Deciphering the Association: Critical HDL-C Levels and Their Impact on the Glycation Gap in People Living with HIV
Abstract
:1. Introduction
2. Results
2.1. Sociodemographic and Anthropometric Profile
2.2. Clinical and Treatment Characteristics of PLWHIV
2.3. Biochemical Characteristics
2.4. pHbA1c and G-Gap Calculations
2.4.1. Correlations Between G-Gap and Lipid Profile
2.4.2. Association of G-Gap with HDL-C Levels, HbA1c, and Combined Insulin Treatment
3. Discussion
4. Materials and Methods
- , using the regression equation of HbA1c and FA.
- [40].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarkar, S.; Brown, T.T. Diabetes in People with HIV. Curr. Diabetes Rep. 2021, 21, 13. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.T. Antiretroviral Therapy and the Prevalence and Incidence of Diabetes Mellitus in the Multicenter AIDS Cohort Study. Arch. Intern. Med. 2005, 165, 1179. [Google Scholar] [CrossRef] [PubMed]
- Willig, A.L.; Overton, E.T. Metabolic Complications and Glucose Metabolism in HIV Infection: A Review of the Evidence. Curr. HIV/AIDS Rep. 2016, 13, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Pedro, M.N.; Rocha, G.Z.; Guadagnini, D.; Santos, A.; Magro, D.O.; Assalin, H.B.; Oliveira, A.G.; Pedro, R.d.J.; Saad, M.J.A. Insulin Resistance in HIV-Patients: Causes and Consequences. Front. Endocrinol. 2018, 9, 514. [Google Scholar] [CrossRef]
- Rupasinghe, D.; Bansi-Matharu, L.; Law, M.; Zangerle, R.; Rauch, A.; Tarr, P.E.; Greenberg, L.; Neesgaard, B.; Jaschinski, N.; De Wit, S.; et al. Integrase Strand Transfer Inhibitor–Related Changes in Body Mass Index and Risk of Diabetes: A Prospective Study from the RESPOND Cohort Consortium. Clin. Infect. Dis. 2024, ciae406. [Google Scholar] [CrossRef]
- Markakis, K.; Tsachouridou, O.; Georgianou, E.; Pilalas, D.; Nanoudis, S.; Metallidis, S. Weight Gain in HIV Adults Receiving Antiretroviral Treatment: Current Knowledge and Future Perspectives. Life 2024, 14, 1367. [Google Scholar] [CrossRef]
- Vekic, J.; Vujcic, S.; Bufan, B.; Bojanin, D.; Al-Hashmi, K.; Al-Rasadi, K.; Stoian, A.P.; Zeljkovic, A.; Rizzo, M. The Role of Advanced Glycation End Products on Dyslipidemia. Metabolites 2023, 13, 77. [Google Scholar] [CrossRef]
- Kalra, D.K.; Vorla, M.; Michos, E.D.; Agarwala, A.; Virani, S.; Duell, P.B.; Raal, F.J. Dyslipidemia in Human Immunodeficiency Virus Disease. J. Am. Coll. Cardiol. 2023, 82, 171–181. [Google Scholar] [CrossRef]
- Lo, J. Dyslipidemia and lipid management in HIV-infected patients. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 144–147. [Google Scholar] [CrossRef]
- Riddler, S.A. Impact of HIV Infection and HAART on Serum Lipids in Men. JAMA 2003, 289, 2978. [Google Scholar] [CrossRef]
- Ekwe, E.A.; Ezeala-Adikaibe, B.A.; Onwubere, B.; Okoye, J.; Ugwu, C.; Nwatu, B.; Chinweuba, I.; Orah-Okpala, C.; Anakwue, R.; Fasa, O.O.; et al. Serum Lipid and Glycemic Profile in HARRT-Naïve and HARRT-Exposed HIV Patients in Enugu State, Nigeria: A Case–Control Study. Int. J. Med. Health Dev. 2024, 29, 205–211. [Google Scholar]
- Verburgh, M.L.; Wit, F.W.N.M.; Boyd, A.; Verboeket, S.O.; Reiss, P.; van der Valk, M. One in 10 Virally Suppressed Persons with HIV in The Netherlands Experiences ≥10% Weight Gain After Switching to Tenofovir Alafenamide and/or Integrase Strand Transfer Inhibitor. Open Forum Infect. Dis. 2022, 9, ofac291. [Google Scholar] [CrossRef]
- Gerber, A.; Fischetti, B.; Popova, O.; Longo, M. Glycemic Control in Patients Living with HIV Initiated on Integrase Inhibitor–Based Three-Drug Antiretroviral Therapy. J. Pharm. Technol. 2024, 40, 85–91. [Google Scholar] [CrossRef]
- Sarkar, S.; Brown, T.T. Lipid Disorders in People with HIV. Endotext [Internet]. 2023 Jan 21. Available online: https://www.ncbi.nlm.nih.gov/books/NBK567198/ (accessed on 6 January 2025).
