Plant Polyphenols as Heart’s Best Friends: From Health Properties, to Cellular Effects, to Molecular Mechanisms of Action
Abstract
:1. Introduction
1.1. What Are Polyphenols?
1.1.1. Non-Flavonoids
1.1.2. Flavonoids
1.2. Metabolism and Bioavailability of Polyphenols
2. Polyphenols and Cardiovascular Health
2.1. Knowledge from In Vitro Studies
2.2. Knowledge from In Vivo Studies
2.3. Knowledge from Clinical Trials
3. Molecular Mechanisms of Polyphenols and Heart Health
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stromsnes, K.; Lagzdina, R.; Olaso-Gonzalez, G.; Gimeno-Mallench, L.; Gambini, J. Pharmacological properties of polyphenols: Bioavailability, mechanisms of action, and biological effects in in vitro studies, animal models, and humans. Biomedicines 2021, 9, 1074. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.K.; Domb, A.J. Antimicrobial Activities of Natural Bioactive Polyphenols. Pharmaceutics 2024, 16, 718. [Google Scholar] [CrossRef] [PubMed]
- Nabil-Adam, A.; Ashour, M.L.; Tamer, T.M.; Shreadah, M.A.; Hassan, M.A. Interaction of Jania rubens Polyphenolic Extract as an Antidiabetic Agent with -Amylase, Lipase, and Trypsin: In Vitro Evaluations and In Silico Studies. Catalysts 2023, 13, 443. [Google Scholar] [CrossRef]
- Pereira, L.; Cotas, J. Therapeutic Potential of Polyphenols and Other Micronutrients of Marine Origin. Mar. Drugs 2023, 21, 323. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, P.; Abedin, M.M.; Singh, S.P.; Pandey, A.; Rai, A.K. Microbial production and transformation of polyphenols. In Current Developments in Biotechnology and Bioengineering: Technologies for Production of Nutraceuticals and Functional Food Products; Rai, A.K., Singh, S.P., Pandey, A., Larroche, C., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 189–208. [Google Scholar]
- Al-Khayri, J.; Mascarenhas, R.; Harish, H.M.; Gowda, Y.; Lakshmaiah, V.V.; Nagella, P.; Al-Mssallem, M.Q.; Alessa, F.M.; Almaghasla, M.I.; Abdel-Sabour, R.A. Stilbenes, a versatile class of natural metabolites for inflammation-an overview. Molecules 2023, 28, 3786. [Google Scholar] [CrossRef]
- Chanet, A.; Milenkovic, D.; Manach, C.; Mazur, A.; Morand, C. Citrus flavanones: What is their role in cardiovascular protection? J. Agric. Food Chem. 2012, 60, 8809–8822. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef]
- Ramanan, M.; Shweta Sinha, S.; Kasireddy Sudarsha, K.; Singh Aidhen, I.; Doble, M. Inhibition of the enzymes in the leukotriene and prostaglandin pathways in inflammation by 3-aryl isocoumarins. Eur. J. Med. Chem. 2016, 124, 428–434. [Google Scholar] [CrossRef]
- Sudarshan, K.; Boda, A.K.; Dogra, S.; Bose, I.; Yadav, P.N.; Aidhen, I.S. Discovery of an isocoumarin analogue that modulates neuronal functions via neurotrophin receptor TrkB. Bioorg. Med. Chem. Lett. 2019, 29, 585–590. [Google Scholar] [CrossRef]
- Cai, Y.; Yu, S.S.; He, Y.; Bi, X.Y.; Gao, S.; Yan, T.D.; Zheng, G.D.; Chen, T.T.; Ye, J.T.; Liu, P.Q. EGCG inhibits pressure overloadinduced cardiac hypertrophy via the PSMB5/Nmnat2/SIRT6-dependent signalling pathways. Acta Physiol. 2021, 231, e13602. [Google Scholar] [CrossRef]
- Miler, M.; Živanović, J.; Ajdžanović, V.; Filipović-Marković, J.; Šošić-Jurjević, B.; Milošević, V. Citrus flavanones upregulate thyrotroph Sirt1 and differently affect thyroid Nrf2 expressions in old-aged Wistar rats. Microsc. Microanal. 2021, 27, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Dhital, S.; Wu, P.; Chen, X.-D.; Gidley, M.J. In Vitro Digestion of Apple Tissue Using a Dynamic Stomach Model: Grindingand Crushing Effects on Polyphenol Bioaccessibility. J. Agric. Food Chem. 2019, 68, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Buettner, D. The Blue Zones Secrets for Living Longer: Lessons From the Healthiest Places on Earth; National Geographic: Washington, DC, USA, 2023. [Google Scholar]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef]
- Pandey, B.K.; Rizvi, I.S. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Catalgol, B.; Batirel, S.; Taga, Y.; Ozer, N.K. Resveratrol: French paradox revisited. Front. Pharmacol. 2012, 3, 141. [Google Scholar] [CrossRef]
- Hu, Y.; Tse, T.J.; Shim, Y.Y.; Purdy, S.K.; Kim, Y.J.; Meda, V.; Reaney, M.J.T. A review of flaxseed lignan and the extraction and refinement of secoisolariciresinol diglucoside. Crit. Rev. Food Sci. Nutr. 2024, 64, 5057–5072. [Google Scholar] [CrossRef]
- Kezimana, P.; Dmitriev, A.A.; Kudryavtseva, A.V.; Romanova, E.V.; Melnikova, N.V. Secoisolariciresinol diglucoside of flaxseed and its metabolites: Biosynthesis and potential for nutraceuticals. Front. Genet. 2018, 9, 641. [Google Scholar] [CrossRef]
- Swallah, M.S.; Fu, H.; Sun, H.; Affoh, R.; Yu, H. The impact of polyphenol on general nutrient metabolism in the monogastric gastrointestinal tract. J. Food Qual. 2020, 1, 5952834. [Google Scholar] [CrossRef]
- Sicilia, T.; Niemeyer, H.B.; Honig, D.M.; Metzler, M. Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds. J. Agric. Food Chem. 2003, 51, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Peñalvo, J.L.; Heinonen, S.-M.; Aura, A.-M.; Adlercreutz, H. Dietary sesamin is converted to enterolactone in humans. J. Nutr. 2005, 135, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Teodor, E.D.; Moroeanu, V.; Radu, G.L. Lignans from Medicinal Plants and their Anticancer Effect. Mini Rev. Med. Chem. 2020, 20, 1083–1090. [Google Scholar]
- Kumara, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 2010, 5, 359–368. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar]
- Tsao, R.; Deng, Z. Separation procedures for naturally occurring antioxidant phytochemicals. J. Chromatogr. B. 2004, 812, 85–99. [Google Scholar] [CrossRef]
- Govindarajan, R.K.; Revathi, S.; Rameshkumar, N.; Krishnan, M.; Kayalvizhi, N. Microbial tannase: Current perspectives and biotechnological advances. Biocatal. Agric. Biotechnol. 2016, 6, 168–175. [Google Scholar] [CrossRef]
- Ojo, M.A. Tannins in Foods: Nutritional Implications and Processing Effects of Hydrothermal Techniques on Underutilized Hard-to-Cook Legume Seeds-A Review. Prev. Nutr. Food Sci. 2022, 27, 14–19. [Google Scholar] [CrossRef]
- Chung, K.T.; Wong, T.Y.; Wei, C.I.; Huang, Y.W.; Lin, Y. Tannins and Human Health: A Review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef]
- Allgrove, J.E.; Davison, G. Chocolate/Cocoa Polyphenols and Oxidative Stress. Chapter 16. In Polyphenols: Mechanisms of Action in Human Health and Disease, 2nd ed.; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 207–219. [Google Scholar]
- Pop, O.L.; Suharoschi, R.; Socaci, S.A.; Berger Ceresino, E.; Weber, A.; Gruber-Traub, C.; Vodnar, D.C.; Fărcaș, A.C.; Johansson, E. Polyphenols-Ensured Accessibility from Food to the Human Metabolism by Chemical and Biotechnological Treatments. Antioxidants 2023, 12, 865. [Google Scholar] [CrossRef]
- Khan, M.K.; Huma, Z.E.; Dangles, O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Comp. Anal. 2014, 33, 85–104. [Google Scholar] [CrossRef]
- Miler, M.; Živanović, J.; Ajdzanović, V.; Milenkovic, D.; Cesar, T.; Filipović, M.R.; Milosević, V. Lemon extract reduces the hepatic oxidative stress and persulfidation levels by upregulating the Nrf2 and Trx1 expression in old rats. BioFactors 2024, 50, 756–771. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Pan, T.; Zhu, A.L.; Zhang, M.H. Anti-inflammatory and anti-arthritic properties of naringenin via attenuation of NF-κB and activation of the heme oxygenase (HO)-1/related factor 2 pathway. Pharmacol. Rep. 2017, 69, 1021–1029. [Google Scholar] [CrossRef]
- Shilpa, V.S.; Shams, R.; Dash, K.K.; Pandey, V.K.; Dar, A.H.; Ayaz Mukarram, S.; Harsányi, E.; Kovács, B. Phytochemical properties, extraction, and pharmacological benefits of Naringin: A Review. Molecules 2023, 28, 5623. [Google Scholar] [CrossRef]
- Zhao, L.; Yuan, X.; Wang, J.; Feng, Y.; Ji, F.; Li, Z.; Bian, J. A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorg. Med. Chem. 2019, 27, 677–685. [Google Scholar] [CrossRef]
- Janda, E.; Martino, C.; Riillo, C.; Parafati, M.; Lascala, A.; Mollace, V.; Boutin, J.A. Apigenin and luteolin regulate autophagy by targeting NRH-quinone oxidoreductase 2 in liver cells. Antioxidants 2021, 10, 776. [Google Scholar] [CrossRef]
- Naponelli, V.; Rocchetti, M.T.; Mangieri, D. Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading. Int. J. Mol. Sci. 2024, 25, 5569. [Google Scholar] [CrossRef]
- Tutel’ian, V.A.; Lashneva, N.V. Biologically active substances of plant origin. Flavonols and flavones: Prevalence, dietary sources and consumption. Vopr. Pitan. 2013, 82, 4–22. [Google Scholar]
- Mahmud, A.R.; Ema, T.I.; Siddiquee, M.F.; Shahriar, A.; Ahmed, H.; Mosfeq-Ul-Hasan, M.; Rahman, N.; Islam, R.; Uddin, M.R.; Mizan, M.F.R. Natural flavonols: Actions, mechanisms, and potential therapeutic utility for various diseases. Beni Suef Univ. J. Basic Appl. Sci. 2023, 12, 47. [Google Scholar]
- Chagas, M.D.S.S.; Behrens, M.D.; Moragas-Tellis, C.J.; Penedo, G.X.M.; Silva, A.R.; Gonçalves-de-Albuquerque, C.F. Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds. Oxid. Med. Cell Longev. 2022, 2022, 9966750. [Google Scholar] [CrossRef] [PubMed]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef]
- Dower, J.I.; Geleijnse, J.M.; Kroon, P.A.; Philo, M.; Mensink, M.; Kromhout, D.; Hollman, P.C.H. Does epicatechin contribute to the acute vascular function effects of dark chocolate? A randomized, crossover study. Mol. Nutr. Food Res. 2016, 60, 2379–2386. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, H.J.C.B.; Urquiza-Martínez, M.V.; Manhães-de-Castro, R.; Costa-de-Santana, B.J.R.; Villarreal, J.P.; Mercado-Camargo, R.; Torner, L.; de Souza Aquino, J.; Toscano, A.E.; Guzmán-Quevedo, O. Effects of the Treatment with Flavonoids on Metabolic Syndrome Components in Humans: A Systematic Review Focusing on Mechanisms of Action. Int. J. Mol. Sci. 2022, 23, 8344. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, S.; Tong, H.; Shi, S. Comprehensive evaluation of the role of soy and isoflavone supplementation in humans and animals over the past two decades. Phytother. Res. 2017, 32, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef]
