Intracrine Formation of Steroid Hormones in Breast Cancer, Epidermal Keratinocyte, Dermal Fibroblast, and Adipocyte Cell Lines Measured by LC-MS/MS
Abstract
:1. Introduction
2. Results
2.1. Analysis and Quantification of Steroid Hormones by LC-MS/MS
2.2. Formation of DHEAS Metabolites in MCF-7 Cells
2.3. Formation of DHEAS Metabolites in HaCaT Cells
2.4. Formation of DHEAS Metabolites in HDF Cells
2.5. Formation of DHEAS Metabolites in 3T3-L1 Adipocytes
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Cell Culture
4.3. Sample Preparation
4.4. Analysis Using UHPLC-MRM/MS
4.5. Method Validation—Linearity
4.6. Method Validation—Intra-/Inter-Assay Accuracy and Precision
4.7. Method Validation—Recovery and Matrix Effect
4.8. Method Validation—Stability
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | androgen receptor |
A4 | androstenedione |
CE | collision energy |
CXP | collision cell exit potential |
EP | entrance potential |
ER | estrogen receptor |
ESI | electrospray ionization |
E2 | estradiol |
DHEA | dehydroepiandrosterone |
DHEAS | dehydroepiandrosterone sulfate |
DHT | dihydrotestosterone |
DP | declustering potential |
HDF | human dermal fibroblasts |
IS | internal standard |
LOD | limit of detection |
LLOQ | lower limit of quantification |
m/z | mass-to-charge ratio |
MRM | multiple-reaction monitoring |
QC | quality control |
LQC | low-concentration quality control |
MQC | medium-concentration quality control |
HQC | high-concentration quality control |
STS | steroid sulfatase |
RT | retention time |
V | volts |
3β-HSD | 3β-hydroxysteroid dehydrogenase |
17β-HSD | 17β-hydroxysteroid dehydrogenase |
References
- Tang, J.; Chen, L.R.; Chen, K.H. The Utilization of Dehydroepiandrosterone as a Sexual Hormone Precursor in Premenopausal and Postmenopausal Women: An Overview. Pharmaceuticals 2021, 15, 46. [Google Scholar] [CrossRef]
- Schiffer, L.; Arlt, W.; Storbeck, K.H. Intracrine androgen biosynthesis, metabolism and action revisited. Mol. Cell. Endocrinol. 2018, 465, 4–26. [Google Scholar] [CrossRef] [PubMed]
- Rendina, D.N.; Ryff, C.D.; Coe, C.L. Precipitous Dehydroepiandrosterone Declines Reflect Decreased Physical Vitality and Function. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, C.; Nethander, M.; Karlsson, M.K.; Rosengren, B.E.; Ribom, E.; Mellstrom, D.; Vandenput, L. Serum DHEA and Its Sulfate Are Associated With Incident Fall Risk in Older Men: The MrOS Sweden Study. J. Bone Miner. Res. 2018, 33, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.T.; Chen, Y.; Zhou, Y.; Adi, D.; Zheng, Y.Y.; Liu, F.; Ma, Y.T.; Xie, X. Prognostic Value of Dehydroepiandrosterone Sulfate for Patients With Cardiovascular Disease: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2017, 6, e004896. [Google Scholar] [CrossRef]
- Kehinde, E.O.; Akanji, A.O.; Memon, A.; Bashir, A.A.; Daar, A.S.; Al-Awadi, K.A.; Fatinikun, T. Prostate cancer risk: The significance of differences in age related changes in serum conjugated and unconjugated steroid hormone concentrations between Arab and Caucasian men. Int. Urol. Nephrol. 2006, 38, 33–44. [Google Scholar] [CrossRef]
- Gabrielson, M.; Ubhayasekera, K.A.; Acharya, S.R.; Franko, M.A.; Eriksson, M.; Bergquist, J.; Czene, K.; Hall, P. Inclusion of Endogenous Plasma Dehydroepiandrosterone Sulfate and Mammographic Density in Risk Prediction Models for Breast Cancer. Cancer Epidemiol. Biomark. Prev. 2020, 29, 574–581. [Google Scholar] [CrossRef]
- Zumoff, B.; Levin, J.; Rosenfeld, R.S.; Markham, M.; Strain, G.W.; Fukushima, D.K. Abnormal 24-hr mean plasma concentrations of dehydroisoandrosterone and dehydroisoandrosterone sulfate in women with primary operable breast cancer. Cancer Res. 1981, 41, 3360–3363. [Google Scholar]