- Lang, J.; Xin, X.; Chen, P.; Ning, Z.; Xiao, S. Distinct patterns of fasting plasma glucose and lipid profile levels over time in adults tested positive for HIV on HAART in Shanghai, China, revealed using growth mixture models. Front. Med. 2023, 9, 1071431. [Google Scholar] [CrossRef]
- Nduka, C.U.; Stranges, S.; Kimani, P.K.; Sarki, A.M.; Uthman, O.A. Is there sufficient evidence for a causal association between antiretroviral therapy and diabetes in HIV-infected patients? A meta-analysis. Diabetes Metab. Res. Rev. 2017, 33, e2902. [Google Scholar] [CrossRef]
- Honnapurmath, V.; Patil, V. Antiretroviral therapy-induced insulin resistance and oxidative deoxy nucleic acid damage in human immunodeficiency virus-1 patients. Indian. J. Endocrinol. Metab. 2017, 21, 316. [Google Scholar] [CrossRef]
- Jiménez-Osorio, A.S.; Jaen-Vega, S.; Fernández-Martínez, E.; Ortíz-Rodríguez, M.A.; Martínez-Salazar, M.F.; Jiménez-Sánchez, R.C.; Flores-Chávez, O.R.; Ramírez-Moreno, E.; Arias-Rico, J.; Arteaga-García, F.; et al. Antiretroviral Therapy-Induced Dysregulation of Gene Expression and Lipid Metabolism in HIV+ Patients: Beneficial Role of Antioxidant Phytochemicals. Int. J. Mol. Sci. 2022, 23, 5592. [Google Scholar] [CrossRef]
- Fernandez, M.L.; Jones, J.J.; Ackerman, D.; Barona, J.; Calle, M.; Comperatore, M.V.; Kim, J.-E.; Andersen, C.; O Leite, J.; Volek, J.S.; et al. Low HDL cholesterol is associated with increased atherogenic lipoproteins and insulin resistance in women classified with metabolic syndrome. Nutr. Res. Pract. 2010, 4, 492. [Google Scholar] [CrossRef]
- Xepapadaki, E.; Nikdima, I.; Sagiadinou, E.C.; Zvintzou, E.; Kypreos, K.E. HDL and type 2 diabetes: The chicken or the egg? Diabetologia 2021, 64, 1917–1926. [Google Scholar] [CrossRef]
- Bury, J.E.; Stroup, J.S.; Stephens, J.R.; Baker, D.L. Achieving American Diabetes Association Goals in Hiv-Seropositive Patients with Diabetes Mellitus. Bayl. Univ. Med. Cent. Proc. 2007, 20, 118–123. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Gaglia, J.L.; Hilliard, M.E.; Johnson, E.L.; et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. 1), S20–S42. [Google Scholar]
- Kim, P.S.; Woods, C.; Georgoff, P.; Crum, D.; Rosenberg, A.; Smith, M.; Hadigan, C. A1C Underestimates Glycemia in HIV Infection. Diabetes Care 2009, 32, 1591–1593. [Google Scholar] [CrossRef] [PubMed]
- Duran, L.; Rodriguez, C.; Drozd, D.; Nance, R.M.; Delaney, J.A.C.; Burkholder, G.; Mugavero, M.J.; Willig, J.H.; Warriner, A.H.; Crane, P.K.; et al. Fructosamine and Hemoglobin A1c Correlations in HIV-Infected Adults in Routine Clinical Care: Impact of Anemia and Albumin Levels. AIDS Res. Treat. 2015, 2015, 478750. [Google Scholar] [CrossRef]
