Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment
Abstract
:1. Introduction
2. Challenges in Neuro-Oncology Imaging: Addressing the Limitations of MRI
2.1. Gadolinium-Based Agents: Challenges in Crossing the Blood-Brain Barrier
2.2. Pseudoprogression: A Diagnostic Challenge in Post-Treatment Imaging
2.3. Disentangling Radiation Necrosis from Tumor Recurrence
3. Transforming Neuro-Oncology Diagnostics Through Advanced MRI Techniques
3.1. Mapping Brain Tumor Invasion: The Role of Diffusion Tensor Imaging (DTI)
3.2. Metabolic Profiling with Magnetic Resonance Spectroscopy (MRS): Insights into Tumor Type, Grade, and Recurrence
4. Advancing Neuro-Oncology Diagnostics: The Role of PET Imaging and Emerging Radiotracers
4.1. 18F-FPIA: Unlocking the Diagnostic Potential of Fatty Acid Metabolism in High-Grade Gliomas
4.2. Decoding Tumor Complexity with an Amino Acid Radiotracer: 18F-Fluoroethyltyrosine (18F-FET)
4.3. Sharper Contrasts, Clearer Answers: 18F-Fluciclovine (18F-FACBC) for Differentiating Tumor Grades
4.4. Beyond the Scan: Limitations of PET Radiotracers and Advanced MRI
4.5. Combining Strengths: PET/MRI for Enhanced Neuro-Oncology Diagnostics
5. Biomarker Integration in Neuro-Oncology: A Brief Background
5.1. 1p/19q Co-Deletion
5.2. Isocitrate Dehydrogenase (IDH) Isozyme Mutation
5.3. O6-Methylguanine-DNA Methyltransferase (MGMT) Methylation Status
5.4. Telomerase Reverse Transcriptase (TERT) Mutation
6. Liquid Biopsy: A Non-Invasive Frontier in Neuro-Oncology Diagnostics
6.1. Free Circulating Tumor DNA (ctDNA): A Window into Tumor Dynamics
6.2. Unveiling Tumor Biology Through Extracellular Vesicles (EVs)
6.3. Circulating Tumor Cells (CTCs): Tracking Tumor Progression and Metastasis
6.4. Tumor-Educated Platelets (TEPs) as Diagnostic Biomarkers
6.5. AI-Powered Insights: Advancing Liquid Biopsy for CNS Tumors
6.6. Considerations for Liquid Biopsy
7. Artificial Intelligence in Neuro-Oncology: Enhancing Diagnostics and Precision Medicine
7.1. Machine Learning (ML), Deep Learning (DL), and Convolutional Neural Networks (CNNs): Revolutionizing Tumor Diagnostics
7.2. Reducing Diagnostic Errors: AI in Imaging and Tumor Detection
7.3. Transfer Learning: Addressing Rare Tumor Challenges
7.4. Extracting Tumor Features with Radiomics: Towards Personalized Medicine
7.5. Transformer-Based AI: Combining Data to Create a Full Picture
7.6. Ethical and Practical Barriers to AI
8. Shaping the Future of Neuro-Oncology Diagnostics: Challenges and Opportunities
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torp, S.H.; Solheim, O.; Skjulsvik, A.J. The WHO 2021 Classification of Central Nervous System Tumours: A Practical Update on What Neurosurgeons Need to Know—A Minireview. Acta Neurochir. 2022, 164, 2453–2464. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016–2020. Neuro-Oncology 2023, 25, iv1–iv99. [Google Scholar] [CrossRef] [PubMed]
- Fekete, B.; Werlenius, K.; Tisell, M.; Pivodic, A.; Smits, A.; Jakola, A.S.; Rydenhag, B. What Predicts Survival in Glioblastoma? A Population-Based Study of Changes in Clinical Management and Outcome. Front. Surg. 2023, 10, 1249366. [Google Scholar] [CrossRef]
- Luo, C.; Song, K.; Wu, S.; Hameed, N.U.F.; Kudulaiti, N.; Xu, H.; Qin, Z.-Y.; Wu, J.-S. The Prognosis of Glioblastoma: A Large, Multifactorial Study. Br. J. Neurosurg. 2021, 35, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Camacho, A.; Flores-Vázquez, J.G.; Moscardini-Martelli, J.; Torres-Ríos, J.A.; Olmos-Guzmán, A.; Ortiz-Arce, C.S.; Cid-Sánchez, D.R.; Pérez, S.R.; Macías-González, M.D.S.; Hernández-Sánchez, L.C.; et al. Glioblastoma Treatment: State-of-the-Art and Future Perspectives. Int. J. Mol. Sci. 2022, 23, 7207. [Google Scholar] [CrossRef]
