Identification and Evaluation of Hub Long Non-Coding RNAs and mRNAs in PM2.5-Induced Lung Cell Injury
Abstract
:1. Introduction
2. Results
2.1. Weighted Co-Expression Network Construction and Key Module Identification
2.2. Correlation Analysis of Module and Traits
2.3. GO Enrichment Analysis and Pathway Enrichment Analysis
2.4. Construction of lncRNA–mRNA Co-Expression Networks
2.5. Construction of lncRNA–mRNA-Pathway Network
2.6. Construction of Protein–Protein Interaction Network
3. Discussion
4. Materials and Methods
4.1. Data Retrieving and Processing
4.2. Weighted Gene Co-Expression Network Analysis (WGCNA)
4.3. Gene Ontology and Pathway Enrichment Analysis
4.4. Construction of lncRNA–mRNA Co-Expression Networks
4.5. Construction of lncRNA–mRNA-Pathway Co-Expression Network
4.6. Protein–Protein Interaction (PPI) Network Construction
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PM2.5 | Fine particulate matter |
WGCNA | Weighted gene co-expression network analysis |
GEO | Gene Expression Omnibus |
COPD | Chronic obstructive pulmonary disease |
lncRNAs | Long non-coding RNAs |
ROS | Reactive oxygen species |
FDR | False discovery rate |
References
- Zhang, K.; Brook, R.D.; Li, Y.; Rajagopalan, S.; Kim, J.B. Air Pollution, Built Environment, and Early Cardiovascular Disease. Circ. Res. 2023, 132, 1707–1724. [Google Scholar] [CrossRef]
- Sin, D.D.; Doiron, D.; Agusti, A.; Anzueto, A.; Barnes, P.J.; Celli, B.R.; Criner, G.J.; Halpin, D.; Han, M.K.; Martinez, F.J.; et al. Air pollution and COPD: GOLD 2023 committee report. Eur. Respir. J. 2023, 61, 2202469. [Google Scholar] [CrossRef]
- Palacios, N. Air pollution and Parkinson’s disease—Evidence and future directions. Rev. Environ. Health 2017, 32, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.X.; Liu, Y.B.; Peng, Y.; Peng, J.; Ma, Q.L. Causal effect of air pollution on the risk of cardiovascular and metabolic diseases and potential mediation by gut microbiota. Sci. Total Environ. 2024, 912, 169418. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, H.; Lak, E.; Mohammadi, M.J.; Shahriyari, H.A. Carcinogenic Risk Assessment among Children and Adult due to Exposure to Toxic Air Pollutants. Environ. Sci. Pollut. Res. Int. 2022, 29, 23015–23025. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, H.; Zeng, X.; Yin, P.; Zhu, J.; Chen, W.; Li, X.; Wang, L.; Wang, L.; Liu, Y.; et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 394, 1145–1158. [Google Scholar] [CrossRef]
- Zhang, L.; He, X.; Xiong, Y.; Ran, Q.; Xiong, A.; Wang, J.; Wu, D.; Niu, B.; Li, G. Transcriptome-wide profiling discover: PM2.5 aggravates airway dysfunction through epithelial barrier damage regulated by Stanniocalcin 2 in an OVA-induced model. Ecotoxicol. Environ. Saf. 2021, 220, 112408. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Tong, L.; Liu, X.; Weng, X.; Chen, X.; Wang, D.; Dudley, S.C.; Weir, E.K.; Ding, W.; Lu, Z.; et al. Short term Pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy. Redox Biol. 2019, 22, 101161. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Wang, B.; Mu, G.; Zhou, Y.; Qiu, W.; Yang, S.; Wang, X.; Zhang, Z.; Chen, W. Short-term effects of real-time individual fine particulate matter exposure on lung function: A panel study in Zhuhai, China. Environ. Sci. Pollut. Res. Int. 2021, 28, 65140–65149. [Google Scholar] [CrossRef]
- Li, Y.; Lin, B.; Hao, D.; Du, Z.; Wang, Q.; Song, Z.; Li, X.; Li, K.; Wang, J.; Zhang, Q.; et al. Short-term PM2.5 exposure induces transient lung injury and repair. J. Hazard. Mater. 2023, 459, 132227. [Google Scholar] [CrossRef]
