel, D. Bedaquiline: A novel drug to combat multiple drug-resistant tuberculosis. J. Pharmacol. Pharmacother. 2014, 5, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, D.T.; Liu, J.; Lee, R.B.; Lee, R.E. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv. Drug Deliv. Rev. 2016, 102, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Guglielmetti, L. Drug-Resistant Tuberculosis in France: Epidemiology and Management. Doctoral Dissertation, Sorbonne Université, Paris, France, 2018. [Google Scholar]
- Pontali, E.; Centis, R.; D’ambrosio, L.; Toscanini, F.; Migliori, G.B. Recent evidence on delamanid use for rifampicin-resistant tuberculosis. J. Thorac. Dis. 2019, 11, S457–S460. [Google Scholar] [CrossRef] [PubMed]
- Bode, N.J.; Darwin, K.H. The Pup-Proteasome System of Mycobacteria. Microbiol. Spectr. 2014, 2, 667–680. [Google Scholar] [CrossRef] [PubMed]
- Pearce, M.J.; Mintseris, J.; Ferreyra, J.; Gygi, S.P.; Darwin, K.H. Ubiquitin-Like Protein Involved in the Proteasome Pathway of Mycobacterium tuberculosis. Science 2008, 322, 1104–1107. [Google Scholar] [CrossRef] [PubMed]
- Striebel, F.; Imkamp, F.; Sutter, M.; Steiner, M.; Mamedov, A.; Weber-Ban, E. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat. Struct. Mol. Biol. 2009, 16, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.-W.; Czajkowsky, D.M.; Wang, T.; Wang, X.-D.; Wang, J.-B.; Zhang, H.-N.; Liu, C.-X.; Wu, F.-L.; He, X.; Xu, Z.-W.; et al. Identification of Serine 119 as an Effective Inhibitor Binding Site of M. tuberculosis Ubiquitin-like Protein Ligase PafA Using Purified Proteins and M. smegmatis. EBioMedicine 2018, 30, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, S.; Dong, B.; Li, C.; Jian, L.; He, J.; Zeng, J.; Zhou, Q.; Jia, D.; Luo, Y.; et al. Discovery and Mechanistic Study of Mycobacterium tuberculosis PafA Inhibitors. J. Med. Chem. 2022, 65, 11058–11065. [Google Scholar] [CrossRef] [PubMed]
- Barandun, J.; Delley, C.L.; Ban, N.; Weber-Ban, E. Crystal Structure of the Complex between Prokaryotic Ubiquitin-like Protein and Its Ligase PafA. J. Am. Chem. Soc. 2013, 135, 6794–6797. [Google Scholar] [CrossRef] [PubMed]
- Regev, O.; Korman, M.; Hecht, N.; Roth, Z.; Forer, N.; Zarivach, R.; Gur, E. An Extended Loop of the Pup Ligase, PafA, Mediates Interaction with Protein Targets. J. Mol. Biol. 2016, 428, 4143–4153. [Google Scholar] [CrossRef] [PubMed]
- Pearce, M.J.; Arora, P.; A Festa, R.; Butler-Wu, S.M.; Gokhale, R.S.; Darwin, K.H. Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO J. 2006, 25, 5423–5432. [Google Scholar] [CrossRef] [PubMed]
- Imkamp, F.; Ziemski, M.; Weber-Ban, E. Pupylation-dependent and -independent proteasomal degradation in mycobacteria. Biomol. Concepts 2015, 6, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Festa, R.A.; Pearce, M.J.; Darwin, K.H. Characterization of the Proteasome Accessory Factor (paf) Operon in Mycobacterium tuberculosis. J. Bacteriol. 2007, 189, 3044–3050. [Google Scholar] [CrossRef] [PubMed]
- Burns, K.E.; Liu, W.-T.; Boshoff, H.I.M.; Dorrestein, P.C.; Barry, C.E. Proteasomal Protein Degradation in Mycobacteria Is Dependent upon a Prokaryotic Ubiquitin-like Protein. J. Biol. Chem. 2009, 284, 3069–3075. [Google Scholar] [CrossRef] [PubMed]
- Sastry, G.M.; Dixon, S.L.; Sherman, W. Rapid Shape-Based Ligand Alignment and Virtual Screening Method Based on Atom/Feature-Pair Similarities and Volume Overlap Scoring. J. Chem. Inf. Model. 2011, 51, 2455–2466. [Google Scholar] [CrossRef] [PubMed]
- Ofer, N.; Forer, N.; Korman, M.; Vishkautzan, M.; Khalaila, I.; Gur, E. Allosteric Transitions Direct Protein Tagging by PafA, the Prokaryotic Ubiquitin-like Protein (Pup) Ligase. J. Biol. Chem. 2013, 288, 11287–11293. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Xie, J.; Wang, L.; Chen, H.; Zheng, Y.; Wang, X.; Guo, S.; Wang, T.; Bi, J.; Zhang, X.; et al. Structure-Based Screening and Optimization of PafA Inhibitors with Potent Anti-Tuberculosis Activity. Int. J. Mol. Sci. 2024, 25, 13189. https://doi.org/10.3390/ijms252313189
Jiang H, Xie J, Wang L, Chen H, Zheng Y, Wang X, Guo S, Wang T, Bi J, Zhang X, et al. Structure-Based Screening and Optimization of PafA Inhibitors with Potent Anti-Tuberculosis Activity. International Journal of Molecular Sciences. 2024; 25(23):13189. https://doi.org/10.3390/ijms252313189
Chicago/Turabian StyleJiang, Hewei, Jin Xie, Lei Wang, Hong Chen, Yunxiao Zheng, Xuening Wang, Shujuan Guo, Tao Wang, Jing Bi, Xuelian Zhang, and et al. 2024. "Structure-Based Screening and Optimization of PafA Inhibitors with Potent Anti-Tuberculosis Activity" International Journal of Molecular Sciences 25, no. 23: 13189. https://doi.org/10.3390/ijms252313189
APA StyleJiang, H., Xie, J., Wang, L., Chen, H., Zheng, Y., Wang, X., Guo, S., Wang, T., Bi, J., Zhang, X., Pei, J., & Tao, S. (2024). Structure-Based Screening and Optimization of PafA Inhibitors with Potent Anti-Tuberculosis Activity. International Journal of Molecular Sciences, 25(23), 13189. https://doi.org/10.3390/ijms252313189