- Casson, P.R.; Andersen, R.N.; Herrod, H.G.; Stentz, F.B.; Straughn, A.B.; Abraham, G.E.; Buster, J.E. Oral dehydroepiandrosterone in physiologic doses modulates immune function in postmenopausal women. Am. J. Obstet. Gynecol. 1993, 169, 1536–1539. [Google Scholar] [CrossRef] [PubMed]
- Haren, M.T.; Malmstrom, T.K.; Banks, W.A.; Patrick, P.; Miller, D.K.; Morley, J.E. Lower serum DHEAS levels are associated with a higher degree of physical disability and depressive symptoms in middle-aged to older African American women. Maturitas 2007, 57, 347–360. [Google Scholar] [CrossRef]
- Wong, S.Y.; Leung, J.C.; Kwok, T.; Ohlsson, C.; Vandenput, L.; Leung, P.C.; Woo, J. Low DHEAS levels are associated with depressive symptoms in elderly Chinese men: Results from a large study. Asian J. Androl. 2011, 13, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Sheoran, A.; Gupta, P.; Mahto, S.K.; Jain, P.; Varshney, A.K.; Sharma, L.K. Association of Sex Hormones and Androgens with Disease Activity in Premenopausal Females with Rheumatoid Arthritis. Mediterr. J. Rheumatol. 2023, 34, 152–158. [Google Scholar] [CrossRef]
- Altenburger, R.; Kissel, T. The human keratinocyte cell line HaCaT: An in vitro cell culture model for keratinocyte testosterone metabolism. Pharm. Res. 1999, 16, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Verdier-Sevrain, S.; Bonte, F.; Gilchrest, B. Biology of estrogens in skin: Implications for skin aging. Exp. Dermatol. 2006, 15, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Emmerson, E.; Hardman, M.J. The role of estrogen deficiency in skin ageing and wound healing. Biogerontology 2012, 13, 3–20. [Google Scholar] [CrossRef]
- Thornton, M.J. Estrogens and aging skin. Dermatoendocrinol 2013, 5, 264–270. [Google Scholar] [CrossRef]
- Labrie, F.; Belanger, A.; Simard, J.; Van, L.-T.; Labrie, C. DHEA and peripheral androgen and estrogen formation: Intracinology. Ann. N. Y. Acad. Sci. 1995, 774, 16–28. [Google Scholar] [CrossRef] [PubMed]
- De Pergola, G.; Giagulli, V.A.; Garruti, G.; Cospite, M.R.; Giorgino, F.; Cignarelli, M.; Giorgino, R. Low dehydroepiandrosterone circulating levels in premenopausal obese women with very high body mass index. Metabolism 1991, 40, 187–190. [Google Scholar] [CrossRef]
- Tchernof, A.; Despres, J.P.; Belanger, A.; Dupont, A.; Prud’homme, D.; Moorjani, S.; Lupien, P.J.; Labrie, F. Reduced testosterone and adrenal C19 steroid levels in obese men. Metabolism 1995, 44, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Sayin, S.; Kutlu, R.; Kulaksizoglu, M. The relationship between sex steroids, insulin resistance and body compositions in obese women: A case-control study. J. Med. Biochem. 2020, 39, 25–31. [Google Scholar] [CrossRef]
- Hernandez-Morante, J.J.; Perez-de-Heredia, F.; Lujan, J.A.; Zamora, S.; Garaulet, M. Role of DHEA-S on body fat distribution: Gender- and depot-specific stimulation of adipose tissue lipolysis. Steroids 2008, 73, 209–215. [Google Scholar] [CrossRef]
- Le Bail, J.C.; Lotfi, H.; Charles, L.; Pepin, D.; Habrioux, G. Conversion of dehydroepiandrosterone sulfate at physiological plasma concentration into estrogens in MCF-7 cells. Steroids 2002, 67, 1057–1064. [Google Scholar] [CrossRef]
- Gingras, S.; Turgeon, C.; Brochu, N.; Soucy, P.; Labrie, F.; Simard, J. Characterization and modulation of sex steroid metabolizing activity in normal human keratinocytes in primary culture and HaCaT cells. J. Steroid Biochem. Mol. Biol. 2003, 87, 167–179. [Google Scholar] [CrossRef]