- Lin, Y.C.; Shih, H.S.; Lai, C.Y. Long-term nonlinear relationship between PM2.5 and ten leading causes of death. Environ. Geochem. Health 2021, 44, 3967–3990. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Mokhtari, A.; Mohammadi, M.J.; Hadei, M.; Vosoughi, M. Estimation of long-term and short-term health effects attributed to PM2.5 standard pollutants in the air of Ardabil (using Air Q + model). Environ. Sci. Pollut. Res. Int. 2022, 29, 21508–21516. [Google Scholar] [CrossRef]
- Lin, H.; Chen, M.; Gao, Y.; Wang, Z.; Jin, F. Tussilagone protects acute lung injury from PM2.5 via alleviating Hif-1alpha/NF-kappaB-mediated inflammatory response. Environ. Toxicol. 2022, 37, 1198–1210. [Google Scholar] [CrossRef]
- Ning, J.; Du, H.; Zhang, Y.; Liu, Q.; Jiang, T.; Pang, Y.; Tian, X.; Yan, L.; Niu, Y.; Zhang, R. N6-Methyladenosine Modification of CDH1 mRNA Promotes PM2.5-Induced Pulmonary Fibrosis via Mediating Epithelial Mesenchymal Transition. Toxicol. Sci. 2022, 185, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Chang, Z.; Wu, J.; Li, W. Air pollution and lung cancer incidence in China: Who are faced with a greater effect? Environ. Int. 2019, 132, 105077. [Google Scholar] [CrossRef]
- Ali, T.; Grote, P. Beyond the RNA-dependent function of LncRNA genes. Elife 2020, 9, e60583. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.B.; Tsitsipatis, D.; Gorospe, M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol. Cell 2022, 82, 2252–2266. [Google Scholar] [CrossRef]
- Teng, P.C.; Liang, Y.; Yarmishyn, A.A.; Hsiao, Y.J.; Lin, T.Y.; Lin, T.W.; Teng, Y.C.; Yang, Y.P.; Wang, M.L.; Chien, C.S.; et al. RNA Modifications and Epigenetics in Modulation of Lung Cancer and Pulmonary Diseases. Int. J. Mol. Sci. 2021, 22, 10592. [Google Scholar] [CrossRef]
- Abdi, E.; Latifi-Navid, S.; Panahi, A.; Latifi-Navid, H. LncRNA polymorphisms and lung cancer risk. Per. Med. 2023, 20, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, N.; Zeng, Z.; Wu, Q.; Jiang, X.; Li, S.; Sun, W.; Zhang, J.; Li, Y.; Li, J.; et al. LncRNA PCAT1 activates SOX2 and suppresses radioimmune responses via regulating cGAS/STING signalling in non-small cell lung cancer. Clin. Transl. Med. 2022, 12, e792. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, L.; Zhu, M.; Cheng, H. Effects and early diagnostic value of lncRNA H19 on sepsis-induced acute lung injury. Exp. Ther. Med. 2022, 23, 279. [Google Scholar] [CrossRef]
- Lee, K.Y.; Ho, S.C.; Sun, W.L.; Feng, P.H.; Lin, C.W.; Chen, K.Y.; Chuang, H.C.; Tseng, C.H.; Chen, T.T.; Wu, S.M. Lnc-IL7R alleviates PM2.5-mediated cellular senescence and apoptosis through EZH2 recruitment in chronic obstructive pulmonary disease. Cell Biol. Toxicol. 2022, 38, 1097–1120. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Feng, Y.; Yu, H.; Xie, Y.; Luo, F.; Wang, Y. A novel lncRNA, loc107985872, promotes lung adenocarcinoma progression via the notch1 signaling pathway with exposure to traffic-originated PM2.5 organic extract. Environ. Pollut. 2020, 266 Pt 1, 115307. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ma, S.; Cui, Z.; Li, S.; Chen, Y.; Yin, Y.; Yin, Z. The relationship between LncRNAs and lung adenocarcinoma as well as their ceRNA network. Cancer Biomark. 2021, 31, 165–176. [Google Scholar] [CrossRef]
- Qi, G.; Kong, W.; Mou, X.; Wang, S. A new method for excavating feature lncRNA in lung adenocarcinoma based on pathway crosstalk analysis. J. Cell Biochem. 2019, 120, 9034–9046. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Liang, Y.; Shi, J.; Xiao, L.; Tang, L.; Guo, Y.; Chen, F.; Lin, G. Identification and Application of a Novel Immune-Related lncRNA Signature on the Prognosis and Immunotherapy for Lung Adenocarcinoma. Diagnostics 2022, 12, 2891. [Google Scholar] [CrossRef]