- Sacks, P.; Rahman, M. Epidemiology of Brain Metastases. Neurosurg. Clin. N. Am. 2020, 31, 481–488. [Google Scholar] [CrossRef]
- Barnholtz-Sloan, J.S.; Sloan, A.E.; Davis, F.G.; Vigneau, F.D.; Lai, P.; Sawaya, R.E. Incidence Proportions of Brain Metastases in Patients Diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 2004, 22, 2865–2872. [Google Scholar] [CrossRef]
- Nayak, L.; Lee, E.Q.; Wen, P.Y. Epidemiology of Brain Metastases. Curr. Oncol. Rep. 2012, 14, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Wright, C.H.; Barnholtz-Sloan, J.S. Chapter 2—Brain Metastases: Epidemiology. In Handbook of Clinical Neurology; Schiff, D., van den Bent, M.J., Eds.; Metastatic Disease of the Nervous System; Elsevier: Amsterdam, The Netherlands, 2018; Volume 149, pp. 27–42. [Google Scholar]
- Palmieri, D. An Introduction to Brain Metastasis. In Central Nervous System Metastasis, the Biological Basis and Clinical Considerations; Palmieri, D., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2012; pp. 1–13. ISBN 978-94-007-5291-7. [Google Scholar]
- Kim, M.; Kizilbash, S.H.; Laramy, J.K.; Gampa, G.; Parrish, K.E.; Sarkaria, J.N.; Elmquist, W.F. Barriers to Effective Drug Treatment for Brain Metastases: A Multifactorial Problem in the Delivery of Precision Medicine. Pharm. Res. 2018, 35, 177. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Barnholtz-Sloan, J.S. Current State of Our Knowledge on Brain Tumor Epidemiology. Curr. Neurol. Neurosci. Rep. 2011, 11, 329–335. [Google Scholar] [CrossRef]
- Kawauchi, D.; Ohno, M.; Miyakita, Y.; Takahashi, M.; Yanagisawa, S.; Omura, T.; Yoshida, A.; Kubo, Y.; Igaki, H.; Ichimura, K.; et al. Early Diagnosis and Surgical Intervention Within 3 Weeks From Symptom Onset Are Associated With Prolonged Survival of Patients With Glioblastoma. Neurosurgery 2022, 91, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Ellingson, B.M.; Bendszus, M.; Boxerman, J.; Barboriak, D.; Erickson, B.J.; Smits, M.; Nelson, S.J.; Gerstner, E.; Alexander, B.; Goldmacher, G.; et al. Consensus Recommendations for a Standardized Brain Tumor Imaging Protocol in Clinical Trials. Neuro Oncol. 2015, 17, 1188–1198. [Google Scholar] [CrossRef] [PubMed]
- Jung, A.Y. Basics for Pediatric Brain Tumor Imaging: Techniques and Protocol Recommendations. Brain Tumor Res. Treat. 2024, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, T.J.; Smits, M.; Boxerman, J.; Huang, R.; Barboriak, D.P.; Weller, M.; Chung, C.; Tsien, C.; Brown, P.D.; Shankar, L.; et al. Consensus Recommendations for a Standardized Brain Tumor Imaging Protocol for Clinical Trials in Brain Metastases. Neuro-Oncology 2020, 22, 757–772. [Google Scholar] [CrossRef] [PubMed]
- Murali, S.; Ding, H.; Adedeji, F.; Qin, C.; Obungoloch, J.; Asllani, I.; Anazodo, U.; Ntusi, N.A.B.; Mammen, R.; Niendorf, T.; et al. Bringing MRI to Low- and Middle-Income Countries: Directions, Challenges and Potential Solutions. NMR Biomed. 2024, 37, e4992. [Google Scholar] [CrossRef] [PubMed]
- Iyad, N.; S.Ahmad, M.; Alkhatib, S.G.; Hjouj, M. Gadolinium Contrast Agents- Challenges and Opportunities of a Multidisciplinary Approach: Literature Review. Eur. J. Radiol. Open 2023, 11, 100503. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.; Siebenhandl-Wolff, P.; Tranquart, F.; Jones, P.; Evans, P. Gadolinium: Pharmacokinetics and Toxicity in Humans and Laboratory Animals Following Contrast Agent Administration. Arch. Toxicol. 2022, 96, 403–429. [Google Scholar] [CrossRef]