- Bustamante-Rangel, M.; Delgado-Zamarreño, M.M.; Pérez-Martín, L.; Rodríguez-Gonzalo, E.; Domínguez-Álvarez, J. Analysis of isoflavones in foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 391–411. [Google Scholar] [CrossRef]
- Asbaghi, O.; Ashtary-Larky, D.; Mousa, A.; Kelishadi, M.R.; Moosavian, S.P. The effects of soy products on cardiovascular risk factors in patients with type 2 diabetes: A systematic review and Meta-analysis of clinical trials. Adv. Nutr. 2021, 13, 455–473. [Google Scholar] [CrossRef]
- Micek, A.; Godos, J.; Brzostek, T.; Gniadek, A.; Favari, C.; Mena, P.; Libra, M.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary phytoestrogens and biomarkers of their intake in relation to cancer survival and recurrence: A comprehensive systematic review with meta-analysis. Nutr. Rev. 2021, 79, 42–65. [Google Scholar] [CrossRef]
- Nakai, S.; Fujita, M.; Kamei, Y. Health Promotion Effects of Soy Isoflavones. J. Nutr. Sci. Vitaminol 2020, 66, 502–507. [Google Scholar] [CrossRef]
- Solecki, R.; Kortenkamp, A.; Bergman, Å.; Chahoud, I.; Degen, G.H.; Dietrich, D.; Greim, H.; Håkansson, H.; Hass, U.; Husoy, T.; et al. Scientific principles for the identification of endocrine-disrupting chemicals: A consensus statement. Arch. Toxicol. 2017, 91, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Weber, F.; Larsen, L.R. Influence of fruit juice processing on anthocyanin stability. Food Res. Int. 2017, 100, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Alappat, B.; Alappat, J. Anthocyanin Pigments: Beyond Aesthetics. Molecules 2020, 25, 5500. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Lin, B.W.; Gong, C.C.; Song, H.F.; Cui, Y.Y. Effects of anthocyaninson the prevention and treatment of cancer. Br. J. Pharmacol. 2017, 174, 1226–1243. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res. 2016, 30, 1265–1286. [Google Scholar] [CrossRef]
- Kimble, R.; Keane, K.M.; Lodge, J.K.; Howatson, G. Dietary intake of anthocyanins and risk of cardiovascular disease: A systematic review and meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Quiñones, M.; Margalef, M.; Arola-Arnal, A.; Muguerza, B.; Miguel, M.; Aleixandre, A. The blood pressure effect and related plasma levels of flavan-3-ols in spontaneously hypertensive rats. Food Funct. 2015, 6, 3479–3489. [Google Scholar] [CrossRef]
- Gonzales, G.B.; Smagghe, G.; Grootaert, C.; Zotti, M.; Raes, K.; Van Camp, J. Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure-activity/property approach to the study of bioavailability and bioactivity. Compr. Rev. Food Sci. Food Saf. 2015, 47, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004, 59, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, V.; Sanz-Lamora, H.; Arias, G.; Marrero, P.F.; Haro, D.; Relat, J. Metabolic impact of flavonoid consumption in obesity: From central to peripheral. Nutrients 2020, 12, 2393. [Google Scholar] [CrossRef] [PubMed]
- Lavefve, L.; Howard, L.R.; Carbonero, F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct. 2019, 11, 45–65. [Google Scholar] [CrossRef] [PubMed]
- Ottaviani, J.I.; Borges, G.; Momma, T.Y.; Spencer, J.P.E.; Keen, C.L.; Crozier, A.; Schroeter, H. The metabolome of 2-14C-epicatechin in humans: Implications for the assessment of efficacy, safety and mechanisms of action of polyphenolic bioactives. Sci. Rep. 2016, 6, 29034. [Google Scholar] [CrossRef]
- Tian, L.; Tan, Y.; Chen, G.; Wang, G.; Sun, J.; Ou, S.; Chen, W.; Bai, W. Metabolism of anthocyanins and consequent effects on the gut microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 982–991. [Google Scholar] [CrossRef]
- Han, F.; Yang, P.; Wang, H.; Fernandes, I.; Mateus, N.; Liu, Y. Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract. Trends Food Sci. Technol. 2019, 83, 211–224. [Google Scholar] [CrossRef]
- Liang, A.; Leonard, W.; Beasley, J.T.; Fang, Z.; Zhang, P.; Ranadheera, C.S. Anthocyanins-gut microbiota-health axis: A review. Crit. Rev. Food Sci. Nutr. 2024, 64, 7563–7588. [Google Scholar] [CrossRef]
- WHO World Health Organization. Leaving No One Behind In An Ageing World. World Social Report 2023; pp. 1–34. Available online: https://www.un.org/development/desa/dspd/wp-content/uploads/sites/22/2023/01/2023wsr-chapter1-.pdf (accessed on 1 December 2024).
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean Diet In Healthy Aging. J. Nutr. Health Aging 2021, 25, 1076–1083. [Google Scholar] [CrossRef]
- Morris, L.; Bhatnagar, D. The Mediterranean diet. Curr. Opin. Lipidol. 2016, 27, 89–91. [Google Scholar] [CrossRef]
- Nestle, M. Mediterranean diets: Historical and research overviews. Am. J. Clin. Nutr. 1995, 61, 1313S–1320S. [Google Scholar] [CrossRef] [PubMed]
- Andreo-López, M.C.; Contreras-Bolívar, V.; Muñoz-Torres, M.; García-Fontana, B.; García-Fontana, C. Influence of the Mediterranean Diet on Healthy Aging. Int. J. Mol. Sci. 2023, 24, 4491. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- Vetrani, C.; Vitale, M.; Bozzetto, L.; Della Pepa, G.; Cocozza, S.; Costabile, G.; Mangione, A.; Cipriano, P.; Annuzzi, G.; Rivellese, A.A. Association between different dietary polyphenol subclasses and the improvement in cardiometabolic risk factors: Evidence from a randomized controlled clinical trial. Acta Diabetol. 2018, 55, 149–153. [Google Scholar] [CrossRef]
- Medina-Remón, A.; Casas, R.; Tressserra-Rimbau, A.; Ros, E.; Martínez-González, M.A.; Fitó, M.; Corella, D.; Salas-Salvadó, J.; Rosa, M.; Lamuela-Raventos, R.M.; et al. Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: A substudy of the PREDIMED trial. Br. J. Clin. Pharmacol. 2017, 83, 114–128. [Google Scholar] [CrossRef]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remón, A.; Martínez-González, M.A.; de la Torre, R.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; Arós, F.; et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 639–647. [Google Scholar] [CrossRef]
- Chen, L.; Sun, X.; Wang, Z.; Chen, M.; He, Y.; Zhang, H.; Han, D.; Zheng, L. Resveratrol protects against doxorubicin-induced cardiotoxicity by attenuating ferroptosis through modulating the MAPK signaling pathway. Toxicol. Appl. Pharmacol. 2024, 482, 116794. [Google Scholar] [CrossRef]
- Gu, X.S.; Wang, Z.B.; Ye, Z.; Lei, J.P.; Li, L.; Su, D.F.; Zheng, X. Resveratrol, an activator of SIRT1, upregulates AMPK and improves cardiac function in heart failure. Genet. Mol. Res. 2014, 13, 323–335. [Google Scholar] [CrossRef]
- Chen, C.; Zou, L.X.; Lin, Q.Y.; Yan, X.; Bi, H.L.; Xie, X.; Wang, S.; Wang, Q.S.; Zhang, Y.L.; Li, H.H. Resveratrol as a new inhibitor of immunoproteasome prevents PTEN degradation and attenuates cardiac hypertrophy after pressure overload. Redox Biol. 2019, 20, 390–401. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, L.; Fang, K.; Huang, T.; Wan, L.; Liu, Y.; Zhang, S.; Yan, D.; Li, G.; Gao, Y.; et al. Resveratrol Ameliorates Cardiac Hypertrophy by Down-regulation of miR-155 Through Activation of Breast Cancer Type 1 Susceptibility Protein. J. Am. Heart Assoc. 2016, 5, e002648. [Google Scholar] [CrossRef]
- Li, H.; Zheng, F.; Zhang, Y.; Sun, J.; Gao, F.; Shi, G. Resveratrol, novel application by preconditioning to attenuate myocardial ischemia/reperfusion injury in mice through regulate AMPK pathway and autophagy level. J. Cell. Mol. Med. 2022, 26, 4216–4229. [Google Scholar] [CrossRef] [PubMed]
- Ma, E.; Wu, C.; Chen, J.; Wo, D.; Ren, D.N.; Yan, H.; Peng, L.; Zhu, W. Resveratrol prevents Ang II-induced cardiac hypertrophy by inhibition of NF-κB signaling. Biomed. Pharmacother. 2023, 165, 115275. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, N.; Takahara, S.; Maayah, Z.H.; Parajuli, N.; Byrne, N.J.; Shoieb, S.M.; Soltys, C.M.; Beker, D.L.; Masson, G.; El-Kadi, A.O.S.; et al. Resveratrol improves cardiac function and exercise performance in MI-induced heart failure through the inhibition of cardiotoxic HETE metabolites. J. Mol. Cell. Cardiol. 2018, 125, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, J.; Yan, L.; He, Q.; Xie, H.; Chen, M. Resveratrol Ameliorates Cardiac Remodeling in a Murine Model of Heart Failure with Preserved Ejection Fraction. Front. Pharmacol. 2021, 12, 646240. [Google Scholar] [CrossRef]
- Chen, W.J.; Cheng, Y.; Li, W.; Dong, X.K.; Wei, J.L.; Yang, C.H.; Jiang, Y.H. Quercetin Attenuates Cardiac Hypertrophy by Inhibiting Mitochondrial Dysfunction Through SIRT3/PARP-1 Pathway. Front. Pharmacol. 2021, 12, 739615. [Google Scholar] [CrossRef]
- Chen, K.; Rekep, M.; Wei, W.; Wu, Q.; Xue, Q.; Li, S.; Tian, J.; Yi, Q.; Zhang, G.; Zhang, G.; et al. Quercetin Prevents In Vivo and In Vitro Myocardial Hypertrophy Through the Proteasome-GSK-3 Pathway. Cardiovasc. Drugs Ther. 2018, 32, 5–21. [Google Scholar] [CrossRef]
- Wang, L.; Tan, A.; An, X.; Xia, Y.; Xie, Y. Quercetin Dihydrate inhibition of cardiac fibrosis induced by angiotensin II in vivo and in vitro. Biomed. Pharmacother. 2020, 127, 110205. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Y.L.; Zhang, L.; Zou, L.X.; Chen, C.; Liu, Y.; Xia, Y.L.; Li, H.H. Gallic Acid Suppresses Cardiac Hypertrophic Remodeling and Heart Failure. Mol. Nutr. Food Res. 2019, 63, e1800807. [Google Scholar] [CrossRef]
- Ryu, Y.; Jin, L.; Kee, H.J.; Piao, Z.H.; Cho, J.Y.; Kim, G.R.; Choi, S.Y.; Lin, M.Q.; Jeong, M.H. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity. Sci. Rep. 2016, 6, 34790. [Google Scholar] [CrossRef]