- Kopp, F.; Mendell, J.T. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell 2018, 172, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Aaron, C.P.; Madrigano, J.; Hoffman, E.A.; Angelini, E.; Yang, J.; Laine, A.; Vetterli, T.M.; Kinney, P.L.; Sampson, P.D.; et al. Association Between Long-term Exposure to Ambient Air Pollution and Change in Quantitatively Assessed Emphysema and Lung Function. JAMA 2019, 322, 546–556. [Google Scholar] [CrossRef]
- Shan, H.; Li, X.; Ouyang, C.; Ke, H.; Yu, X.; Tan, J.; Chen, J.; Wang, C.; Zhang, L.; Tang, Y.; et al. Salidroside prevents PM2.5-induced BEAS-2B cell apoptosis via SIRT1-dependent regulation of ROS and mitochondrial function. Ecotoxicol. Environ. Saf. 2022, 231, 113170. [Google Scholar] [CrossRef]
- Li, M.; Wei, X.; Li, Y.; Feng, T.; Jiang, L.; Zhu, H.; Yu, X.; Tang, J.; Chen, G.; Zhang, J.; et al. PM2.5 in poultry houses synergizes with Pseudomonas aeruginosa to aggravate lung inflammation in mice through the NF-kappaB pathway. J. Vet. Sci. 2020, 21, e46. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Langfelder, P.; Fuller, T.; Dong, J.; Li, A.; Hovarth, S. Weighted gene coexpression network analysis: State of the art. J. Biopharm. Stat. 2010, 20, 281–300. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; He, W.; Tang, J.; Liao, X.; Yang, Q.; Wu, Y.; Wu, G. Identification of Important Modules and Biomarkers in Breast Cancer Based on WGCNA. Onco Targets Ther. 2020, 13, 6805–6817. [Google Scholar] [CrossRef]
- Nangraj, A.S.; Selvaraj, G.; Kaliamurthi, S.; Kaushik, A.C.; Cho, W.C.; Wei, D.Q. Integrated PPI- and WGCNA-Retrieval of Hub Gene Signatures Shared Between Barrett’s Esophagus and Esophageal Adenocarcinoma. Front. Pharmacol. 2020, 11, 881. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zhang, X.; Feng, N.; Wang, R.; Zhang, W.; Deng, X.; Wang, Y.; Yu, X.; Ye, X.; Li, L.; et al. LncRNA LCPAT1 Mediates Smoking/ Particulate Matter 2.5-Induced Cell Autophagy and Epithelial-Mesenchymal Transition in Lung Cancer Cells via RCC2. Cell Physiol. Biochem. 2018, 47, 1244–1258. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Feng, N.; Zheng, M.; Ye, X.; Lin, H.; Yu, X.; Gan, Z.; Fang, Z.; Zhang, H.; Gao, M.; et al. PM2.5 exposure-induced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Spitz, A.Z.; Gavathiotis, E. Physiological and pharmacological modulation of BAX. Trends Pharmacol. Sci. 2022, 43, 206–220. [Google Scholar] [CrossRef]
- Jensen, K.; WuWong, D.J.; Wong, S.; Matsuyama, M.; Matsuyama, S. Pharmacological inhibition of Bax-induced cell death: Bax-inhibiting peptides and small compounds inhibiting Bax. Exp. Biol. Med. 2019, 244, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Jiang, W.; Li, N.; Liu, B.; He, R.; Wang, B.; Geng, Q. PM2.5-induced lung injury is attenuated in macrophage-specific NLRP3 deficient mice. Ecotoxicol. Environ. Saf. 2021, 221, 112433. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Wei, H. LncRNA H19 alleviates sepsis-induced acute lung injury by regulating the miR-107/TGFBR3 axis. BMC Pulm. Med. 2022, 22, 371. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, L.; Lv, D.; Yan, S.; He, S.; Ge, H. LncRNA-LINC01089 inhibits lung adenocarcinoma cell proliferation and promotes apoptosis via sponging miR-543. Tissue Cell 2021, 72, 101535. [Google Scholar] [CrossRef]