- Semelka, R.C.; Ramalho, M. Gadolinium Deposition Disease: Current State of Knowledge and Expert Opinion. Investig. Radiol. 2023, 58, 523. [Google Scholar] [CrossRef]
- Montagne, A.; Barnes, S.R.; Sweeney, M.D.; Halliday, M.R.; Sagare, A.P.; Zhao, Z.; Toga, A.W.; Jacobs, R.E.; Liu, C.Y.; Amezcua, L.; et al. Blood-Brain Barrier Breakdown in the Aging Human Hippocampus. Neuron 2015, 85, 296–302. [Google Scholar] [CrossRef]
- Prybylski, J.P.; Maxwell, E.; Coste Sanchez, C.; Jay, M. Gadolinium Deposition in the Brain: Lessons Learned from Other Metals Known to Cross the Blood–Brain Barrier. Magn. Reson. Imaging 2016, 34, 1366–1372. [Google Scholar] [CrossRef]
- Ramalho, J.; Semelka, R.C.; Ramalho, M.; Nunes, R.H.; AlObaidy, M.; Castillo, M. Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update. AJNR Am. J. Neuroradiol. 2016, 37, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Persidsky, Y.; Ramirez, S.H.; Haorah, J.; Kanmogne, G.D. Blood–Brain Barrier: Structural Components and Function Under Physiologic and Pathologic Conditions. J. Neuroimmune Pharm. 2006, 1, 223–236. [Google Scholar] [CrossRef]
- Kadry, H.; Noorani, B.; Cucullo, L. A Blood–Brain Barrier Overview on Structure, Function, Impairment, and Biomarkers of Integrity. Fluids Barriers CNS 2020, 17, 69. [Google Scholar] [CrossRef]
- Zhao, Y.; Gan, L.; Ren, L.; Lin, Y.; Ma, C.; Lin, X. Factors Influencing the Blood-Brain Barrier Permeability. Brain Res. 2022, 1788, 147937. [Google Scholar] [CrossRef] [PubMed]
- Ku, M.-C.; Waiczies, S.; Niendorf, T.; Pohlmann, A. Assessment of Blood Brain Barrier Leakage with Gadolinium-Enhanced MRI. In Preclinical MRI: Methods and Protocols; García Martín, M.L., López Larrubia, P., Eds.; Springer: New York, NY, USA, 2018; pp. 395–408. ISBN 978-1-4939-7531-0. [Google Scholar]
- Sarkaria, J.N.; Hu, L.S.; Parney, I.F.; Pafundi, D.H.; Brinkmann, D.H.; Laack, N.N.; Giannini, C.; Burns, T.C.; Kizilbash, S.H.; Laramy, J.K.; et al. Is the Blood–Brain Barrier Really Disrupted in All Glioblastomas? A Critical Assessment of Existing Clinical Data. Neuro Oncol. 2018, 20, 184–191. [Google Scholar] [CrossRef]
- Parvez, K.; Parvez, A.; Zadeh, G. The Diagnosis and Treatment of Pseudoprogression, Radiation Necrosis and Brain Tumor Recurrence. Int. J. Mol. Sci. 2014, 15, 11832–11846. [Google Scholar] [CrossRef]
- Sanghera, P.; Rampling, R.; Haylock, B.; Jefferies, S.; McBain, C.; Rees, J.H.; Soh, C.; Whittle, I.R. The Concepts, Diagnosis and Management of Early Imaging Changes after Therapy for Glioblastomas. Clin. Oncol. 2012, 24, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Thust, S.C.; van den Bent, M.J.; Smits, M. Pseudoprogression of Brain Tumors. J. Magn. Reson. Imaging 2018, 48, 571–589. [Google Scholar] [CrossRef] [PubMed]
- Van Mieghem, E.; Wozniak, A.; Geussens, Y.; Menten, J.; De Vleeschouwer, S.; Van Calenbergh, F.; Sciot, R.; Van Gool, S.; Bechter, O.E.; Demaerel, P.; et al. Defining Pseudoprogression in Glioblastoma Multiforme. Eur. J. Neurol. 2013, 20, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Sanghera, P.; Perry, J.; Sahgal, A.; Symons, S.; Aviv, R.; Morrison, M.; Lam, K.; Davey, P.; Tsao, M.N. Pseudoprogression Following Chemoradiotherapy for Glioblastoma Multiforme. Can. J. Neurol. Sci. 2010, 37, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Blakstad, H.; Mendoza Mireles, E.E.; Heggebø, L.C.; Magelssen, H.; Sprauten, M.; Johannesen, T.B.; Vik-Mo, E.O.; Leske, H.; Niehusmann, P.; Skogen, K.; et al. Incidence and Outcome of Pseudoprogression after Radiation Therapy in Glioblastoma Patients: A Cohort Study. Neuro-Oncol. Pract. 2023, 11, 36–45. [Google Scholar] [CrossRef]