- Diop, M.E.; Bastard, J.P.; Meunier, N.; Thévenet, S.; Maachi, M.; Capeau, J.; Pialoux, G.; Vigouroux, C. Inappropriately Low Glycated Hemoglobin Values and Hemolysis in HIV-Infected Patients. AIDS Res. Hum. Retroviruses 2006, 22, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- Glesby, M.J.; Hoover, D.R.; Shi, Q.; Danoff, A.; Howard, A.; Tien, P.; Merenstein, D.; Cohen, M.; Golub, E.; DeHovitz, J.; et al. Glycated Haemoglobin in Diabetic Women with and without HIV Infection: Data from the Women’s Interagency HIV Study. Antivir. Ther. 2010, 15, 571–577. [Google Scholar] [CrossRef]
- Polgreen, P.M.; Putz, D.; Stapleton, J.T. Inaccurate Glycosylated Hemoglobin A1C Measurements in Human Immunodeficiency Virus—Positive Patients with Diabetes Mellitus. Clin. Infect. Dis. 2003, 37, e53–e56. [Google Scholar] [CrossRef]
- Slama, L.; Palella, F.J.; Abraham, A.G.; Li, X.; Vigouroux, C.; Pialoux, G.; Kingsley, L.; Lake, J.E.; Brown, T.T.; Margolick, J.B.; et al. Inaccuracy of haemoglobin A1c among HIV-infected men: Effects of CD4 cell count, antiretroviral therapies and haematological parameters. J. Antimicrob. Chemother. 2014, 69, 3360–3367. [Google Scholar] [CrossRef]
- Nilsen, J.; Trabjerg, E.; Grevys, A.; Azevedo, C.; Brennan, S.O.; Stensland, M.; Wilson, J.; Sand, K.M.K.; Bern, M.; Dalhus, B.; et al. An intact C-terminal end of albumin is required for its long half-life in humans. Commun. Biol. 2020, 3, 181. [Google Scholar] [CrossRef]
- Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced Glycation End Products and Diabetic Complications. Korean J. Physiol. Pharmacol. 2014, 18, 1. [Google Scholar] [CrossRef]
- Sheng, L.; Yang, G.; Chai, X.; Zhou, Y.; Sun, X.; Xing, Z. Glycemic variability evaluated by HbA1c rather than fasting plasma glucose is associated with adverse cardiovascular events. Front. Endocrinol. 2024, 15, 1323571. [Google Scholar] [CrossRef]
- Selvin, E.; Rawlings, A.M.; Grams, M.; Klein, R.; Sharrett, A.R.; Steffes, M.; Coresh, J. Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: A prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2014, 2, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Danese, E.; Montagnana, M.; Nouvenne, A.; Lippi, G. Advantages and Pitfalls of Fructosamine and Glycated Albumin in the Diagnosis and Treatment of Diabetes. J. Diabetes Sci. Technol. 2015, 9, 169–176. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Andrade, L.J.; Bittencourt, A.M.V.; de Brito, L.F.M.; de Oliveira, L.M.; de Oliveira, G.C.M. Estimated average blood glucose level based on fructosamine level. Arch. Endocrinol. Metab. 2023, 67, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Welsh, K.J.; Kirkman, M.S.; Sacks, D.B. Role of Glycated Proteins in the Diagnosis and Management of Diabetes: Research Gaps and Future Directions. Diabetes Care 2016, 39, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Hempe, J.M.; Hsia, D.S. Variation in the hemoglobin glycation index. J. Diabetes Complicat. 2022, 36, 108223. [Google Scholar] [CrossRef]