- Jin, L.; Piao, Z.H.; Sun, S.; Liu, B.; Kim, G.R.; Seok, Y.M.; Lin, M.Q.; Ryu, Y.; Choi, S.Y.; Kee, H.J.; et al. Gallic Acid Reduces Blood Pressure and Attenuates Oxidative Stress and Cardiac Hypertrophy in Spontaneously Hypertensive Rats. Sci. Rep. 2017, 7, 15607. [Google Scholar] [CrossRef]
- Jin, L.; Sun, S.; Ryu, Y.; Piao, Z.H.; Liu, B.; Choi, S.Y.; Kim, G.R.; Kim, H.S.; Kee, H.J.; Jeong, M.H. Gallic acid improves cardiac dysfunction and fibrosis in pressure overload-induced heart failure. Sci. Rep. 2018, 8, 9302. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Zhang, Y.; Ma, Z.; Zhou, H.; Ni, J.; Liao, H.; Tang, Q. Genistein attenuates pathological cardiac hypertrophy in vivo and in vitro. Herz 2019, 44, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Gan, M.; Zheng, T.; Shen, L.; Tan, Y.; Fan, Y.; Shuai, S.; Bai, L.; Li, X.; Wang, J.; Zhang, S.; et al. Genistein reverses isoproterenol-induced cardiac hypertrophy by regulating miR-451/TIMP2. Biomed. Pharmacother. 2019, 112, 108618. [Google Scholar] [CrossRef]
- Wan, H.; Yang, X.; Zhang, Y.; Liu, X.; Li, Y.; Qin, Y.; Yan, H.; Gui, L.; Li, K.; Zhang, L.; et al. Polyphenol-Reinforced Glycocalyx-Like Hydrogel Coating Induced Myocardial Regeneration and Immunomodulation. ACS Nano 2024, 18, 21512–21522. [Google Scholar] [CrossRef]
- Hu, W.; Xu, T.; Wu, P.; Pan, D.; Chen, J.; Chen, J.; Zhang, B.; Zhu, H.; Li, D. Luteolin improves cardiac dysfunction in heart failure rats by regulating sarcoplasmic reticulum Ca2+-ATPase 2a. Sci. Rep. 2017, 7, 41017. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Cao, J.; Zhang, G.; Wang, Y. Kaempferol Attenuates Cardiac Hypertrophy via Regulation of ASK1/MAPK Signaling Pathway and Oxidative Stress. Planta Med. 2017, 83, 837–845. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, Z.; Huang, S.; Zhou, L.; Zhai, C.; Chen, Y.; Hu, Q.; Cao, W.; Weng, Y.; Li, Y. Delphinidin attenuates pathological cardiac hypertrophy via the AMPK/NOX/MAPK signaling pathway. Aging 2020, 12, 5362–5383. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, N.; Liao, H.; Chen, S.; Xu, L.; Li, J.; Yang, Z.; Deng, W.; Tang, Q. Caffeic acid phenethyl ester attenuates pathological cardiac hypertrophy by regulation of MEK/ERK signaling pathway in vivo and vitro. Life Sci. 2017, 181, 53–61. [Google Scholar] [CrossRef]
- Sung, M.M.; Das, S.K.; Levasseur, J.; Byrne, N.J.; Fung, D.; Kim, T.T.; Masson, G.; Boisvenue, J.; Soltys, C.L.; Oudit, G.Y.; et al. Resveratrol treatment of mice with pressure-overload-induced heart failure improves diastolic function and cardiac energy metabolism. Circ. Heart Fail. 2015, 8, 128–137. [Google Scholar] [CrossRef]
- Sung, M.M.; Byrne, N.J.; Robertson, I.M.; Kim, T.T.; Samokhvalov, V.; Levasseur, J.; Soltys, C.L.; Fung, D.; Tyreman, N.; Denou, E.; et al. Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H842–H853. [Google Scholar] [CrossRef]
- Chakraborty, S.; Pujani, M.; Haque, S.E. Combinational effect of resveratrol and atorvastatin on isoproterenol-induced cardiac hypertrophy in rats. J. Pharm. Bioallied Sci. 2015, 7, 233–238. [Google Scholar] [PubMed]
- Guan, P.; Sun, Z.M.; Wang, N.; Zhou, J.; Luo, L.F.; Zhao, Y.S.; Ji, E.S. Resveratrol prevents chronic intermittent hypoxia-induced cardiac hypertrophy by targeting the PI3K/AKT/mTOR pathway. Life Sci. 2019, 233, 116748. [Google Scholar] [CrossRef] [PubMed]
- Dorri Mashhadi, F.; Zavvar Reza, J.; Jamhiri, M.; Hafizi, Z.; Zare Mehrjardi, F.; Safari, F. The effect of resveratrol on angiotensin II levels and the rate of transcription of its receptors in the rat cardiac hypertrophy model. J. Physiol. Sci. 2017, 67, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Z.; Jia, M.Y.; Wei, H.Y.; Yao, M.; Jiang, L.H. Systematic review and meta-analysis of the interventional effects of resveratrol in a rat model of myocardial ischemia-reperfusion injury. Front. Pharmacol. 2024, 15, 1301502. [Google Scholar] [CrossRef]
- de Lacerda Alexandre, J.V.; Viana, Y.I.P.; David, C.E.B.; Cunha, P.L.O.; Albuquerque, A.C.; Varela, A.L.N.; Kowaltowski, A.J.; Facundo, H.T. Quercetin treatment increases H2O2 removal by restoration of endogenous antioxidant activity and blocks isoproterenol-induced cardiac hypertrophy. Naunyn Schmiedebergs Arch. Pharmacol. 2021, 394, 217–226. [Google Scholar] [CrossRef]
- Siti, H.N.; Jalil, J.; Asmadi, A.Y.; Kamisah, Y. Effects of Quercetin on Cardiac Function in Pressure Overload and Postischemic Cardiac Injury in Rodents: A Systematic Review and Meta-Analysis. Cardiovasc. Drugs Ther. 2022, 36, 15–29. [Google Scholar] [CrossRef]
- Jin, L.; Piao, Z.H.; Sun, S.; Liu, B.; Ryu, Y.; Choi, S.Y.; Kim, G.R.; Kim, H.S.; Kee, H.J.; Jeong, M.H. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure. Vascul. Pharmacol. 2017, 99, 74–82. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, J.; Gao, L.; Zhang, Y.; Dai, M.; Bao, M. Dickkopf-3 upregulation mediates the cardioprotective effects of curcumin on chronic heart failure. Mol. Med. Rep. 2018, 17, 7249–7257. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, H.B.; Yang, J.; Wang, J.R.; Liu, J.X.; Li, C.L. Curcumin alleviates isoproterenol-induced cardiac hypertrophy and fibrosis through inhibition of autophagy and activation of mTOR. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7500–7508. [Google Scholar]
- Bai, X.J.; Hao, J.T.; Wang, J.; Zhang, W.F.; Yan, C.P.; Zhao, J.H.; Zhao, Z.Q. Curcumin inhibits cardiac hypertrophy and improves cardiovascular function via enhanced Na+/Ca2+ exchanger expression after transverse abdominal aortic constriction in rats. Pharmacol. Rep. 2018, 70, 60–68. [Google Scholar] [CrossRef]
- Yang, C.; Wu, K.; Li, S.H.; You, Q. Protective effect of curcumin against cardiac dysfunction in sepsis rats. Pharm. Biol. 2013, 51, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Vieira, B.M.; Caetano, M.A.F.; de Carvalho, M.T.; Dos Santos Arruda, F.; Tomé, F.D.; de Oliveira, J.F.; Soave, D.F.; Pereira, J.X.; Celes, M.R.N. Impacts of curcumin treatment on experimental sepsis: A systematic review. Oxid. Med. Cell Longev. 2023, 2023, 2252213. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.F.; Guo, Q.H.; Wei, X.Y.; Chen, S.Y.; Deng, S.; Liu, J.J.; Yin, N.; Liu, Y.; Zeng, W.J. Cardioprotective effect of curcumin on myocardial ischemia/reperfusion injury: A meta-analysis of preclinical animal studies. Front. Pharmacol. 2023, 14, 1184292. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Jin, J.; Pu, F.; Bai, Y.; Chen, Y.; Li, Y.; Wang, X. Cardioprotective effects of curcumin against myocardial I/R injury: A systematic review and meta-analysis of preclinical and clinical studies. Front. Pharmacol. 2023, 14, 1111459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, Z.; Wang, Y.; Geng, J.; Han, S. The protective effect of kaempferol on heart via the regulation of Nrf2, NF-κβ, and PI3K/Akt/GSK-3β signaling pathways in isoproterenol-induced heart failure in diabetic rats. Drug Dev. Res. 2019, 80, 294–309. [Google Scholar] [CrossRef]
- Gao, H.L.; Yu, X.J.; Hu, H.B.; Yang, Q.W.; Liu, K.L.; Chen, Y.M.; Zhang, Y.; Zhang, D.D.; Tian, H.; Zhu, G.Q.; et al. Apigenin improves hypertension and cardiac hypertrophy through modulating NADPH oxidase-dependent ROS generation and cytokines in hypothalamic paraventricular nucleus. Cardiovasc. Toxicol. 2021, 21, 721–736. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Gao, T.; Huang, Y.; Xue, J.; Xie, M.L. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-1α in rats. Food Funct. 2016, 7, 1992–1998. [Google Scholar] [CrossRef]
- Wei, X.Y.; Zeng, Y.F.; Guo, Q.H.; Liu, J.J.; Yin, N.; Liu, Y.; Zeng, W.J. Cardioprotective effect of epigallocatechin gallate in myocardial ischemia/reperfusion injury and myocardial infarction: A meta-analysis in preclinical animal studies. Sci. Rep. 2023, 13, 14050. [Google Scholar] [CrossRef]
- Pan, Q.; Liu, Y.; Ma, W.; Kan, R.; Zhu, H.; Li, D. Cardioprotective Effects and Possible Mechanisms of Luteolin for Myocardial Ischemia-Reperfusion Injury: A Systematic Review and Meta-Analysis of Preclinical Evidence. Front. Cardiovasc. Med. 2022, 9, 685998. [Google Scholar] [CrossRef]
- Bhargava, P.; Verma, V.K.; Malik, S.; Khan, S.I.; Bhatia, J.; Arya, D.S. Hesperidin regresses cardiac hypertrophy by virtue of PPAR-γ agonistic, anti-inflammatory, antiapoptotic, and antioxidant properties. J. Biochem. Mol. Toxicol. 2019, 33, e22283. [Google Scholar] [CrossRef]
- Lacerda, D.; Türck, P.; Campos-Carraro, C.; Hickmann, A.; Ortiz, V.; Bianchi, S.; Belló-Klein, A.; de Castro, A.L.; Bassani, V.L.; Araujo, A.S.D.R. Pterostilbene improves cardiac function in a rat model of right heart failure through modulation of calcium handling proteins and oxidative stress. Appl. Physiol. Nutr. Metab. 2020, 45, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Anwaier, G.; Lian, G.; Ma, G.Z.; Shen, W.L.; Lee, C.I.; Lee, P.L.; Chang, Z.Y.; Wang, Y.X.; Tian, X.Y.; Gao, X.L.; et al. Punicalagin attenuates disturbed flow-induced vascular dysfunction by inhibiting force-specific activation of Smad1/5. Front. Cell Dev. Biol. 2021, 9, 697539. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Del Bo’, C.; Martini, D.; Porrini, M.; Riso, P. A Review of Registered Clinical Trials on Dietary (Poly)Phenols: Past Efforts and Possible Future Directions. Foods 2020, 9, 1606. [Google Scholar] [CrossRef] [PubMed]
- Fogacci, F.; Tocci, G.; Presta, V.; Fratter, A.; Borghi, C.; Cicero, A.F.G. Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. Crit. Rev. Food Sci. Nutr. 2019, 59, 1605–1618. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, W.; Zhang, P.; He, S.; Huang, D. Effect of resveratrol on blood pressure: A meta-analysis of randomized controlled trials. Clin. Nutr. 2015, 34, 27–34. [Google Scholar] [CrossRef]