- Lee, A.V.; Oesterreich, S.; Davidson, N.E. MCF-7 cells--changing the course of breast cancer research and care for 45 years. J. Natl. Cancer Inst. 2015, 107, djv073. [Google Scholar] [CrossRef] [PubMed]
- Galuska, C.E.; Hartmann, M.F.; Sanchez-Guijo, A.; Bakhaus, K.; Geyer, J.; Schuler, G.; Zimmer, K.P.; Wudy, S.A. Profiling intact steroid sulfates and unconjugated steroids in biological fluids by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Analyst 2013, 138, 3792–3801. [Google Scholar] [CrossRef] [PubMed]
- Gabai, G.; Mongillo, P.; Giaretta, E.; Marinelli, L. Do Dehydroepiandrosterone (DHEA) and Its Sulfate (DHEAS) Play a Role in the Stress Response in Domestic Animals? Front. Vet. Sci. 2020, 7, 588835. [Google Scholar] [CrossRef] [PubMed]
- Rubinow, K.B. An intracrine view of sex steroids, immunity, and metabolic regulation. Mol. Metab. 2018, 15, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Brook, N.; Brook, E.; Dass, C.R.; Chan, A.; Dharmarajan, A. Pigment Epithelium-Derived Factor and Sex Hormone-Responsive Cancers. Cancers 2020, 12, 3483. [Google Scholar] [CrossRef]
- Mueller, J.W.; Gilligan, L.C.; Idkowiak, J.; Arlt, W.; Foster, P.A. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr. Rev. 2015, 36, 526–563. [Google Scholar] [CrossRef]
- Geyer, J.; Bakhaus, K.; Bernhardt, R.; Blaschka, C.; Dezhkam, Y.; Fietz, D.; Grosser, G.; Hartmann, K.; Hartmann, M.F.; Neunzig, J.; et al. The role of sulfated steroid hormones in reproductive processes. J. Steroid Biochem. Mol. Biol. 2017, 172, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Kanda, N.; Hoashi, T.; Saeki, H. The Roles of Sex Hormones in the Course of Atopic Dermatitis. Int. J. Mol. Sci. 2019, 20, 4660. [Google Scholar] [CrossRef]
- Suzuki, T.; Miki, Y.; Nakamura, Y.; Moriya, T.; Ito, K.; Ohuchi, N.; Sasano, H. Sex steroid-producing enzymes in human breast cancer. Endocr. Relat. Cancer 2005, 12, 701–720. [Google Scholar] [CrossRef]
- Sasano, H.; Uzuki, M.; Sawai, T.; Nagura, H.; Matsunaga, G.; Kashimoto, O.; Harada, N. Aromatase in human bone tissue. J. Bone Miner. Res. 1997, 12, 1416–1423. [Google Scholar] [CrossRef]
- Vihko, R.; Apter, D. Endogenous steroids in the pathophysiology of breast cancer. Crit. Rev. Oncol. Hematol. 1989, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.J.; Veras, K.; de Oliveira Carvalho, C.R. Dehydroepiandrosterone on metabolism and the cardiovascular system in the postmenopausal period. J. Mol. Med. 2020, 98, 39–57. [Google Scholar] [CrossRef]
- Schweikert, H.U.; Milewich, L.; Wilson, J.D. Aromatization of androstenedione by cultured human fibroblasts. J. Clin. Endocrinol. Metab. 1976, 43, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Longcope, C.; Pratt, J.H.; Schneider, S.H.; Fineberg, S.E. Aromatization of androgens by muscle and adipose tissue in vivo. J. Clin. Endocrinol. Metab. 1978, 46, 146–152. [Google Scholar] [CrossRef]
- Lapointe, J.; Labrie, C. Role of the cyclin-dependent kinase inhibitor p27(Kip1) in androgen-induced inhibition of CAMA-1 breast cancer cell proliferation. Endocrinology 2001, 142, 4331–4338. [Google Scholar] [CrossRef] [PubMed]
- Ando, S.; De Amicis, F.; Rago, V.; Carpino, A.; Maggiolini, M.; Panno, M.L.; Lanzino, M. Breast cancer: From estrogen to androgen receptor. Mol. Cell Endocrinol. 2002, 193, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Lin, S.X. Mimicking postmenopausal steroid metabolism in breast cancer cell culture: Differences in response to DHEA or other steroids as hormone sources. J. Steroid Biochem. Mol. Biol. 2016, 161, 92–100. [Google Scholar] [CrossRef]