- Eckhardt, B.J.; Holzman, R.S.; Kwan, C.K.; Baghdadi, J.; Aberg, J.A. Glycated Hemoglobin A 1c as Screening for Diabetes Mellitus in HIV-Infected Individuals. AIDS Patient Care STDS 2012, 26, 197–201. [Google Scholar] [CrossRef]
- Kim, S.Y.; Friedmann, P.; Seth, A.; Fleckman, A.M. Monitoring HIV-infected Patients with Diabetes: Hemoglobin A1c, Fructosamine, or Glucose? Clin. Med. Insights Endocrinol. Diabetes 2014, 7, CMED.S19202. [Google Scholar] [CrossRef]
- Kabadi, M.; Kabadi, U.M. Elevated Fructosamine Levelsin Acquired Immunodeficiency Syndrome. Endocr. Pract. 2008, 14, 686–690. [Google Scholar] [CrossRef]
- Cohen, R.M.; Holmes, Y.R.; Chenier, T.C.; Joiner, C.H. Discordance Between HbA1c and Fructosamine. Diabetes Care 2003, 26, 163–167. [Google Scholar] [CrossRef]
- Nayak, A.U.; Nevill, A.M.; Bassett, P.; Singh, B.M. Association of Glycation Gap with Mortality and Vascular Complications in Diabetes. Diabetes Care 2013, 36, 3247–3253. [Google Scholar] [CrossRef]
- El Kamari, V.; Thomas, A.; Shan, L.; Sattar, A.; Monnier, V.; Howell, S.K.; Beisswenger, P.J.; McComsey, G.A. Advanced Glycation End Products Are Associated with Inflammation and Endothelial Dysfunction in HIV. JAIDS J. Acquir. Immune Defic. Syndr. 2019, 81, e55–e62. [Google Scholar] [CrossRef] [PubMed]
- Mengstie, M.A.; Chekol Abebe, E.; Behaile Teklemariam, A.; Tilahun Mulu, A.; Agidew, M.M.; Teshome Azezew, M.; Zewde, E.A.; Teshome, A.A. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front. Mol. Biosci. 2022, 9, 1002710. [Google Scholar] [CrossRef] [PubMed]
- Monroe, A.K.; Glesby, M.J.; Brown, T.T. Diagnosing and Managing Diabetes in HIV-Infected Patients: Current Concepts. Clin. Infect. Dis. 2015, 60, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Segade, S.; Rodríguez, J.; García Lopez, J.M.; Casanueva, F.F.; Camiña, F. Estimation of the Glycation Gap in Diabetic Patients with Stable Glycemic Control. Diabetes Care 2012, 35, 2447–2450. [Google Scholar] [CrossRef]
- Weber, M.S.R.; Duran Ramirez, J.J.; Hentzien, M.; Cavassini, M.; Bernasconi, E.; Hofmann, E.; Furrer, H.; Kovari, H.; Stöckle, M.; Schmid, P.; et al. Time Trends in Causes of Death in People With HIV: Insights from the Swiss HIV Cohort Study. Clin. Infect. Dis. 2024, 79, 177–188. [Google Scholar] [CrossRef]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef]
- El-Sadr, W.; Mullin, C.; Carr, A.; Gibert, C.; Rappoport, C.; Visnegarwala, F.; Grunfeld, C.; Raghavan, S.S. Effects of HIV disease on lipid, glucose and insulin levels: Results from a large antiretroviral-naïve cohort. HIV Med. 2005, 6, 114–121. [Google Scholar] [CrossRef]