- Ren, K.; Sun, J.; Liu, L.; Yang, Y.; Li, H.; Wang, Z.; Deng, J.; Hou, M.; Qiu, J.; Zhao, W. TP53-Activated lncRNA GHRLOS Regulates Cell Proliferation, Invasion, and Apoptosis of Non-Small Cell Lung Cancer by Modulating the miR-346/APC Axis. Front. Oncol. 2021, 11, 676202. [Google Scholar] [CrossRef]
- Khanna, K.; Chaudhuri, R.; Aich, J.; Pattnaik, B.; Panda, L.; Prakash, Y.S.; Mabalirajan, U.; Ghosh, B.; Agrawal, A. Secretory Inositol Polyphosphate 4-Phosphatase Protects against Airway Inflammation and Remodeling. Am. J. Respir. Cell Mol. Biol. 2019, 60, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Arvind, M.; Pattnaik, B.; Gheware, A.; Prakash, Y.S.; Srivastava, M.; Agrawal, A.; Bhatraju, N.K. Plausible role of INPP4A dysregulation in idiopathic pulmonary fibrosis. Physiol. Rep. 2024, 12, e16032. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Li, Y.; Han, X.; Fu, Z.; Tian, Z.; Li, C. Targeting SPHK1/PBX1 Axis Induced Cell Cycle Arrest in Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2022, 23, 12741. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Xu, R.; Jin, X.; Jiao, W. Plin2 inhibits autophagy via activating AKT/mTOR pathway in non-small cell lung cancer. Exp. Cell Res. 2024, 435, 113955. [Google Scholar] [CrossRef] [PubMed]
- Winter, N.A.; Gibson, P.G.; McDonald, V.M.; Fricker, M. Sputum Gene Expression Reveals Dysregulation of Mast Cells and Basophils in Eosinophilic COPD. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 2165–2179. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, L.; Ma, Y.; Liu, Y.; Zhu, Q.; Huang, Y.; Feng, W. BACH1 promotes lung adenocarcinoma cell metastasis through transcriptional activation of ITGA2. Cancer Sci. 2023, 114, 3568–3582. [Google Scholar] [CrossRef]
- Kawami, M.; Ojima, T.; Yumoto, R.; Takano, M. Role of integrin alpha2 in methotrexate-induced epithelial-mesenchymal transition in alveolar epithelial A549 cells. Toxicol. Res. 2022, 38, 449–458. [Google Scholar] [CrossRef]
- Sun, Y.; Li, H.; Zhang, L.; Zhang, J. ATG16L1 regulated IL-22 induced IFN level in Pseudomonas aeruginosa Lung Infection via cGAS signal passage. Neuro Endocrinol. Lett. 2021, 42, 408–416. [Google Scholar]
- Nosaka, N.; Martinon, D.; Moreira, D.; Crother, T.R.; Arditi, M.; Shimada, K. Autophagy Protects Against Developing Increased Lung Permeability and Hypoxemia by Down Regulating Inflammasome Activity and IL-1beta in LPS Plus Mechanical Ventilation-Induced Acute Lung Injury. Front. Immunol. 2020, 11, 207. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Zhang, Y.; Li, H.; Cheng, L. Association of TOP2A and ADH1B with lipid levels and prognosis in patients with lung adenocarcinoma and squamous cell carcinoma. Clin. Respir. J. 2023, 17, 1301–1315. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Ao, Z.; Wu, Y.; Song, L.; Zhang, P.; Li, X.; Liu, M.; Qian, P.; Zhang, R.; Li, X.; et al. ZNF300 promotes chemoresistance and aggressive behaviour in non-small-cell lung cancer. Cell Prolif. 2020, 53, e12924. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.S.; Wang, J.F.; Guo, M.Y.; Li, X.J.; Shi, C.Y.; Wu, F.; Zhang, H.H.; Ying, H.Z.; Yu, C.H. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from fresh Rehmanniae Radix, ameliorated lipopolysaccharide-induced acute lung injury and gut dysbiosis. Biomed. Pharmacother. 2023, 165, 115007. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, E.S.; Zinovieva, O.L.; Oparina, N.Y.; Prokofjeva, M.M.; Spirin, P.V.; Favorskaya, I.A.; Zborovskaya, I.B.; Lisitsyn, N.A.; Prassolov, V.S.; Mashkova, T.D. [Abnormal expression of genes that regulate retinoid metabolism and signaling in non-small-cell lung cancer]. Mol. Biol. 2016, 50, 255–265. [Google Scholar] [CrossRef]