- Poschner, S.; Zehl, M.; Maier-Salamon, A.; Jager, W. Simultaneous quantification of estrogens, their precursors and conjugated metabolites in human breast cancer cells by LC-HRMS without derivatization. J. Pharm. Biomed. Anal. 2017, 138, 344–350. [Google Scholar] [CrossRef]
- Smuc, T.; Rizner, T.L. Expression of 17beta-hydroxysteroid dehydrogenases and other estrogen-metabolizing enzymes in different cancer cell lines. Chem. Biol. Interact. 2009, 178, 228–233. [Google Scholar] [CrossRef]
- Sikora, M.J.; Cordero, K.E.; Larios, J.M.; Johnson, M.D.; Lippman, M.E.; Rae, J.M. The androgen metabolite 5alpha-androstane-3beta,17beta-diol (3betaAdiol) induces breast cancer growth via estrogen receptor: Implications for aromatase inhibitor resistance. Breast Cancer Res. Treat. 2009, 115, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, S.; Thornton, J. Effect of estrogens on skin aging and the potential role of SERMs. Clin. Interv. Aging 2007, 2, 283–297. [Google Scholar] [CrossRef] [PubMed]
- Makrantonaki, E.; Schonknecht, P.; Hossini, A.M.; Kaiser, E.; Katsouli, M.M.; Adjaye, J.; Schroder, J.; Zouboulis, C.C. Skin and brain age together: The role of hormones in the ageing process. Exp. Gerontol. 2010, 45, 801–813. [Google Scholar] [CrossRef]
- Baulieu, E.E.; Thomas, G.; Legrain, S.; Lahlou, N.; Roger, M.; Debuire, B.; Faucounau, V.; Girard, L.; Hervy, M.P.; Latour, F.; et al. Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: Contribution of the DHEAge Study to a sociobiomedical issue. Proc. Natl. Acad. Sci. USA 2000, 97, 4279–4284. [Google Scholar] [CrossRef]
- Pomari, E.; Dalla Valle, L.; Pertile, P.; Colombo, L.; Thornton, M.J. Intracrine sex steroid synthesis and signaling in human epidermal keratinocytes and dermal fibroblasts. FASEB J. 2015, 29, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, M.; Orfanos, C.E.; Zouboulis, C.C. Sebocytes are the key regulators of androgen homeostasis in human skin. J. Invest. Dermatol. 2001, 116, 793–800. [Google Scholar] [CrossRef]
- Ciardullo, S.; Zerbini, F.; Cannistraci, R.; Muraca, E.; Perra, S.; Oltolini, A.; Perseghin, G. Differential Association of Sex Hormones with Metabolic Parameters and Body Composition in Men and Women from the United States. J. Clin. Med. 2023, 12, 4783. [Google Scholar] [CrossRef]
- Nandhini, R.; Nath, B.; Gaikwad, H.S.; Sharma, M.; Meena, S. Metabolic Syndrome and Its Components: A Cross-Sectional Analysis of Its Distribution among Pre- and Post-Menopausal Women from Northern India. J. Midlife Health 2022, 13, 310–316. [Google Scholar] [CrossRef]
- Morrison, S.; McGee, S.L. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages. Adipocyte 2015, 4, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Sun, T.; Bookout, A.L.; Downes, M.; Yu, R.T.; Evans, R.M.; Mangelsdorf, D.J. A Nuclear Receptor Atlas: 3T3-L1 adipogenesis. Mol. Endocrinol. 2005, 19, 2437–2450. [Google Scholar] [CrossRef] [PubMed]
- Hartig, S.M.; Feng, Q.; Ochsner, S.A.; Xiao, R.; McKenna, N.J.; McGuire, S.E.; He, B. Androgen receptor agonism promotes an osteogenic gene program in preadipocytes. Biochem. Biophys. Res. Commun. 2013, 434, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Mitsuhashi, K.; Senmaru, T.; Fukuda, T.; Yamazaki, M.; Shinomiya, K.; Ueno, M.; Kinoshita, S.; Kitawaki, J.; Katsuyama, M.; Tsujikawa, M.; et al. Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes. Endocrine 2016, 51, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Yokokawa, T.; Sato, K.; Narusawa, R.; Kido, K.; Mori, R.; Iwanaka, N.; Hayashi, T.; Hashimoto, T. Dehydroepiandrosterone activates 5′-adenosine monophosphate-activated protein kinase and suppresses lipid accumulation and adipocyte differentiation in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 2020, 528, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Artaza, J.N.; Taylor, W.E.; Braga, M.; Yuan, X.; Gonzalez-Cadavid, N.F.; Bhasin, S. Testosterone inhibits adipogenic differentiation in 3T3-L1 cells: Nuclear translocation of androgen receptor complex with beta-catenin and T-cell factor 4 may bypass canonical Wnt signaling to down-regulate adipogenic transcription factors. Endocrinology 2006, 147, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Karakus, E.; Schmid, A.; Leiting, S.; Fuhler, B.; Schaffler, A.; Jakob, T.; Geyer, J. Role of the Steroid Sulfate Uptake Transporter Soat (Slc10a6) in Adipose Tissue and 3T3-L1 Adipocytes. Front. Mol. Biosci. 2022, 9, 863912. [Google Scholar] [CrossRef] [PubMed]
- Dalla Valle, L.; Toffolo, V.; Nardi, A.; Fiore, C.; Bernante, P.; Di Liddo, R.; Parnigotto, P.P.; Colombo, L. Tissue-specific transcriptional initiation and activity of steroid sulfatase complementing dehydroepiandrosterone sulfate uptake and intracrine steroid activations in human adipose tissue. J. Endocrinol. 2006, 190, 129–139. [Google Scholar] [CrossRef]
- Blouin, K.; Nadeau, M.; Mailloux, J.; Daris, M.; Lebel, S.; Luu-The, V.; Tchernof, A. Pathways of adipose tissue androgen metabolism in women: Depot differences and modulation by adipogenesis. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E244–E255. [Google Scholar] [CrossRef]
- Dufort, I.; Labrie, F.; Luu-The, V. Human types 1 and 3 3 alpha-hydroxysteroid dehydrogenases: Differential lability and tissue distribution. J. Clin. Endocrinol. Metab. 2001, 86, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, K.; Kajita, K.; Wu, Z.; Hanamoto, T.; Ikeda, T.; Mori, I.; Okada, H.; Yamauchi, M.; Uno, Y.; Morita, H.; et al. Dehydroepiandrosterone reduces preadipocyte proliferation via androgen receptor. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E694–E704. [Google Scholar] [CrossRef] [PubMed]
- Marwah, A.; Gomez, F.E.; Marwah, P.; Ntambi, J.M.; Fox, B.G.; Lardy, H. Redox reactions of dehydroepiandrosterone and its metabolites in differentiating 3T3-L1 adipocytes: A liquid chromatographic-mass spectrometric study. Arch. Biochem. Biophys. 2006, 456, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Corbould, A.M.; Judd, S.J.; Rodgers, R.J. Expression of types 1, 2, and 3 17 beta-hydroxysteroid dehydrogenase in subcutaneous abdominal and intra-abdominal adipose tissue of women. J. Clin. Endocrinol. Metab. 1998, 83, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Corbould, A.M.; Bawden, M.J.; Lavranos, T.C.; Rodgers, R.J.; Judd, S.J. The effect of obesity on the ratio of type 3 17beta-hydroxysteroid dehydrogenase mRNA to cytochrome P450 aromatase mRNA in subcutaneous abdominal and intra-abdominal adipose tissue of women. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Quinkler, M.; Sinha, B.; Tomlinson, J.W.; Bujalska, I.J.; Stewart, P.M.; Arlt, W. Androgen generation in adipose tissue in women with simple obesity--a site-specific role for 17beta-hydroxysteroid dehydrogenase type 5. J. Endocrinol. 2004, 183, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Harada, N. Expression of estrogen synthetase (P-450 aromatase) during adipose differentiation of 3T3-L1 cells. Biochem. Biophys. Res. Commun. 1990, 169, 531–536. [Google Scholar] [CrossRef] [PubMed]
- ICH. Q2(R1) Validation of Analytical Procedures: Text and Methodology Guidance for Industry 2005. Available online: https://www.fda.gov/media/152208/download (accessed on 19 June 2024).