- Jemal, M.; Shibabaw Molla, T.; Tiruneh, G.; Medhin, M.; Chekol Abebe, E.; Asmamaw Dejenie, T. Blood glucose level and serum lipid profiles among people living with HIV on dolutegravir-based versus efavirenz-based cART; a comparative cross-sectional study. Ann. Med. 2023, 55, 2295435. [Google Scholar] [CrossRef]
- Hadigan, C.; Meigs, J.B.; Corcoran, C.; Rietschel, P.; Piecuch, S.; Basgoz, N.; Davis, B.; Sax, P.; Stanley, T.; Wilson, P.W.F.; et al. Metabolic Abnormalities and Cardiovascular Disease Risk Factors in Adults with Human Immunodeficiency Virus Infection and Lipodystrophy. Clin. Infect. Dis. 2001, 32, 130–139. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Hilliard, M.E.; Johnson, E.L.; Khunti, K.; et al. 6. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. 1), S111–S125. [Google Scholar]
- Haghighatpanah, M.; Nejad, A.S.M.; Haghighatpanah, M.; Thunga, G.; Mallayasamy, S. Factors that Correlate with Poor Glycemic Control in Type 2 Diabetes Mellitus Patients with Complications. Osong Public Health Res. Perspect. 2018, 9, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, S.; Tao, X.; Liu, H.; Sun, P.; Richards, A.M.; Tan, H.C.; Yu, Y.; Yang, Q.; Wu, S.; et al. Risk and effect modifiers for poor glycemic control among the chinese diabetic adults on statin therapy: The kailuan study. Clin. Res. Cardiol. 2024, 113, 1219–1231. [Google Scholar] [CrossRef] [PubMed]
- Cosson, E.; Chiheb, S.; Cussac-Pillegand, C.; Banu, I.; Hamo-Tchatchouang, E.; Nguyen, M.T.; Aout, M.; Charnaux, N.; Valensi, P. Haemoglobin glycation may partly explain the discordance between HbA1c measurement and oral glucose tolerance test to diagnose dysglycaemia in overweight/obese subjects. Diabetes Metab. 2013, 39, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Shohat, N.; Tarabichi, M.; Tan, T.L.; Goswami, K.; Kheir, M.; Malkani, A.L.; Shah, R.P.; Schwarzkopf, R.; Parvizi, J. John Insall Award: Fructosamine is a better glycaemic marker compared with glycated haemoglobin (HbA1C) in predicting adverse outcomes following total knee arthroplasty. Bone Jt. J. 2019, 101-B, 3–9. [Google Scholar] [CrossRef]
- Toyoshima, M.T.K.; Cukier, P.; Damascena, A.S.; Batista, R.L.; de Azevedo Correa, F.; Zanatta Kawahara, E.; Minanni, C.A.; Hoff, A.O.; Nery, M. Fructosamine and glycated hemoglobin as biomarkers of glycemic control in people with type 2 diabetes mellitus and cancer (GlicoOnco study). Clinics 2023, 78, 100240. [Google Scholar] [CrossRef]
- Zafon, C.; Ciudin, A.; Valladares, S.; Mesa, J.; Simó, R. Variables Involved in the Discordance between HbA1c and Fructosamine: The Glycation Gap Revisited. PLoS ONE 2013, 8, e66696. [Google Scholar] [CrossRef]
- Le, T.; Thanh, K.; Tran, T.; Nguyen, D.; Nguyen, L.; Pham, D.; Dam, L.T.P.; Hoang, M.T.; Huynh, T.Q. The Correlation Between Glycation Gap and Renal Complications in Patients with Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2024, 17, 333–341. [Google Scholar] [CrossRef]