- Asgary, S.; Karimi, R.; Momtaz, S.; Naseri, R.; Farzaei, M.H. Effect of resveratrol on metabolic syndrome components: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2019, 20, 173–186. [Google Scholar] [CrossRef]
- Akbari, M.; Tamtaji, O.R.; Lankarani, K.B.; Tabrizi, R.; Dadgostar, E.; Kolahdooz, F.; Jamilian, M.; Mirzaei, H.; Asemi, Z. The Effects of Resveratrol Supplementation on Endothelial Function and Blood Pressures Among Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. High Blood Press. Cardiovasc. Prev. 2019, 26, 305–319. [Google Scholar] [CrossRef]
- Mohammadipoor, N.; Shafiee, F.; Rostami, A.; Kahrizi, M.S.; Soleimanpour, H.; Ghodsi, M.; Ansari, M.J.; Bokov, D.O.; Jannat, B.; Mosharkesh, E.; et al. Resveratrol supplementation efficiently improves endothelial health: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2022, 36, 3529–3539. [Google Scholar] [CrossRef]
- Zheng, X.; Hai, J.; Yang, Y.; Zhang, C.; Ma, X.; Kong, B.; Zhao, Y.; Hu, Y.; Bu, P.; Ti, Y. Effects of resveratrol supplementation on cardiac remodeling in hypertensive patients: A randomized controlled clinical trial. Hypertens. Res. 2023, 46, 1493–1503. [Google Scholar] [CrossRef]
- Theodotou, M.; Fokianos, K.; Mouzouridou, A.; Konstantinou, C.; Aristotelous, A.; Prodromou, D.; Chrysikou, A. The effect of resveratrol on hypertension: A clinical trial. Exp. Ther. Med. 2017, 13, 295–301. [Google Scholar] [CrossRef]
- Magyar, K.; Halmosi, R.; Palfi, A.; Feher, G.; Czopf, L.; Fulop, A.; Battyany, I.; Sumegi, B.; Toth, K.; Szabados, E. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin. Hemorheol. Microcirc. 2012, 50, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Militaru, C.; Donoiu, I.; Craciun, A.; Scorei, I.D.; Bulearca, A.M.; Scorei, R.I. Oral resveratrol and calcium fructoborate supplementation in subjects with stable angina pectoris: Effects on lipid profiles, inflammation markers, and quality of life. Nutrition 2013, 29, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Gal, R.; Deres, L.; Horvath, O.; Eros, K.; Sandor, B.; Urban, P.; Soos, S.; Marton, Z.; Sumegi, B.; Toth, K.; et al. Resveratrol Improves Heart Function by Moderating Inflammatory Processes in Patients with Systolic Heart Failure. Antioxidants 2020, 9, 1108. [Google Scholar] [CrossRef] [PubMed]
- Marques, B.C.A.A.; Trindade, M.; Aquino, J.C.F.; Cunha, A.R.; Gismondi, R.O.; Neves, M.F.; Oigman, W. Beneficial effects of acute trans-resveratrol supplementation in treated hypertensive patients with endothelial dysfunction. Clin. Exp. Hypertens. 2018, 40, 218–223. [Google Scholar] [CrossRef]
- Wong, R.H.; Howe, P.R.; Buckley, J.D.; Coates, A.M.; Kunz, I.; Berry, N.M. Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 851–856. [Google Scholar] [CrossRef]
- Fujitaka, K.; Otani, H.; Jo, F.; Jo, H.; Nomura, E.; Iwasaki, M.; Nishikawa, M.; Iwasaka, T.; Das, D.K. Modified resveratrol Longevinex improves endothelial function in adults with metabolic syndrome receiving standard treatment. Nutr. Res. 2011, 31, 842–847. [Google Scholar] [CrossRef]
- Edwards, R.L.; Lyon, T.; Litwin, S.E.; Rabovsky, A.; Symons, J.D.; Jalili, T. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr. 2007, 137, 2405–2411. [Google Scholar] [CrossRef]
- Larson, A.; Witman, M.A.; Guo, Y.; Ives, S.; Richardson, R.S.; Bruno, R.S.; Jalili, T.; Symons, J.D. Acute, quercetin-induced reductions in blood pressure in hypertensive individuals are not secondary to lower plasma angiotensin-converting enzyme activity or endothelin-1: Nitric oxide. Nutr. Res. 2012, 32, 557–564. [Google Scholar] [CrossRef]
- Zahedi, M.; Ghiasvand, R.; Feizi, A.; Asgari, G.; Darvish, L. Does Quercetin Improve Cardiovascular Risk factors and Inflammatory Biomarkers in Women with Type 2 Diabetes: A Double-blind Randomized Controlled Clinical Trial. Int. J. Prev. Med. 2013, 4, 777–785. [Google Scholar]
- Brüll, V.; Burak, C.; Stoffel-Wagner, B.; Wolffram, S.; Nickenig, G.; Müller, C.; Langguth, P.; Alteheld, B.; Fimmers, R.; Naaf, S.; et al. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: A randomised double-blinded placebo-controlled cross-over trial. Br. J. Nutr. 2015, 114, 1263–1277. [Google Scholar] [CrossRef]
- Mazza, A.; Nicoletti, M.; Lenti, S.; Torin, G.; Rigatelli, G.; Pellizzato, M.; Fratter, A. Effectiveness and Safety of Novel Nutraceutical Formulation Added to Ezetimibe in Statin-Intolerant Hypercholesterolemic Subjects with Moderate-to-High Cardiovascular Risk. J. Med. Food. 2021, 24, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, M.; Muro, T.; Kobori, M.; Nishihira, J. Effect of Daily Ingestion of Quercetin-Rich Onion Powder for 12 Weeks on Visceral Fat: A Randomised, Double-Blind, Placebo-Controlled, Parallel-Group Study. Nutrients 2019, 12, 91. [Google Scholar] [CrossRef] [PubMed]
- Serban, M.C.; Sahebkar, A.; Zanchetti, A.; Mikhailidis, D.P.; Howard, G.; Antal, D.; Andrica, F.; Ahmed, A.; Aronow, W.S.; Muntner, P.; et al. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Effects of Quercetin on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2016, 5, e002713. [Google Scholar] [CrossRef] [PubMed]
- Menezes, R.; Rodriguez-Mateos, A.; Kaltsatou, A.; González-Sarrías, A.; Greyling, A.; Giannaki, C.; Andres-Lacueva, C.; Milenkovic, D.; Gibney, E.R.; Dumont, J.; et al. Impact of Flavonols on Cardiometabolic Biomarkers: A Meta-Analysis of Randomized Controlled Human Trials to Explore the Role of Inter-Individual Variability. Nutrients 2017, 9, 117. [Google Scholar] [CrossRef]
- Sahebkar, A. Effects of quercetin supplementation on lipid profile: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2017, 57, 666–676. [Google Scholar] [CrossRef]
- Tamtaji, O.R.; Milajerdi, A.; Dadgostar, E.; Kolahdooz, F.; Chamani, M.; Amirani, E.; Mirzaei, H.; Asemi, Z. The Effects of Quercetin Supplementation on Blood Pressures and Endothelial Function Among Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr. Pharm. Des. 2019, 25, 1372–1384. [Google Scholar] [CrossRef]
- Huang, H.; Liao, D.; Dong, Y.; Pu, R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: A systematic review and meta-analysis. Nutr Rev. 2020, 78, 615–626. [Google Scholar] [CrossRef]
- Tabrizi, R.; Tamtaji, O.R.; Mirhosseini, N.; Lankarani, K.B.; Akbari, M.; Heydari, S.T.; Dadgostar, E.; Asemi, Z. The effects of quercetin supplementation on lipid profiles and inflammatory markers among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2020, 60, 1855–1868. [Google Scholar] [CrossRef]
- Papakyriakopoulou, P.; Velidakis, N.; Khattab, E.; Valsami, G.; Korakianitis, I.; Kadoglou, N.P. Potential Pharmaceutical Applications of Quercetin in Cardiovascular Diseases. Pharmaceuticals 2022, 15, 1019. [Google Scholar] [CrossRef]
- Kiyimba, T.; Yiga, P.; Bamuwamye, M.; Ogwok, P.; Van der Schueren, B.; Matthys, C. Efficacy of Dietary Polyphenols from Whole Foods and Purified Food Polyphenol Extracts in Optimizing Cardiometabolic Health: A Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 270–282. [Google Scholar] [CrossRef]
- Kondratiuk, V.E.; Synytsia, Y.P. Effect of quercetin on the echocardiographic parameters of left ventricular diastolic function in patients with gout and essential hypertension. Wiad. Lek. 2018, 71, 1554–1559. [Google Scholar]
- Chekalina, N.I.; Shut, S.V.; Trybrat, T.A.; Burmak, Y.H.; Petrov, Y.Y.; Manusha, Y.I.; Kazakov, Y.M. Effect of quercetin on parameters of central hemodynamics and myocardial ischemia in patients with stable coronary heart disease. Wiad. Lek. 2017, 70, 707–711. [Google Scholar] [PubMed]
- Choi, E.Y.; Lee, H.; Woo, J.S.; Jang, H.H.; Hwang, S.J.; Kim, H.S.; Kim, W.S.; Kim, Y.S.; Choue, R.; Cha, Y.J.; et al. Effect of onion peel extract on endothelial function and endothelial progenitor cells in overweight and obese individuals. Nutrition 2015, 31, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Theodoridis, X.; Chourdakis, M.; Papaemmanouil, A.; Chaloulakou, S.; Papageorgiou, N.; Georgakou, A.V.; Chatzis, G.; Triantafyllou, A. The Association between Food Groups, Nutraceuticals, and Food Supplements Consumption on Vascular Health Outcomes: A Literature Review. Life 2024, 14, 1210. [Google Scholar] [CrossRef] [PubMed]
- Bogdanski, P.; Suliburska, J.; Szulinska, M.; Stepien, M.; Pupek-Musialik, D.; Jablecka, A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr. Res. 2012, 32, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Samavat, H.; Newman, A.R.; Wang, R.; Yuan, J.M.; Wu, A.H.; Kurzer, M.S. Effects of green tea catechin extract on serum lipids in postmenopausal women: A randomized, placebo-controlled clinical trial. Am. J. Clin. Nutr. 2016, 104, 1671–1682. [Google Scholar] [CrossRef]
- Rostami, A.; Khalili, M.; Haghighat, N.; Eghtesadi, S.; Shidfar, F.; Heidari, I.; Ebrahimpour-Koujan, S.; Eghtesadi, M. High-cocoa polyphenol-rich chocolate improves blood pressure in patients with diabetes and hypertension. ARYA Atheroscler. 2015, 11, 21–29. [Google Scholar]
- Ellinger, S.; Reusch, A.; Stehle, P.; Helfrich, H.P. Epicatechin ingested via cocoa products reduces blood pressure in humans: A nonlinear regression model with a Bayesian approach. Am. J. Clin. Nutr. 2012, 95, 1365–1377. [Google Scholar] [CrossRef]
- Chatree, S.; Sitticharoon, C.; Maikaew, P.; Pongwattanapakin, K.; Keadkraichaiwat, I.; Churintaraphan, M.; Sripong, C.; Sririwichitchai, R.; Tapechum, S. Epigallocatechin gallate decreases plasma triglyceride, blood pressure, and serum kisspeptin in obese human subjects. Exp. Biol. Med. 2021, 246, 163–176. [Google Scholar] [CrossRef]
- Wilasrusmee, K.T.; Sitticharoon, C.; Keadkraichaiwat, I.; Maikaew, P.; Pongwattanapakin, K.; Chatree, S.; Sririwichitchai, R.; Churintaraphan, M. Epigallocatechin gallate enhances sympathetic heart rate variability and decreases blood pressure in obese subjects: A randomized control trial. Sci. Rep. 2024, 14, 21628. [Google Scholar] [CrossRef]