Analyte | Polarity (ESI) | Precursor | Parent Ions—Q1 (m/z) | Daughter Ion—Q3 (m/z) | RT (min) | Dwell Time (msec) | DP (V) | EP (V) | CE (V) | CXP (V) |
---|---|---|---|---|---|---|---|---|---|---|
DHEAS | Negative | [M − H]− | 367.2 | 96.9 | 1.85 | 150 | −115 | −10 | −56 | −15 |
DHEA | Positive | [M − H2O + H]+ | 289.1 | 271.3 | 3.91 | 150 | 66 | 10 | 11 | 18 |
A4 | Positive | [M − H2O + H]+ | 287.2 | 97.1 | 3.21 | 150 | 101 | 10 | 33 | 18 |
T | Positive | [M + H]+ | 289.1 | 97.0 | 3.65 | 150 | 121 | 10 | 35 | 16 |
DHT | Positive | [M + H]+ | 291.1 | 255.3 | 4.28 | 150 | 71 | 10 | 21 | 16 |
E2 | Positive | [M − H2O + H]+ | 255.2 | 159.0 | 3.42 | 150 | 71 | 10 | 25 | 8 |
DHEAS-d6 * | Negative | [M − H]− | 373.2 | 97.7 | 1.82 | 150 | −140 | −10 | −64 | −1 |
DHEA-d6 * | Positive | [M + H]+ | 295.1 | 277.1 | 3.87 | 150 | 61 | 10 | 13 | 18 |
A4-13C3 * | Positive | [M + H]+ | 290.2 | 100.1 | 3.20 | 150 | 101 | 10 | 33 | 16 |
T-d3 * | Positive | [M + H]+ | 292.1 | 97.0 | 3.61 | 150 | 101 | 10 | 37 | 16 |
Compound | Calibration Range (ng/mL) | Linearity (R2) | LOD * (ng/mL) | LLOQ * (ng/mL) | |
---|---|---|---|---|---|
Media | DHEAS | 1–500 | 0.998 | 0.328 | 0.994 |
DHEA | 5–500 | 0.999 | 1.822 | 5.521 | |
A4 | 0.5–500 | 0.998 | 0.177 | 0.538 | |
T | 2.5–500 | 0.997 | 0.783 | 2.372 | |
DHT | 2.5–500 | 0.998 | 0.726 | 2.201 | |
E2 | 5–500 | 0.997 | 1.683 | 5.100 | |
Cell lysates | DHEAS | 1–500 | 0.998 | 0.316 | 0.957 |
DHEA | 5–500 | 0.999 | 1.630 | 4.938 | |
A4 | 0.5–500 | 0.997 | 0.159 | 0.482 | |
T | 2.5–500 | 0.998 | 0.787 | 2.385 | |
DHT | 2.5–500 | 0.999 | 0.850 | 2.575 | |
E2 | 5–500 | 0.997 | 1.669 | 5.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakus, E.; Schmid, A.; Schäffler, A.; Wudy, S.A.; Geyer, J. Intracrine Formation of Steroid Hormones in Breast Cancer, Epidermal Keratinocyte, Dermal Fibroblast, and Adipocyte Cell Lines Measured by LC-MS/MS. Int. J. Mol. Sci. 2025, 26, 1188. https://doi.org/10.3390/ijms26031188
Karakus E, Schmid A, Schäffler A, Wudy SA, Geyer J. Intracrine Formation of Steroid Hormones in Breast Cancer, Epidermal Keratinocyte, Dermal Fibroblast, and Adipocyte Cell Lines Measured by LC-MS/MS. International Journal of Molecular Sciences. 2025; 26(3):1188. https://doi.org/10.3390/ijms26031188
Chicago/Turabian StyleKarakus, Emre, Andreas Schmid, Andreas Schäffler, Stefan A. Wudy, and Joachim Geyer. 2025. "Intracrine Formation of Steroid Hormones in Breast Cancer, Epidermal Keratinocyte, Dermal Fibroblast, and Adipocyte Cell Lines Measured by LC-MS/MS" International Journal of Molecular Sciences 26, no. 3: 1188. https://doi.org/10.3390/ijms26031188
APA StyleKarakus, E., Schmid, A., Schäffler, A., Wudy, S. A., & Geyer, J. (2025). Intracrine Formation of Steroid Hormones in Breast Cancer, Epidermal Keratinocyte, Dermal Fibroblast, and Adipocyte Cell Lines Measured by LC-MS/MS. International Journal of Molecular Sciences, 26(3), 1188. https://doi.org/10.3390/ijms26031188