- Wetzel, E.A.; Farrell, M.J.; Eldred, B.S.C.; Liu, V.; Saha, I.; Zapanta Rinonos, S.; Prins, T.; Li, T.; Cao, M.; Hegde, J.; et al. Retrospective Examination of Pseudoprogression in IDH Mutant Gliomas. Neurooncol. Adv. 2023, 5, vdad028. [Google Scholar] [CrossRef] [PubMed]
- Hygino da Cruz, L.C.; Rodriguez, I.; Domingues, R.C.; Gasparetto, E.L.; Sorensen, A.G. Pseudoprogression and Pseudoresponse: Imaging Challenges in the Assessment of Posttreatment Glioma. AJNR Am. J. Neuroradiol. 2011, 32, 1978–1985. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; DeGroot, J.; Wick, W.; Gilbert, M.R.; Lassman, A.B.; et al. Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group. J. Clin. Oncol. 2010, 28, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- Zikou, A.; Sioka, C.; Alexiou, G.A.; Fotopoulos, A.; Voulgaris, S.; Argyropoulou, M.I. Radiation Necrosis, Pseudoprogression, Pseudoresponse, and Tumor Recurrence: Imaging Challenges for the Evaluation of Treated Gliomas. Contrast Media Mol. Imaging 2018, 2018, 6828396. [Google Scholar] [CrossRef] [PubMed]
- Seyve, A.; Dehais, C.; Chinot, O.; Djelad, A.; Cohen-Moyal, E.; Bronnimann, C.; Gourmelon, C.; Emery, E.; Colin, P.; Boone, M.; et al. Incidence and Characteristics of Pseudoprogression in IDH-Mutant High-Grade Gliomas: A POLA Network Study. Neuro Oncol. 2022, 25, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Dropcho, E.J. Neurotoxicity of Radiation Therapy. Neurol. Clin. 2010, 28, 217–234. [Google Scholar] [CrossRef]
- Deutsch, M.B.; Deangelis, L.M. Chapter 28—Neurologic Complications of Chemotherapy and Radiation Therapy. In Aminoff’s Neurology and General Medicine, 5th ed.; Aminoff, M.J., Josephson, S.A., Eds.; Academic Press: Boston, MA, USA, 2014; pp. 591–609. ISBN 978-0-12-407710-2. [Google Scholar]
- Grossman, R.; Shimony, N.; Hadelsberg, U.; Soffer, D.; Sitt, R.; Strauss, N.; Corn, B.W.; Ram, Z. Impact of Resecting Radiation Necrosis and Pseudoprogression on Survival of Patients with Glioblastoma. World Neurosurg. 2016, 89, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Cowperthwaite, M.C.; Burnett, M.G.; Markey, M.K. Differentiating Tumor Recurrence from Treatment Necrosis: A Review of Neuro-Oncologic Imaging Strategies. Neuro Oncol. 2013, 15, 515–534. [Google Scholar] [CrossRef]
- Rahmathulla, G.; Marko, N.F.; Weil, R.J. Cerebral Radiation Necrosis: A Review of the Pathobiology, Diagnosis and Management Considerations. J. Clin. Neurosci. 2013, 20, 485–502. [Google Scholar] [CrossRef]
- Yang, X.; Ren, H.; Fu, J. Treatment of Radiation-Induced Brain Necrosis. Oxidative Med. Cell. Longev. 2021, 2021, 4793517. [Google Scholar] [CrossRef] [PubMed]
- Ruben, J.D.; Dally, M.; Bailey, M.; Smith, R.; McLean, C.A.; Fedele, P. Cerebral Radiation Necrosis: Incidence, Outcomes, and Risk Factors with Emphasis on Radiation Parameters and Chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 499–508. [Google Scholar] [CrossRef]
- Cha, S. Update on Brain Tumor Imaging. Curr. Neurol. Neurosci. Rep. 2005, 5, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.-F.; Yan, L.; Zhang, Z.; Salim, A.; Wang, L.; Hu, T.-T.; Zhao, H.-Y. Accuracy of Conventional MRI for Preoperative Diagnosis of Intracranial Tumors: A Retrospective Cohort Study of 762 Cases. Int. J. Surg. 2016, 36, 109–117. [Google Scholar] [CrossRef]