- Oyama, J.; Maeda, T.; Kouzuma, K.; Ochiai, R.; Tokimitsu, I.; Higuchi, Y.; Sugano, M.; Makino, N. Green tea catechins improve human forearm endothelial dysfunction and have antiatherosclerotic effects in smokers. Circ. J. 2010, 74, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Alañón, M.E.; Castle, S.M.; Serra, G.; Lévèques, A.; Poquet, L.; Actis-Goretta, L.; Spencer, J.P.E. Acute study of dose-dependent effects of (-)-epicatechin on vascular function in healthy male volunteers: A randomized controlled trial. Clin. Nutr. 2020, 39, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, Y.; Saita, E.; Taguchi, C.; Aoyama, M.; Ikegami, Y.; Ohmori, R.; Kondo, K.; Momiyama, Y. Associations between Green Tea Consumption and Coffee Consumption and the Prevalence of Coronary Artery Disease. J. Nutr. Sci. Vitaminol. 2020, 66, 237–245. [Google Scholar] [CrossRef]
- Wang, Z.M.; Zhou, B.; Wang, Y.S.; Gong, Q.Y.; Wang, Q.M.; Yan, J.J.; Gao, W.; Wang, L.S. Black and green tea consumption and the risk of coronary artery disease: A meta-analysis. Am. J. Clin. Nutr. 2011, 93, 506–515. [Google Scholar] [CrossRef]
- McDermott, M.M.; Criqui, M.H.; Domanchuk, K.; Ferrucci, L.; Guralnik, J.M.; Kibbe, M.R.; Kosmac, K.; Kramer, C.M.; Leeuwenburgh, C.; Li, L.; et al. Cocoa to Improve Walking Performance in Older People With Peripheral Artery Disease: The COCOA-PAD Pilot Randomized Clinical Trial. Circ. Res. 2020, 126, 589–599. [Google Scholar] [CrossRef]
- Dural, İ.E.; Onrat, E.; Çelik, S.; Vurmaz, A.; Yalım, Z.; Gökaslan, S.; Gökaslan, Ç.; Korucu, C.; Aksu, U. The Relationships Between Chocolate Consumption and Endothelial Dysfunction in Patients with Heart Failure. Turk. Kardiyol. Dern. Ars. 2022, 50, 334–339. [Google Scholar] [CrossRef]
- Pereira, T.; Bergqvist, J.; Vieira, C.; Grüner Sveälv, B.; Castanheira, J.; Conde, J. Randomized study of the effects of cocoa-rich chocolate on the ventricle-arterial coupling and vascular function of young, healthy adults. Nutrition 2019, 63–64, 175–183. [Google Scholar] [CrossRef]
- Shafabakhsh, R.; Milajerdi, A.; Reiner, Ž.; Kolahdooz, F.; Amirani, E.; Mirzaei, H.; Barekat, M.; Asemi, Z. The effects of catechin on endothelial function: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2020, 60, 2369–2378. [Google Scholar] [CrossRef]
- Grassi, D.; Mulder, T.P.; Draijer, R.; Desideri, G.; Molhuizen, H.O.; Ferri, C. Black tea consumption dose-dependently improves flow-mediated dilation in healthy males. J. Hypertens. 2009, 27, 774–781. [Google Scholar] [CrossRef]
- Jennings, A.; Welch, A.A.; Fairweather-Tait, S.J.; Kay, C.; Minihane, A.M.; Chowienczyk, P.; Jiang, B.; Cecelja, M.; Spector, T.; Macgregor, A.; et al. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am. J. Clin. Nutr. 2012, 96, 781–788. [Google Scholar] [CrossRef]
- McKay, D.L.; Chen, C.Y.; Saltzman, E.; Blumberg, J.B. Hibiscus sabdariffa L. tea (tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults. J. Nutr. 2010, 140, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Du, M.; Leyva, M.J.; Sanchez, K.; Betts, N.M.; Wu, M.; Aston, C.E.; Lyons, T.J. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr. 2010, 140, 1582–1587. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.A.; Figueroa, A.; Navaei, N.; Wong, A.; Kalfon, R.; Ormsbee, L.T.; Feresin, R.G.; Elam, M.L.; Hooshmand, S.; Payton, M.E.; et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. J. Acad. Nutr. Diet. 2015, 115, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Emamat, H.; Zahedmehr, A.; Asadian, S.; Nasrollahzadeh, J. The effect of purple-black barberry (Berberis integerrima) on blood pressure in subjects with cardiovascular risk factors: A randomized controlled trial. J. Ethnopharmacol. 2022, 289, 115097. [Google Scholar] [CrossRef]
- Dohadwala, M.M.; Holbrook, M.; Hamburg, N.M.; Shenouda, S.M.; Chung, W.B.; Titas, M.; Kluge, M.A.; Wang, N.; Palmisano, J.; Milbury, P.E.; et al. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am. J. Clin. Nutr. 2011, 93, 934–940. [Google Scholar] [CrossRef]
- Huang, H.; Chen, G.; Liao, D.; Zhu, Y.; Xue, X. Effects of Berries Consumption on Cardiovascular Risk Factors: A Meta-analysis with Trial Sequential Analysis of Randomized Controlled Trials. Sci. Rep. 2016, 6, 23625. [Google Scholar] [CrossRef]
- Liu, C.; Sun, J.; Lu, Y.; Bo, Y. Effects of Anthocyanin on Serum Lipids in Dyslipidemia Patients: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0162089. [Google Scholar] [CrossRef]
- Aboonabi, A.; Meyer, R.R.; Gaiz, A.; Singh, I. Anthocyanins in berries exhibited anti-atherogenicity and antiplatelet activities in a metabolic syndrome population. Nutr. Res. 2020, 76, 82–93. [Google Scholar] [CrossRef]
- Tian, Z.; Li, K.; Fan, D.; Zhao, Y.; Gao, X.; Ma, X.; Xu, L.; Shi, Y.; Ya, F.; Zou, J.; et al. Dose-dependent effects of anthocyanin supplementation on platelet function in subjects with dyslipidemia: A randomized clinical trial. EBioMedicine 2021, 70, 103533. [Google Scholar] [CrossRef]
- Arevström, L.; Bergh, C.; Landberg, R.; Wu, H.; Rodriguez-Mateos, A.; Waldenborg, M.; Magnuson, A.; Blanc, S.; Fröbert, O. Freeze-dried bilberry (Vaccinium myrtillus) dietary supplement improves walking distance and lipids after myocardial infarction: An open-label randomized clinical trial. Nutr. Res. 2019, 62, 13–22. [Google Scholar] [CrossRef]
- Cassidy, A.; Mukamal, K.J.; Liu, L.; Franz, M.; Eliassen, A.H.; Rimm, E.B. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 2013, 127, 188–196. [Google Scholar] [CrossRef]
- Cassidy, A.; Bertoia, M.; Chiuve, S.; Flint, A.; Forman, J.; Rimm, E.B. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am. J. Clin. Nutr. 2016, 104, 587–594. [Google Scholar] [CrossRef]
- Voroneanu, L.; Nistor, I.; Dumea, R.; Apetrii, M.; Covic, A. Silymarin in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Diabetes Res. 2016, 2016, 5147468. [Google Scholar] [CrossRef]
- Hadi, A.; Pourmasoumi, M.; Mohammadi, H.; Symonds, M.; Miraghajani, M. The effects of silymarin supplementation on metabolic status and oxidative stress in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of clinical trials. Complement. Ther. Med. 2018, 41, 311–319. [Google Scholar] [CrossRef]
- Mohammadi, H.; Hadi, A.; Arab, A.; Moradi, S.; Rouhani, M.H. Effects of silymarin supplementation on blood lipids: A systematic review and meta-analysis of clinical trials. Phytother. Res. 2019, 33, 871–880. [Google Scholar] [CrossRef]
- Xiao, F.; Gao, F.; Zhou, S.; Wang, L. The therapeutic effects of silymarin for patients with glucose/lipid metabolic dysfunction: A meta-analysis. Medicine 2020, 99, e22249. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Panayiotou, C.; Vardas, M.; Balaskas, N.; Kostomitsopoulos, N.G.; Tsaroucha, A.K.; Valsami, G. A Comprehensive Review of the Cardiovascular Protective Properties of Silibinin/Silymarin: A New Kid on the Block. Pharmaceuticals 2022, 15, 538. [Google Scholar] [CrossRef]
- Azhdari, M.; Karandish, M.; Mansoori, A. Metabolic benefits of curcumin supplementation in patients with metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2019, 33, 1289–1301. [Google Scholar] [CrossRef]
- Qiu, L.; Gao, C.; Wang, H.; Ren, Y.; Li, J.; Li, M.; Du, X.; Li, W.; Zhang, J. Effects of dietary polyphenol curcumin supplementation on metabolic, inflammatory, and oxidative stress indices in patients with metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Front. Endocrinol. 2023, 14, 1216708. [Google Scholar] [CrossRef]
- Sesso, H.D.; Manson, J.E.; Aragaki, A.K.; Rist, P.M.; Johnson, L.G.; Friedenberg, G.; Copeland, T.; Clar, A.; Mora, S.; Moorthy, M.V.; et al. Effect of cocoa flavanol supplementation for the prevention of cardiovascular disease events: The COcoa Supplement and Multivitamin Outcomes Study (COSMOS) randomized clinical trial. Am. J. Clin. Nutr. 2022, 115, 1490–1500. [Google Scholar] [CrossRef]
- McCullough, M.L.; Peterson, J.J.; Patel, R.; Jacques, P.F.; Shah, R.; Dwyer, J.T. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am. J. Clin. Nutr. 2012, 95, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary Flavonoid and Lignan Intake and Mortality in Prospective Cohort Studies: Systematic Review and Dose-Response Meta-Analysis. Am. J. Epidemiol. 2017, 185, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remón, A.; Martínez-González, M.A.; López-Sabater, M.C.; Covas, M.I.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; et al. Polyphenol intake and mortality risk: A re-analysis of the PREDIMED trial. BMC Med. 2014, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Gál, R.; Halmosi, R.; Gallyas, F., Jr.; Tschida, M.; Mutirangura, P.; Tóth, K.; Alexy, T.; Czopf, L. Resveratrol and beyond: The Effect of Natural Polyphenols on the Cardiovascular System: A Narrative Review. Biomedicines 2023, 11, 2888. [Google Scholar] [CrossRef]
- Ruskovska, T.; Maksimova, V.; Milenkovic, D. Polyphenols in human nutrition: From the in vitro antioxidant capacity to the beneficial effects on cardiometabolic health and related inter-individual variability—An overview and perspective. Br. J. Nutr. 2020, 123, 241–254. [Google Scholar] [CrossRef]
- Milenkovic, D.; Ruskovska, T. Mechanistic insights into dietary (poly)phenols and vascular dysfunction-related diseases using multi-omics and integrative approaches: Machine learning as a next challenge in nutrition research. Mol. Asp. Med. 2023, 89, 101101. [Google Scholar] [CrossRef]
- Kartal, B.; Alimogullari, E.; Elçi, P.; Fatsa, T.; Ören, S. The effects of quercetin on wound healing in human umbilical vein endothelial cells. Cell Tissue Bank. 2024, 25, 851–860. [Google Scholar] [CrossRef]