- Afkarian, M.; Sachs, M.C.; Kestenbaum, B.; Hirsch, I.B.; Tuttle, K.R.; Himmelfarb, J.; De Boer, I.H. Kidney Disease and Increased Mortality Risk in Type 2 Diabetes. J. Am. Soc. Nephrol. 2013, 24, 302–308. [Google Scholar] [CrossRef]
- Valdivia-Cerda, V.; Alvarez-Zavala, M.; Sánchez-Reyes, K.; Cabrera-Silva, R.I.; Ruiz-Herrera, V.V.; Loza-Salazar, A.D.; Martínez-Ayala, P.; Vázquez-Limón, J.C.; García-García, G.; Andrade-Villanueva, J.F.; et al. Prevalence and risk factors of chronic kidney disease in an HIV positive Mexican cohort. BMC Nephrol. 2021, 22, 317. [Google Scholar] [CrossRef]
- Murray, S. Is waist-to-hip ratio a better marker of cardiovascular risk than body mass index? Can. Med. Assoc. J. 2006, 174, 308. [Google Scholar] [CrossRef]
- Rodríguez-Segade, S.; Rodríguez, J.; Cabezas-Agricola, J.M.; Casanueva, F.F.; Camiña, F. Progression of Nephropathy in Type 2 Diabetes: The Glycation Gap Is a Significant Predictor after Adjustment for Glycohemoglobin (Hb A1c). Clin. Chem. 2011, 57, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Ezhilvendhan, K.; Sathiyamoorthy, A.; Prakash, B.J.; Bhava, B.S.; Shenoy, A. Association of Dyslipidemia with Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients. J. Pharm. Bioallied Sci. 2021, 13 (Suppl. 2), S1062–S1067. [Google Scholar] [CrossRef] [PubMed]
- Dejenie, T.A.; Abebe, E.C.; Mengstie, M.A.; Seid, M.A.; Gebeyehu, N.A.; Adella, G.A.; Kassie, G.A.; Gebrekidan, A.Y.; Gesese, M.M.; Tegegne, K.D.; et al. Dyslipidemia and serum cystatin C levels as biomarker of diabetic nephropathy in patients with type 2 diabetes mellitus. Front. Endocrinol. 2023, 14, 1124367. [Google Scholar] [CrossRef] [PubMed]
- Lagathu, C.; Béréziat, V.; Gorwood, J.; Fellahi, S.; Bastard, J.P.; Vigouroux, C.; Boccara, F.; Capeau, J. Metabolic complications affecting adipose tissue, lipid and glucose metabolism associated with HIV antiretroviral treatment. Expert Opin. Drug Saf. 2019, 18, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ji, L.; Zhang, D.; Tong, X.; Pan, B.; Liu, P.; Zhang, Y.; Huang, Y.; Su, J.; Willard, B.; et al. Nonenzymatic glycation of high-density lipoprotein impairs its anti-inflammatory effects in innate immunity. Diabetes Metab. Res. Rev. 2012, 28, 186–195. [Google Scholar] [CrossRef]
- Farbstein, D.; Levy, A.P. HDL dysfunction in diabetes: Causes and possible treatments. Expert Rev. Cardiovasc. Ther. 2012, 10, 353–361. [Google Scholar] [CrossRef]
- Joung, H.N.; Kwon, H.S.; Baek, K.H.; Song, K.H.; Kim, M.K. Consistency of the Glycation Gap with the Hemoglobin Glycation Index Derived from a Continuous Glucose Monitoring System. Endocrinol. Metab. 2020, 35, 377–383. [Google Scholar] [CrossRef]