- Gangaraj, K.P.; Rajesh, M.K. Dataset of dual RNA-sequencing of Phytophthora palmivora infecting coconut (Cocos nucifera L.). Data Brief 2020, 30, 105455. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, A.H.; Kogelman, L.J.A.; Kristensen, D.M.; Chalmer, M.A.; Olesen, J.; Hansen, T.F. Functional gene networks reveal distinct mechanisms segregating in migraine families. Brain J. Neurol. 2020, 143, 2945–2956. [Google Scholar] [CrossRef]
- Xiao, K.W.; Li, J.L.; Zeng, Z.H.; Liu, Z.B.; Hou, Z.Q.; Yan, X.; Cai, L. Monocytes affect bone mineral density in pre- and postmenopausal women through ribonucleoprotein complex biogenesis by integrative bioinformatics analysis. Sci. Rep. 2019, 9, 17290. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef] [PubMed]
Module | All Numbers | lncRNA Numbers | mRNA Numbers |
---|---|---|---|
turquoise | 2221 | 764 | 1457 |
blue | 1365 | 519 | 846 |
brown | 616 | 239 | 377 |
yellow | 404 | 161 | 243 |
green | 186 | 42 | 144 |
red | 129 | 48 | 81 |
black | 112 | 30 | 82 |
pink | 101 | 41 | 60 |
magenta | 75 | 15 | 60 |
purple | 65 | 21 | 44 |
green-yellow | 50 | 18 | 32 |
grey | 2 | 0 | 2 |
Module | GO id | Term | No. of Genes | −logP |
---|---|---|---|---|
turquoise module | GO:0007165 | signal transduction | 98 | 30.03 |
GO:0045944 | positive regulation of transcription by RNA polymerase II | 89 | 22.21 | |
GO:0006357 | regulation of transcription by RNA polymerase II | 106 | 19.79 | |
GO:0035556 | intracellular signal transduction | 45 | 17.80 | |
GO:0043065 | positive regulation of apoptotic process | 42 | 17.33 | |
GO:0007155 | cell adhesion | 50 | 16.87 | |
GO:0007275 | multicellular organism development | 47 | 14.99 | |
GO:0000122 | negative regulation of transcription by RNA polymerase II | 64 | 14.64 | |
GO:0045893 | positive regulation of transcription, DNA-templated | 54 | 14.46 | |
GO:0008284 | positive regulation of cell proliferation | 44 | 12.73 | |
GO:0070374 | positive regulation of ERK1 and ERK2 cascade | 28 | 12.69 | |
GO:0007596 | blood coagulation | 25 | 11.76 | |
GO:0006915 | apoptotic process | 45 | 11.47 | |
GO:0043547 | positive regulation of GTPase activity | 32 | 10.94 | |
GO:0030335 | positive regulation of cell migration | 27 | 10.59 | |
GO:0007156 | homophilic cell adhesion via plasma membrane adhesion molecules | 23 | 10.44 | |
GO:0045087 | innate immune response | 43 | 10.11 | |
GO:0010628 | positive regulation of gene expression | 34 | 9.78 | |
GO:0007399 | nervous system development | 31 | 9.78 | |
GO:0006954 | inflammatory response | 34 | 9.60 | |
blue module | GO:0007165 | signal transduction | 60 | 19.18 |
GO:0006357 | regulation of transcription by RNA polymerase II | 73 | 17.32 | |
GO:0007268 | chemical synaptic transmission | 25 | 13.37 | |
GO:0007186 | G protein-coupled receptor signaling pathway | 53 | 12.95 | |
GO:0000122 | negative regulation of transcription by RNA polymerase II | 43 | 11.74 | |
GO:0045944 | positive regulation of transcription by RNA polymerase II | 49 | 11.20 | |
GO:0044267 | cellular protein metabolic process | 20 | 10.66 | |
GO:0045893 | positive regulation of transcription, DNA-templated | 34 | 9.90 | |
GO:0016567 | protein ubiquitination | 29 | 9.41 | |
GO:0006915 | apoptotic process | 30 | 8.92 | |
GO:0043687 | post-translational protein modification | 23 | 8.63 | |
GO:0043066 | negative regulation of apoptotic process | 26 | 7.75 | |
GO:0000209 | protein polyubiquitination | 19 | 7.50 | |