- Carecho, R.; Marques, D.; Carregosa, D.; Masuero, D.; Garcia-Aloy, M.; Tramer, F.; Passamonti, S.; Vrhovsek, U.; Ventura, M.R.; Brito, M.A.; et al. Circulating low-molecular-weight (poly)phenol metabolites in the brain: Unveiling in vitro and in vivo blood-brain barrier transport. Food Funct. 2024, 15, 7812–7827. [Google Scholar] [CrossRef]
- Corral-Jara, K.F.; Nuthikattu, S.; Rutledge, J.; Villablanca, A.; Morand, C.; Schroeter, H.; Milenkovic, D. Integrated multi-omic analyses of the genomic modifications by gut microbiome-derived metabolites of epicatechin, 5-(4′-Hydroxyphenyl)-γ-Valerolactone, in TNFα-stimulated primary human brain microvascular endothelial cells. Front. Neurosci. 2021, 15, 622640. [Google Scholar] [CrossRef]
- Corral-Jara, K.F.; Nuthikattu, S.; Rutledge, J.; Villablanca, A.; Fong, R.; Heiss, C.; Ottaviani, J.I.; Milenkovic, D. Structurally related (-)-epicatechin metabolites and gut microbiota-derived metabolites exert genomic modifications via VEGF signaling pathways in brain microvascular endothelial cells under lipotoxic conditions: Integrated multi-omic study. J. Proteom. 2022, 263, 104603. [Google Scholar] [CrossRef]
- Tobaruela, E.C.; Brasili, E.; Zeraik, L.; Milenkovic, D.; Hassimotto, N.M.A.; Lajolo, F.M. Plasma proteome profiling reveals molecular mechanisms underlying the effects of daily consumption of ‘Bahia’ and ‘Cara Cara’ orange juices. Food Funct. 2024, 15, 1031–1049. [Google Scholar] [CrossRef] [PubMed]
- Milenkovic, D.; Declerck, K.; Guttman, Y.; Kerem, Z.; Claude, S.; Weseler, A.R.; Bast, A.; Schroeter, H.; Morand, C.; Vanden Berghe, W. (-)-Epicatechin metabolites promote vascular health through epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation. Biochem. Pharmacol. 2020, 173, 113699. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Su, Y.; Wei, D.; Qian, L.; Xing, D.; Pan, J.; Chen, Y.; Huang, M. Catechin relieves hypoxia/reoxygenation-induced myocardial cell apoptosis via down-regulating lncRNA MIAT. J. Cell Mol. Med. 2020, 24, 2356–2368. [Google Scholar] [CrossRef] [PubMed]
- Ponnian, S.M.P. Preventive effects of (-)-epicatechin on tachycardia, cardiac hypertrophy, and nuclear factor-κB inflammatory signaling pathway in isoproterenol-induced myocardial infarcted rats. Eur. J. Pharmacol. 2022, 924, 174909. [Google Scholar] [CrossRef]
- Bayram, B.; Ozcelik, B.; Grimm, S.; Roeder, T.; Schrader, C.; Ernst, I.M.; Wagner, A.E.; Grune, T.; Frank, J.; Rimbach, G. A diet rich in olive oil phenolics reduces oxidative stress in the heart of SAMP8 mice by induction of Nrf2-dependent gene expression. Rejuvenation Res. 2012, 15, 71–81. [Google Scholar] [CrossRef]
- Varışlı, B.; Darendelioğlu, E.; Caglayan, C.; Kandemir, F.M.; Ayna, A.; Genç, A.; Kandemir, Ö. Hesperidin attenuates oxidative stress, inflammation, apoptosis, and cardiac dysfunction in sodium fluoride-induced cardiotoxicity in rats. Cardiovasc. Toxicol. 2022, 22, 727–735. [Google Scholar] [CrossRef]
- Hassan, M.A.; Elmageed, G.M.A.; El-Qazaz, I.G.; El-Sayed, D.S.; El-Samad, L.M.; Abdou, H.M. The Synergistic Influence of Polyflavonoids from Citrus aurantifolia on Diabetes Treatment and Their Modulation of the PI3K/AKT/FOXO1 Signaling Pathways: Molecular Docking Analyses and In Vivo Investigations. Pharmaceutics 2023, 15, 2306. [Google Scholar] [CrossRef]
- Jia, Q.; Yang, R.; Mehmood, S.; Li, Y. Epigallocatechin-3-gallate attenuates myocardial fibrosis in diabetic rats by activating autophagy. Exp. Biol. Med. 2022, 247, 1591–1600. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, W.; Liu, J.; Gan, Y.; Liu, L.; Tian, J. Epigallocatechin-3 gallate prevents pressure overload-induced heart failure by up-regulating SERCA2a via histone acetylation modification in mice. PLoS ONE 2018, 13, e0205123. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, Y.; Fan, Y.; Wang, M.; Xu, S.; Fu, G. Epigallocatechin-3 gallate, a green tea catechin, attenuated the downregulation of the cardiac gap junction induced by high glucose in neonatal rat cardiomyocytes. Cell Physiol. Biochem. 2010, 26, 403–412. [Google Scholar] [CrossRef]
- Yu, L.; Yu, H.; Li, X.; Jin, C.; Zhao, Y.; Xu, S.; Sheng, X. P38 MAPK/miR-1 are involved in the protective effect of EGCG in high glucose-induced Cx43 downregulation in neonatal rat cardiomyocytes. Cell Biol. Int. 2016, 40, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Mou, Q.; Jia, Z.; Luo, M.; Liu, L.; Huang, X.; Quan, J.; Tian, J. Epigallocatechin-3-gallate exerts cardioprotective effects related to energy metabolism in pressure overload-induced cardiac dysfunction. Arch. Biochem. Biophys. 2022, 723, 109217. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Hsieh, S.R.; Chiu, C.H.; Hsu, B.D.; Liou, Y.M. Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts. J. Biomed. Sci. 2014, 21, 56. [Google Scholar] [CrossRef] [PubMed]
Polyphenols | ||
---|---|---|
NON FLAVANOIDS | Class representatives | Food sources |
Stilbenes | Resveratol | Grapes, peanuts, berries, wine, nuts, and certain fruits |
Lignans | Sekoizolaricirezinol | Red fruits, skin and seeds of blackberries, raspberries, strawberries, black/green tea, oak wood, grape seeds and skins, and pomegranate skins and seeds |
Phenolic acids | Caffeine acid, feruine acid, and chlorogenic acid | Red fruit (strawberry, blackberry, raspberry, red apple, and cherry), vegetables (black radish, red onion, and beetroot), tea/coffee, and cereals |
Tannins | Hydrolyzable tannins | Red fruits (skin and seeds of blackberries, raspberries, and strawberries), black/green tea, oak wood, grape seeds and skins, pomegranate skins and seeds, and chestnut skins and leaves, as well as dark chocolate, which is enriched with cocoa |
FLAVANOIDS | ||
Flavanones | Narangenin, naringin, hesperetin, hesperedin, and eriodicitol | Grapefruit, orange, mandarin, lime, and lemon |
Flavones | Luteolin and apigenin | Spices, yellow or orange fruits and vegetables, parsley, thyme, celery, and hot pepers |
Flavonols | Quercetin, myricetin, and kaempferol | Onions, apples, peaches, broccoli, red pepper, grapefruit, and tomatoes, potatoes and nuts |
Flavanols | Catechin, and epicatechin epigallocatechin | Berries, dark chocolate, cocoa, apples, strawberries, mango, pear, plum, stone fruits, and black/green tea |
Isoflavones | Daidzein, genistein, and daizdin | Soybeans, carrots, green leafy vegetables, broccoli, cabbage, and citrus fruits |
Anthocyanidins | Cyanidins, delphinidins, petunidins, and peonidins | Berries, cherries, grapes, pomegranate, red cabbage, and purple sweet potatoes |
Cell Model | Concentration | Effects | Mechanisms/ Pathways | References |
---|---|---|---|---|
H9C2 cardiomyoblasts | 20 μM | Protection against doxorubicin-induced cytotoxicity, reduced LDH release, oxidative stress markers, and ferroptosis inhibition | MAPK signaling inhibition, and regulation of PTGS2, ACSL4, NCOA4, GPX4, ERK, p38, and JNK | [81] |
H9C2 cardiomyoblasts | 50 and 100 μM | Increased AMPK and Sirt1 expression, and enhanced cell survival under stress | AMPK activation, and Sirt1-mediated AMPK activation | [82] |
Neonatal rat cardiomyocytes | 100 μM | Anti-hypertrophic effects, and enhanced PTEN stability | Inhibition of Ang II-induced PTEN degradation, PI3K/AKT/mTOR signaling, and AMPK inactivation | [83] |
Cardiomyocytes | 1, 3, 5, and 10 µM | Reduced ISO-induced hypertrophy, and decreased hypertrophic markers | Regulation of miR-155/BRCA1 axis | [84] |
Neonatal rat cardiomyocytes, HEK293-AT1R | 10 µM | Inhibited hypertrophy response, reduced NF-κB signaling, and blocked Ang II/AT1R signaling | Inhibition of ERK 1/2 phosphorylation, and reduced NF-κB p65 phosphorylation | [86] |
Neonatal rat ventricular cardiomyocytes | 30 μM | Improved viability under hypoxia/reoxygenation | Antioxidant effects | [85] |
Neonatal rat cardiac fibroblasts | 25 μM | Reduced cardiac fibrosis | Sirt1 activation leading to Smad3 deacetylation | [87,88] |
Cell Model | Concentration | Effects | Mechanisms/ Pathways | References |
---|---|---|---|---|
H9C2 cardiomyoblasts | 0.5, 1, and 2 μM | Reduced hypertrophic markers (ANP, β-MHC), and preserved mitochondrial function | Activation of SIRT3, regulation of SIRT3/PARP-1 pathway, and reduction in oxidative stress | [89] |
Neonatal rat cardiomyocytes | 20 μM | Decreased hypertrophy, and reduced cell surface area | Inhibition of proteasome activity, activation of GSK-3, and suppression of AKT and AMPK pathways | [90] |
Neonatal rat cardiac fibroblasts | 100 μM | Inhibited fibrosis markers, reduced fibroblast proliferation and migration, and decreased collagen synthesis | Inhibition of α-SMA, collagen types I and III, fibroblast proliferation, and collagen production | [91] |
Cell Model | Concentration | Effects | Mechanisms/ Pathways | References |
---|---|---|---|---|
Neonatal rat cardiomyocytes | 10 μM | Reduced hypertrophy, decreased cell size, and downregulated hypertrophic markers (ANP, BNP, and β-MHC) | Promoted autophagy (increased LC3-II/I, ATG5, and ATG6), and inhibition of EGFR, gp130, CaNA, AKT, ERK 1/2, and STAT3 pathways | [92] |
Neonatal rat cardiomyocytes | 100 mM | Counteracted isoproterenol-induced cell size increase and hypertrophic marker expression | Inhibited β-MHC, ANP, and BNP expression; consistent response across cardiomyocytes and H9C2 cardiomyoblasts | [93] |
H9C2 cardiomyoblasts | 100 μM | Lowered Nox2 mRNA levels, reduced oxidative stress markers, increased nitric oxide, and decreased MDA | Inhibition of Nox2 via GATA4 modulation, and antioxidative effects (lowered ROS and MDA; and increased NO production) | [94] |
Neonatal rat cardiac fibroblasts | Up to 100 μM | Inhibited fibrosis markers (collagen I, fibronectin, CTGF, and α-SMA), and decreased fibroblast activation | Suppression of collagen I expression, fibronectin, CTGF, and α-SMA levels, limiting fibroblast activation and matrix deposition | [95] |