- Kim, M.K.; Yun, K.J.; Kwon, H.S.; Baek, K.H.; Song, K.H. Discordance in the levels of hemoglobin A1C and glycated albumin: Calculation of the glycation gap based on glycated albumin level. J. Diabetes Complicat. 2016, 30, 477–481. [Google Scholar] [CrossRef]
PLWHIV | PLWHIV+ preT2D | PLWHIV+ T2D | PLWT2D | Control | p-Value | |
---|---|---|---|---|---|---|
(n = 15) | (n = 17) | (n = 17) | (n = 18) | (n = 15) | ||
Gender | ||||||
Women (%) | 3 (20) | 1 (5.9) | 2 (11.8) | 9 (50) | 7 (46.7) | |
Men (%) | 12 (80) | 16 (94.1) | 15 (88.2) | 9 (50) | 8 (53.3) | 0.007 |
Age (years) | 37 (22–63) | 50 (25–64) | 50 (31–56) | 57.5 (30–68) | 39 (25–71) | 0.009 |
Weight (Kg) | 70 ± 9 | 74 ± 16 | 85 ± 17 | 78 ± 14 | 75 ± 16 | 0.065 |
Height (m) | 1.7 (1.5–1.8) | 1.7 (1.5–1.8) | 1.7 (1.5–1.8) | 1.7 (1.5–1.8) | 1.7 (1.5–1.9) | 0.807 |
BMI (Kg/m2) | 24.5 (19–32) | 24.6 (19–42) | 28.3 (21–39) | 29.4 (15–37) | 26.5 (20–40) | 0.022 |
BMI | ||||||
Underweight | NA | NA | NA | 1 (5.6) | NA | |
Healthy weight | 8 (53.4) | 9 (53) | 4 (23.6) | 2 (11.1) | 7 (46.7) | |
Overweight | 5 (33.3) | 3 (17.6) | 7 (41.2) | 10 (55.6) | 7 (46.7) | |
Obesity I | 2 (13.3) | 3 (17.6) | 3 (17.6) | 4 (22.1) | NA | |
Obesity II | NA | 1 (5.9) | 3 (17.6) | 1 (5.6) | NA | |
Obesity III | NA | 1 (5.9) | NA | NA | 1 (6.6) | 0.186 |
0.87 | 0.86 | 0.97 | 0.93 | 0.85 | ||
WHR | (0.6–1) | (0.8–1.3) | (0.85–1) | (0.77–1) | (0.75–0.98) | 0.0027 |
T2D treatment | ||||||
Metformin (%) | NA | 2 (11.8) | 14 (82.4) | 15 (83.3) | NA | <0.001 |
Insulin (%) | NA | NA | 9 (52.9) | 7 (38.9) | NA | <0.001 |
Statin | NA | NA | 9 (52.9) | 5 (27.8) | NA | <0.001 |
PLWHIV | PLWHIV+ preT2D | PLWHIV+ T2D | p-Value | |
---|---|---|---|---|
(n = 15) | (n = 17) | (n = 17) | ||
Viral load | 31 | 20 | 38 | |
(copies/mL) | (20–39) | (19–74) | (19–46) | 0.45 |
Absolute CD4+ T cell (cells/μL) | 541 | 592 | 583 | |
(250–1310) | (301–2076) | (223–1151) | 0.97 | |
Nadir CD4+ T cell (cells/μL) | 244 | 218 | 401 | |
(15–675) | (11–1559) | (10–2181) | 0.33 | |
Current ART | ||||
Biktarvy® (%) | 15 (100) | 16 (94.1) | 16 (94.1) | |
Atripla® | - | 1 (5.9) | - | - |
Truvada® | - | - | 1(5.9) | |
Time-Biktarvy® | 5 | 4.9 | 4.8 | |
(years) | (3.4–5.3) | (1.2–5.6) | (2.8–5.3) | 0.66 |
History of ART prior to current. | ||||
NNRTI + NRTI | 5(55.6) | 11 (68.8) | 5 (41.7) | |
PI + INSTI + NRTI | 1 (11.1) | - | - | |
INSTI + NRTI | 1 (11.1) | - | 2 (16.6) | - |
NRTI + PI | 2 (22.2) | 5 (31.2) | 5 (41.7) | |
Time on ART prior to current (months) | ||||
30.7 ± 31.7 | 46.7 ± 35 | 34.8 ± 21.4 | 0.39 | |
Total time on ART (years) | 4.2 | 9.4 | 7 | |
(1.2–19.8) | (0.8–19.8) | (1.7–23.3) | 0.09 |
PLWHIV | PLWHIV+ preT2D | PLWHIV+ T2D | PLWT2D | Control | p-Value | |
---|---|---|---|---|---|---|
(n = 15) | (n = 17) | (n = 17) | (n = 18) | (n = 15) | ||
Glycemic profile | ||||||
Glucose (mg/dL) | 86 (69–101) | 88 (72–103) | 139 (80–281) | 148 (79–262) | 82 (70–99) | 0.0001 |