GO:0045892 | negative regulation of transcription, DNA-templated | 27 | 7.19 | |
GO:0048013 | ephrin receptor signaling pathway | 11 | 7.01 | |
GO:0007399 | nervous system development | 20 | 6.95 | |
GO:0008284 | positive regulation of cell proliferation | 25 | 6.95 | |
GO:0034220 | ion transmembrane transport | 16 | 6.87 | |
GO:0006468 | protein phosphorylation | 24 | 6.68 | |
GO:0007155 | cell adhesion | 24 | 6.41 |
Module | Pathway ID | Term | No. of Genes | −logP |
---|---|---|---|---|
turquoise module | 01100 | Metabolic pathways | 107 | 23.01 |
05200 | Pathways in cancer | 47 | 13.39 | |
04080 | Neuroactive ligand–receptor interaction | 33 | 10.47 | |
05016 | Huntington disease | 31 | 10.35 | |
05152 | Tuberculosis | 23 | 9.71 | |
05171 | Coronavirus disease—COVID-19 | 26 | 9.66 | |
04060 | Cytokine-cytokine receptor interaction | 29 | 9.37 | |
04630 | JAK-STAT signaling pathway | 21 | 8.99 | |
05132 | Salmonella infection | 26 | 8.98 | |
05022 | Pathways of neurodegeneration—multiple diseases | 37 | 8.98 | |
05020 | Prion disease | 27 | 8.79 | |
05167 | Kaposi sarcoma-associated herpesvirus infection | 22 | 8.33 | |
04071 | Sphingolipid signaling pathway | 17 | 7.95 | |
05014 | Amyotrophic lateral sclerosis | 30 | 7.86 | |
05163 | Human cytomegalovirus infection | 23 | 7.78 | |
04020 | Calcium signaling pathway | 23 | 7.25 | |
05225 | Hepatocellular carcinoma | 19 | 7.15 | |
05214 | Glioma | 13 | 7.12 | |
04613 | Neutrophil extracellular trap formation | 20 | 6.99 | |
04151 | PI3K-Akt signaling pathway | 28 | 6.96 | |
blue module | 01100 | Metabolic pathways | 62 | 13.08 |
04020 | Calcium signaling pathway | 19 | 8.32 | |
04024 | cAMP signaling pathway | 18 | 8.24 | |
04080 | Neuroactive ligand–receptor interaction | 22 | 7.94 | |
04912 | GnRH signaling pathway | 12 | 7.63 | |
05202 | Transcriptional misregulation in cancer | 16 | 7.33 | |
00565 | Ether lipid metabolism | 9 | 7.10 | |
04010 | MAPK signaling pathway | 19 | 6.88 | |
04742 | Taste transduction | 10 | 5.93 | |
04270 | Vascular smooth muscle contraction | 12 | 5.88 | |
04724 | Glutamatergic synapse | 11 | 5.68 | |
04713 | Circadian entrainment | 10 | 5.43 | |
00564 | Glycerophospholipid metabolism | 10 | 5.39 | |
04072 | Phospholipase D signaling pathway | 12 | 5.38 | |
04921 | Oxytocin signaling pathway | 12 | 5.20 | |
04928 | Parathyroid hormone synthesis, secretion, and action | 10 | 5.08 | |
04911 | Insulin secretion | 9 | 4.94 | |
04022 | cGMP-PKG signaling pathway | 12 | 4.83 | |
05032 | Morphine addiction | 9 | 4.74 | |
04014 | Ras signaling pathway | 14 | 4.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, J.; Zhang, Y.; Zhang, L.; Xia, H. Identification and Evaluation of Hub Long Non-Coding RNAs and mRNAs in PM2.5-Induced Lung Cell Injury. Int. J. Mol. Sci. 2025, 26, 911. https://doi.org/10.3390/ijms26030911
Sui J, Zhang Y, Zhang L, Xia H. Identification and Evaluation of Hub Long Non-Coding RNAs and mRNAs in PM2.5-Induced Lung Cell Injury. International Journal of Molecular Sciences. 2025; 26(3):911. https://doi.org/10.3390/ijms26030911
Chicago/Turabian StyleSui, Jing, Yanni Zhang, Linjie Zhang, and Hui Xia. 2025. "Identification and Evaluation of Hub Long Non-Coding RNAs and mRNAs in PM2.5-Induced Lung Cell Injury" International Journal of Molecular Sciences 26, no. 3: 911. https://doi.org/10.3390/ijms26030911
APA StyleSui, J., Zhang, Y., Zhang, L., & Xia, H. (2025). Identification and Evaluation of Hub Long Non-Coding RNAs and mRNAs in PM2.5-Induced Lung Cell Injury. International Journal of Molecular Sciences, 26(3), 911. https://doi.org/10.3390/ijms26030911