Cell Model | Concentration | Effects | Mechanisms/ Pathways | References |
---|---|---|---|---|
Neonatal rat cardiomyocytes | 20 μM | Inhibited phenylephrine-induced hypertrophy, and reduced hypertrophic marker expression | Inhibited JNK1/2 hyper-phosphorylation without altering MAPK and AKT protein levels | [96] |
H9C2 cells | 10 μM | Reduced isoproterenol-induced hypertrophy, and increased miR-451 expression | miR-451 modulation targeting TIMP2; prevented increase in ANP, BNP, miR-199, and miR-499 associated with hypertrophy | [97] |
Polyphenol | Cell Model | Concentration | Effects | Mechanisms/ Pathways | References |
---|---|---|---|---|---|
Epigallocatechin-3-gallate and tanshinone IIA sulfonic sodium | H9C2 cardiomyoblasts, and endothelial cells | N/A | Enhanced cell adhesion, and reduced apoptosis and antioxidant protection | Modulated apoptosis, inflammation, and metabolism pathways; and involved NF-κB, TNF, cAMP, and MAPK signaling | [98] |
Luteolin | Isolated cardiomyocytes from heart failure rats | 16 μM | Improved contractile function, and enhanced peak shortening, contraction, and relaxation rates | Upregulated SERCA2a activity and stability via PI3K/Akt pathway and SERCA2a sumoylation | [99] |
Kaempferol | H9C2 cardiomyocytes | 25 µM | Reduced cell surface area induced by phenylephrine; and mitigated oxidative stress, inflammation, and apoptosis | Inhibition of ASK1/MAPK pathway; reduction in ROS accumulation; and downregulation of Bcl2 and BA | [100] |
Delphinidin | Cardiomyocytes and cardiac fibroblasts | Up to 50 μM | Reduced Ang II-induced hypertrophy, oxidative stress, and fibrotic changes; and decreased cell size and hypertrophic gene expression | Inhibition of NOX activity through AMPK activation; downregulation of NOX subunits (p47phox, Rac1); inhibition of MAPK phosphorylation; and increased AMPK phosphorylation | [101] |
Caffeic acid phenethyl ester | H9C2 cardiomyoblasts | 20 μM | Reduced phenylephrine-induced hypertrophy; and prevented increase in cell surface area | Inhibition of MEK/ERK pathway; and reduced phosphorylation of MEK1/2 and ERK1/2 | [102] |
Animal Model | Dosage | Effects | Mechanisms/Pathways | References |
---|---|---|---|---|
Mice (Doxorubicin-induced cardiac dysfunction) | 20 mg/kg/day, ip, 2 weeks before doxorubicin | Improved cardiac function (EF, FS), reduced ferroptosis, and preserved myocardial tissue structure | Inhibition of ferroptosis (decreased iron accumulation, restored GSH levels), downregulation of PTGS2, ACSL4, and NCOA4, and upregulation of GPX4 | [81] |
Mice (Ang II-induced cardiac hypertrophy) | 45.51 mg/kg/day, po (oral gavage), 28 days | Reduced cardiac hypertrophy, improved EF and FS, and reduced interstitial fibrosis | Inhibition of NF-κB signaling, and suppression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) | [86] |
Mice (Myocardial ischemia–reperfusion injury) | 30 mg/kg/day, ip, 7 days | Reduced infarct size, improved cardiac function, reduced oxidative stress, and reduced apoptosis | Activation of AMPK and Sirt1 signaling, enhanced autophagy (LC3B, Beclin-1, and Atg12), decreased ROS, and improved cardiomyocyte survival | [85] |
Mice (Heart failure, TAC model) | 320 mg/kg/day, po (diet), 3 weeks | Improved survival, reduced LV dilation, enhanced diastolic function, and reduced myocardial fibrosis | Restored AMPK activation, enhanced glucose oxidation, improved mitochondrial function, and increased antioxidant defenses | [103] |
Mice (Pressure overload-induced heart failure) | 450 mg/kg, po (diet), 2 weeks | Increased exercise capacity, improved glucose utilization, and restored oxidative capacity | Enhanced skeletal muscle insulin signaling (IRS-1, Akt), increased gut microbiome diversity, and metabolic modulation | [104] |
Mice (Heart failure with preserved ejection fraction) | 10 mg/kg/day, po, 4 weeks | Reduced LV hypertrophy, improved diastolic dysfunction, and reduced fibrosis | Anti-inflammatory effects (IL-1β, IL-6, and TNF-α), anti-oxidative effects (SOD, CAT, and GSH), and inhibition of TGF-β/Smad3 signaling | [88] |
Rats (Myocardial infarction-induced heart failure) | 2.5 mg/kg/day, po (diet), 16 weeks | Increased LVEF, improved survival, reduced BNP, and enhanced cardiac function | Sirt1 activation, downregulation of proinflammatory and profibrotic markers, and inhibition of CYP1B1 | [82] |
Rats (Myocardial infarction-induced heart failure) | 5.82 mg/kg/day, po (diet), 2 weeks after MI | Improved cardiac function, reduced LV and atrial remodeling, and restored fatty acid oxidation | Energy metabolism restoration, reduction in systolic dysfunction, and inhibition of CYP1B1 | [87] |
Rats (Isoprenaline-induced myocardial hypertrophy) | 20 mg/kg/day, po, 25 day | Reduced cardiac injury markers, improved myocardial architecture, and reduced oxidative stress | Increased GSH, SOD, and CAT, reduced lipid peroxidation, and improved histopathological changes | [105] |
Mice (TAC-induced cardiac hypertrophy) | 25–50 mg/kg/day, po (oral gavage), 2 weeks | Reduced hypertrophy, restored contractile function, and decreased fibrosis | PTEN stability enhancement, AMPK activation, and downregulation of AKT/mTOR signaling | [83] |
Rats (Chronic intermittent hypoxia-induced myocardial hypertrophy) | 30 mg/kg/day, po (oral gavage), 5 weeks | Reduced myocardial hypertrophy, improved cardiac function, and reduced apoptosis | Downregulation of PI3K/AKT/mTOR pathway, increased antioxidant enzymes, and enhanced anti-apoptotic signaling | [106] |
Mice (TAC-induced cardiac hypertrophy) | 150 mg/kg, po (oral gavage), 4 weeks | Alleviated TAC-induced hypertrophy, improved cardiac function, and decreased fibrosis | Modulation of miR-155/BRCA1 pathway, restored LVEF and FS, and reduced hypertrophic markers | [84] |
Rats (abdominal aortic banding induced cardiac hypertrophy) | 1 mg/kg/day, ip, 14 days | Reduced Ang II levels, and reduced cardiac fibrosis | Downregulation of AT1a mRNA, disruption of RAS signaling, and reduced collagen deposition | [107] |
Animal Model | Dosage | Effects | Mechanisms/Pathways | References |
---|---|---|---|---|
Male spontaneously hypertensive rats | 20 mg/kg/day, po (oral gavage), 8 weeks | Reduced cardiac hypertrophy and fibrosis, improved left ventricular function, decreased heart-weight-to-body-weight ratio, and reduced oxidative stress | Activation of SIRT3/PARP-1 pathway, and enhancing mitochondrial protection | [89] |
Rats (abdominal aortic constriction—AAC model) | 5, 10, and 20 mg/kg/day, po (oral gavage), 8 weeks | Attenuated left ventricular hypertrophy, improved cardiac diastolic function, reduced fibrosis, lower HW/BW ratio, and reduced proteasome activities | Proteasome inhibition and activation of proteasome–glycogen synthesis kinase (GSK)-3α/βUpstream (AKT, and LKB1/AMPKα) and downstream hypertrophic factors (ERK, histone H3, β-catenin, and GATA4) | [90] |
Swiss male mice (isoproterenol-induced hypertrophy) | 10 mg/kg/day, po, 4 days | Reversed cardiac hypertrophy, restored endogenous antioxidant enzyme activity, reduced oxidative stress, and protected mitochondrial function | Maintained MnSOD activity, and prevented mitochondrial swelling | [109] |
C57BL/6 male mice (Ang II-induced hypertrophy) | 25 mM/kg, ip, every 2 days for 2 weeks | Reduced cardiac fibrosis and hypertrophy, improved cardiac function, and decreased fibrosis and collagen I and III levels | N/A | [91] |
Animal Model | Dosage | Effects | Mechanisms/Pathways | References |
---|---|---|---|---|
C57BL/6 male mice (TAC model) | 5 or 20 mg/kg/day, po (oral gavage), 8 weeks | Improved cardiac function (EF and FS); reduced cardiomyocyte hypertrophy, fibrosis, and inflammation | Decreased oxidative stress (NOX2, NOX4, and p22phox); reduced inflammatory cytokines (IL-1β, IL-6, andMCP-1); and activated autophagy | [92] |
CD-1 male mice (TAC model) | 100 mg/kg/day, 2 weeks | Improved cardiac function (reduced LVESD and LVEDD; and normalized FS); reduced HW/BW ratio; and lowered heart failure markers (ANP and BNP) | Downregulated β-MHC and restored α-MHC; reduced fibrosis markers (collagen type I, fibronectin, CTGF, and SMA); and inhibited MMP2 and Smad3 | [95] |
CD-1 male mice (TAC model) | 100 mg/kg/day, ip, 2 weeks | Inhibited TAC-induced increase in left ventricular end-diastolic diameter and left ventricular end-systolic diameter; restored FS; and reduced HW/BW ratio (no effect seen with furosemide) | Inhibition of the expression of epithelial–mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1 in pulmonary tissue | [111] |
Male mice (ISP model) | 100 mg/kg/day, ip, 4 weeks | Reduced cardiac enlargement, HW/BW, and tibia length ratios; decreased cardiomyocyte area; and improved fractional shortening; reduced fibrosis | Decreased phosphorylation of JNK2 (MAPK pathway); and inhibited Smad3 binding to collagen type I promoter | [93] |
Spontaneously hypertensive rats | 320 mg/kg/day, po (in drinking water), 16 weeks | Reduced systolic blood pressure; and attenuated LV hypertrophy and myocardial cell size | Suppressed hypertrophic transcription factors GATA4 and GATA6 | [94] |
Animal Model | Dosage | Effects | Mechanisms/Pathways | References |
---|---|---|---|---|
Mouse model subjected to aortic banding (AB) to induce pressure-overload cardiac hypertrophy | 40 mg/kg/day, po (oral gavage), 7 weeks | Reduced cardiomyocyte cross-sectional area (CSA), improved heart weight-to-body weight (HW/BW) and lung weight ratios, attenuated hypertrophic markers (ANP, BNP, and β-MHC), preserved α-MHC and SERCA2α expression, decreased cardiac fibrosis, and improved left ventricular function and ejection fraction | Downregulated mRNA of fibrotic markers (CTGF, and collagen types I and III) | [96] |