HbA1c% | 5.4 ± 0.4 | 5.7 ± 0.2 | 8.3 ± 2.2 | 7.8 ± 1.8 | 5.7 ± 0.3 | 0.0001 |
FA (µmol/L) | 253 | 283 | 404 | 453 | 312 | 0.0001 |
(214–392) | (214–341) | (253–838) | (322–643) | (146–380) | ||
eAG (mg/dL) | 108 ± 11 | 118 ± 8 | 191 ± 63 | 178 ± 51 | 117 ± 9 | 0.0001 |
Lipid profile | ||||||
TC (mg/dL) | 176 | 178 | 175 | 163 | 193 | 0.45 |
(126–368) | (123–266) | (127–250) | (101–252) | (112–260) | ||
LDL-C (mg/dL) | 106 ± 27 | 107 ± 28 | 101 ± 34 | 100 ± 37 | 105 ± 37 | 0.96 |
HDL-C (mg/dL) | 42 (27–66) | 43 (27–67) | 32 (26–45) | 43 (24–63) | 48 (24–114) | 0.0005 |
VLDL-C (mg/dL) | 23 (9–74) | 22 (11–67) | 34 (15–109) | 29 (15–60) | 23 (14–95) | 0.09 |
TG (mg/dL) | 113 (45–368) | 109 (56–333) | 188 (76–546) | 144 (67–302) | 129 (71–476) | 0.08 |
G-Gap– (39) | G-Gap = 0 (9) | G-Gap+ (34) | p-Value | |
---|---|---|---|---|
HDL-C < 40 | 13 (33.3) | 7 (77.8) | 21 (61.8) | |
HDL-C > 40 | 26 (66.7) | 2 (22.2) | 13 (38.2) | 0.010 |
HbA1c % ≥ 7 | 4 (17.4) | 2 (8.7) | 17 (73.9) | |
HbA1c % ≤ 7 | 35 (59.3) | 7 (11.9) | 17 (28.8) | <0.001 |
Insulin treatment | 3 (18.8) | 3 (18.8) | 10 (62.5) | |
No insulin treatment | 36 (54.5) | 6 (9.1) | 24 (36.4) | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anaya-Ambriz, E.J.; Alvarez-Zavala, M.; González-Hernández, L.A.; Andrade-Villanueva, J.F.; Zuñiga-Quiñones, S.; Valle-Rodríguez, A.; Holguin-Aguirre, T.E.; Sánchez-Reyes, K. Deciphering the Association: Critical HDL-C Levels and Their Impact on the Glycation Gap in People Living with HIV. Int. J. Mol. Sci. 2025, 26, 914. https://doi.org/10.3390/ijms26030914
Anaya-Ambriz EJ, Alvarez-Zavala M, González-Hernández LA, Andrade-Villanueva JF, Zuñiga-Quiñones S, Valle-Rodríguez A, Holguin-Aguirre TE, Sánchez-Reyes K. Deciphering the Association: Critical HDL-C Levels and Their Impact on the Glycation Gap in People Living with HIV. International Journal of Molecular Sciences. 2025; 26(3):914. https://doi.org/10.3390/ijms26030914
Chicago/Turabian StyleAnaya-Ambriz, Elsa J., Monserrat Alvarez-Zavala, Luz A. González-Hernández, Jaime F. Andrade-Villanueva, Sergio Zuñiga-Quiñones, Adriana Valle-Rodríguez, Tania E. Holguin-Aguirre, and Karina Sánchez-Reyes. 2025. "Deciphering the Association: Critical HDL-C Levels and Their Impact on the Glycation Gap in People Living with HIV" International Journal of Molecular Sciences 26, no. 3: 914. https://doi.org/10.3390/ijms26030914
APA StyleAnaya-Ambriz, E. J., Alvarez-Zavala, M., González-Hernández, L. A., Andrade-Villanueva, J. F., Zuñiga-Quiñones, S., Valle-Rodríguez, A., Holguin-Aguirre, T. E., & Sánchez-Reyes, K. (2025). Deciphering the Association: Critical HDL-C Levels and Their Impact on the Glycation Gap in People Living with HIV. International Journal of Molecular Sciences, 26(3), 914. https://doi.org/10.3390/ijms26030914