Female ICR mice with isoproterenol-induced cardiac hypertrophy | 100 mg/kg, po (diet), 21 days | Reduced cardiac hypertrophy markers, decreased serum malondialdehyde (MDA) levels, increased SOD/MDA ratio, and elevated miR-451 expression | Reduced oxidative stress and enhanced antioxidant capacity | [97] |
Animal Model | Dosage | Effects | Mechanisms/Pathways | References |
---|---|---|---|---|
New Zealand rabbits (CHF model) | 100 mg/kg/day, po (diet), 18 weeks and 3 days | Improved LVEF and LVFS, and reduced left ventricular hypertrophy and fibrosis | Upregulation of DKK-3, inhibition of p38 MAPK and JNK pathways, reduced expression of TNF-α, MMP-2, and MMP-9, and increased SERCA2a expression | [112] |
Male Sprague-Dawley rats (ISO-induced hypertrophy) | 200 mg/kg/day, po (oral gavage), 4 weeks | Reduced HW/BW ratio, decreased fibrosis, and balanced expression of ANP, MYH6, and MYH7 | Downregulation of ANP and MYH7, increased MYH6, inhibition of mTOR-mediated autophagy (decreased LC3, Beclin-1, and increased p-mTOR) | [113] |
Male Wistar rats (TAC-induced hypertrophy) | 50 mg/kg/day, po (oral gavage), 9 weeks | Improved LVEF and LVFS, reduced HW/BW and LVW/BW ratios, and improved aortic relaxation | Increased expression of NCX and eNOS, and enhanced calcium homeostasis and NO production | [114] |
Male septic rats | 200 mg/kg/day, ip, 3 days | Improved FS and EF, reduced vacuolar degeneration and fibrosis, and preserved myocardial structure | Decreased cTn I levels, increased SOD, and reduced MDA levels | [115,116] |
Parameter | SMD [117] | 95% CI [117] | SMD [118] | 95% CI [118] |
---|---|---|---|---|
Myocardial infarction size | −5.65 | [−6.94, −4.36] | −17.91 | [−22.24, −13.59] |
LVEF | 2.73 | [1.68, 3.79] | 10.29 | [5.09, 15.48] |
LVFS | 2.83 | [1.83, 3.82] | 6.39 | [4.27, 8.50] |
LV developed pressure | 3.59 | [2.65, 4.53] | - | - |
LV end-diastolic diameter | - | - | −0.43 | [−0.74, −0.11] |
LV end-systolic diameter | - | - | −1.05 | [−1.52, −0.59] |
+dP/dt max | 3.99 | [2.73, 5.25] | - | - |
−dP/dt max | 3.8 | [3.21, 4.40] | - | - |
MDA | −7.05 | [−11.08, −3.02] | −4.66 | [−7.0, −2.31] |
SOD | 4.92 | [3.10, 6.73] | 4.47 | [1.17, 7.78] |
CAT | 4.16 | [2.64, 5.69] | 4.7 | [1.48, 7.92] |
GSH | - | - | 3.66 | [0.43, 6.89] |
NF-κB | - | - | −5.82 | [−9.43, −2.22] |
IL-1β | −5.01 | [−5.81, −4.22] | - | - |
IL-6 | −6.67 | [−12.36, −0.98] | - | - |
TNF-α | −5.62 | [−8.50, −2.74] | −4.05 | [−6.74, −1.37] |
Area of fibrosis | - | - | −2.4 | [−4.47, −0.33] |
CK | −6.84 | [−9.99, −3.68] | −10.93 | [−28.62, 6.76] |
CK-MB | −3.53 | [−5.81, −1.25] | −37.19 | [−72.22, −2.16] |
LDH | −7.07 | [−9.73, −4.40] | −4.29 | [−6.01, −2.58] |
Apoptotic index | −8 | [−14.18, −1.82] | - | - |
Animal Model | Dosage | Effects | Mechanisms/Pathways | References |
---|---|---|---|---|
Male C57BL/6 mice with aortic banding (AB)-induced cardiac hypertrophy | 100 mg/kg, po, 6 weeks | Improved systolic and diastolic function; reduced HW/BW and HW/TL ratios, decreased cardiomyocyte size; lowered hypertrophic markers (ANP, BNP, α-MHC, and β-MHC); and reduced interstitial fibrosis and fibrosis markers (fibronectin, CTGF, and collagen I and III) | Modulated TGF-β/Smad and MAPK pathways; inhibited key protein phosphorylation in these pathways; and increased myocardial SOD and glutathione | [100] |
Diabetic rats with ISP-induced heart failure | 10 mg/kg and 20 mg/kg, po, 42 days | Improved cardiac markers (LDH, troponin-I, and CK-MB); enhanced antioxidant enzymes (SOD, CAT, and glutathione); reduced inflammation (NF-κB, TNF-α, IL-1β, and IL-6) and apoptosis (caspase-3); and decreased lipid peroxidation (MDA) | Activated PI3K/Akt/GSK-3β, and Nrf2; inhibited NF-κB signaling, reducing oxidative stress and inflammation; and increased Bcl-2, supporting cell survival | [119] |
Animal Model | Dosage | Effects | Mechanisms/Pathways | References |
---|---|---|---|---|
Spontaneously hypertensive rats with infusion into the paraventricular nucleus (PVN) | 20 μg/h, infusion directly into the paraventricular nucleus, 4 weeks | Reduced mean arterial pressure and heart rate; decreased cardiac hypertrophy (heart weight, left ventricular weight, and myocardial cell diameter); reduced pro-inflammatory cytokines (TNF-α, IL-6, and MCP-1); enhanced anti-inflammatory cytokine (IL-10); decreased ROS and increased SOD activity in cardiac tissues; and balanced neurotransmitter activity (reduced TH, and increased GAD67) | Inhibition of inflammation and oxidative stress; and reduction in sympathetic tone and cardiac workload through PVN modulation | [120] |
Renovascular hypertensive rats induced by two-kidney, one-clip method | 50 mg/kg and 100 mg/kg, po (oral gavage), 4 weeks | Lowered blood pressure; reduced heart weight index and cardiomyocyte cross-sectional area; improved myocardial glucolipid metabolism; and reduced serum and myocardial FFA and serum angiotensin II levels | Downregulated HIF-1α, promoting fatty acid oxidation by upregulating PPARα, CPT-1, and PDK-4, while reducing PPARγ and associated genes (GPAT and GLUT-4) | [121] |
Parameter | SMD/WMD | 95% CI [LAD Ligation] | SMD/WMD | 95% CI [Global Ischemia] |
---|---|---|---|---|
Myocardial infarction size | −2.14 | [−2.68, −1.59] | −2.87 | [−4.72, −1.03] |
LVSP | 21.62 | [18.24, 25.00] | 35.40 | [29.94, 40.86] |
LVEDP | −7.79 | [−12.97, −2.61] | −4.73 | [−5.90, −3.56] |
+dP/dt max | 737.48 | [521.64, 953.32] | 750.47 | [623.09, 877.86] |
−dP/dt max | 605.66 | [298.47, 912.84] | 790.64 | [685.78, 895.49] |
MDA | −2.43 | [−3.35, −1.51] | - | - |
TNF-α | −2.88 | [−3.60, −2.16] | - | - |
Proportion of apoptotic cells | −11.76 | [−12.9, −10.63] | - | - |
Polyphenol | Animal Model | Dosage | Effects | Mechanisms/Pathways | References |
---|---|---|---|---|---|
Epigallocatechin-3-gallate and Tanshinone IIA sulfonic sodium | New Zealand white rabbits, and Sprague–Dawley rats | Incorporated into glycocalyx-like coatings for implants | Reduced thrombosis, enhanced endothelial cell migration, reduced inflammation in carotid artery implants (rabbits); and decreased fibrosis around subcutaneous implants (rats) | Promotion of endothelial healing, reduction in thrombosis, inflammation regulation, and enhanced biocompatibility of implants | [98] |
Luteolin | Sprague–Dawley rats | 10 μg/kg/day, ip, 14 days | Improved LV function and contractility, reduced cardiac fibrosis, and decreased oxidative stress and apoptosis | Increased ejection fraction, fractional shortening, reduced collagen deposition, and modulation of oxidative stress, apoptosis (Bax and caspase-3), and structural integrity | [99] |
Delphinidin | C57BL/6J mice | 15 mg/kg/day, 8 weeks and 6 months in aging mice | Reduced cardiac hypertrophy, restored LV function, decreased ROS and NOX activity, and reduced fibrosis | Modulation of hypertrophic gene expression (Anp, Bnp, and β-MHC), reduced ROS and MAPK inhibition (Erk1/2, Jnk1/2, and p38), and increased AMPK phosphorylation and anti-fibrotic effects | [101] |
Caffeic Acid Phenethyl Ester | Mice, and murine model of pressure overload (aortic banding) | 100 mg/kg/day, po (oral gavage), 6 weeks | Reduced cardiac hypertrophy, improved cardiac function, and attenuated fibrosis | Inhibition of MEK/ERK and TGF-β/Smad signaling, reduced collagen deposition, and restored cardiac function | [102] |
Hesperidin | Rat model with ISO-induced myocardial injury | 200 mg/kg/day po, 28 days | Preserved heart structure, reduced hypertrophy, normalized hemodynamics, and reduced oxidative stress and fibrosis | Antioxidant properties, reduced MDA, CK-MB, and LDH, increased GSH, SOD, CAT, reduced caspase-3, and increased Bcl-2, and modulation of apoptotic pathways and inflammatory responses | [124] |
Pterostilbene | Rat model of pulmonary arterial hypertension (MCT) | 25, 50, or 100 mg/kg, po (oral gavage), 14 days | Dose-dependent cardioprotection, reduced oxidative stress, and improved RV function | Antioxidant mechanisms, upregulation of SERCA, restored GSH/GSSG ratio, reduced phospholamban, enhanced antioxidant enzyme activities, and reduced myocardial oxidative damage | [125] |
Punicalagin | LDLR −/− mice with high-fat diet (HFD) | 250 mg/kg or 500 mg/kg, po (oral gavage), 12 weeks | Reduced atherosclerotic plaques, improved endothelial function, and decreased inflammation, and fibrosis | Reduction in lipid metabolism disorders, anti-inflammatory effects (macrophage infiltration, and cytokine suppression), enhancement of nitric oxide bioavailability, and inhibition of Smad1/5 signaling | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stankovic, S.; Mutavdzin Krneta, S.; Djuric, D.; Milosevic, V.; Milenkovic, D. Plant Polyphenols as Heart’s Best Friends: From Health Properties, to Cellular Effects, to Molecular Mechanisms of Action. Int. J. Mol. Sci. 2025, 26, 915. https://doi.org/10.3390/ijms26030915
Stankovic S, Mutavdzin Krneta S, Djuric D, Milosevic V, Milenkovic D. Plant Polyphenols as Heart’s Best Friends: From Health Properties, to Cellular Effects, to Molecular Mechanisms of Action. International Journal of Molecular Sciences. 2025; 26(3):915. https://doi.org/10.3390/ijms26030915
Chicago/Turabian StyleStankovic, Sanja, Slavica Mutavdzin Krneta, Dragan Djuric, Verica Milosevic, and Dragan Milenkovic. 2025. "Plant Polyphenols as Heart’s Best Friends: From Health Properties, to Cellular Effects, to Molecular Mechanisms of Action" International Journal of Molecular Sciences 26, no. 3: 915. https://doi.org/10.3390/ijms26030915
APA StyleStankovic, S., Mutavdzin Krneta, S., Djuric, D., Milosevic, V., & Milenkovic, D. (2025). Plant Polyphenols as Heart’s Best Friends: From Health Properties, to Cellular Effects, to Molecular Mechanisms of Action. International Journal of Molecular Sciences, 26(3), 915. https://doi.org/10.3390/ijms26030915