- Maldonado, M.D.; Batchala, P.; Ornan, D.; Fadul, C.; Schiff, D.; Itri, J.N.; Jain, R.; Patel, S.H. Features of Diffuse Gliomas That Are Misdiagnosed on Initial Neuroimaging: A Case Control Study. J. Neurooncol. 2018, 140, 107–113. [Google Scholar] [CrossRef]
- Chawla, S.; Bukhari, S.; Afridi, O.M.; Wang, S.; Yadav, S.K.; Akbari, H.; Verma, G.; Nath, K.; Haris, M.; Bagley, S.; et al. Metabolic and Physiologic Magnetic Resonance Imaging in Distinguishing True Progression from Pseudoprogression in Patients with Glioblastoma. NMR Biomed. 2022, 35, e4719. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Meyer, J.E.; Mabray, M.C.; Cha, S. Current Clinical Brain Tumor Imaging. Neurosurgery 2017, 81, 397–415. [Google Scholar] [CrossRef] [PubMed]
- Shukla, G.; Alexander, G.S.; Bakas, S.; Nikam, R.; Talekar, K.; Palmer, J.D.; Shi, W. Advanced Magnetic Resonance Imaging in Glioblastoma: A Review. Chin. Clin. Oncol. 2017, 6, 40. [Google Scholar] [CrossRef]
- Alexander, A.L.; Lee, J.E.; Lazar, M.; Field, A.S. Diffusion Tensor Imaging of the Brain. Neurotherapeutics 2007, 4, 316–329. [Google Scholar] [CrossRef]
- Basser, P.J.; Mattiello, J.; LeBihan, D. MR Diffusion Tensor Spectroscopy and Imaging. Biophys. J. 1994, 66, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Horsfield, M.A.; Jones, D.K. Applications of Diffusion-Weighted and Diffusion Tensor MRI to White Matter Diseases—A Review. NMR Biomed. 2002, 15, 570–577. [Google Scholar] [CrossRef]
- Essayed, W.I.; Zhang, F.; Unadkat, P.; Cosgrove, G.R.; Golby, A.J.; O’Donnell, L.J. White Matter Tractography for Neurosurgical Planning: A Topography-Based Review of the Current State of the Art. NeuroImage Clin. 2017, 15, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.; Kataria, R.; Sinha, V.D. Role of Diffusion Tensor Imaging in Brain Tumor Surgery. Asian J. Neurosurg. 2018, 13, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Yen, P.S.; Teo, B.T.; Chiu, C.H.; Chen, S.C.; Chiu, T.L.; Su, C.F. White Matter Tract Involvement in Brain Tumors: A Diffusion Tensor Imaging Analysis. Surg. Neurol. 2009, 72, 464–469. [Google Scholar] [CrossRef]
- Karmakar, D.K.; Badhe, P.V.; Mhatre, P.; Shrivastava, S.; Sultan, M.; Shankar, G.; Tekriwal, K.; Moharkar, S. Utility of Diffusion Tensor Imaging in Assessing Corticospinal Tracts for the Management of Brain Tumors: A Cross-Sectional Observational Study. Cureus 2023, 15, e47811. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Xiao, C.-Y.; Xu, Q.; Sun, J.; Chen, H.; Chen, Y.-C.; Yin, X. Analysis of DTI-Derived Tensor Metrics in Differential Diagnosis between Low-Grade and High-Grade Gliomas. Front. Aging Neurosci. 2017, 9, 271. [Google Scholar] [CrossRef]
- Manan, A.A.; Yahya, N.; Idris, Z.; Manan, H.A. The Utilization of Diffusion Tensor Imaging as an Image-Guided Tool in Brain Tumor Resection Surgery: A Systematic Review. Cancers 2022, 14, 2466. [Google Scholar] [CrossRef] [PubMed]
- Aibar-Durán, J.Á.; de Quintana-Schmidt, C.; Álvarez Holzpafel, M.J.; Hernández, F.M.; Cortés, C.A.; Martínez, G.V.; Bertrán, G.C. Intraoperative Use and Benefits of Tractography in Awake Surgery Patients. World Neurosurg. 2020, 137, e347–e353. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, F.; Norton, I.; Essayed, W.I.; Unadkat, P.; Rigolo, L.; Pasternak, O.; Rathi, Y.; Hou, L.; Golby, A.J.; et al. Free Water Modeling of Peritumoral Edema Using Multi-Fiber Tractography: Application to Tracking the Arcuate Fasciculus for Neurosurgical Planning. PLoS ONE 2018, 13, e0197056. [Google Scholar] [CrossRef]
- Wang, S.; Martinez-Lage, M.; Sakai, Y.; Chawla, S.; Kim, S.G.; Alonso-Basanta, M.; Lustig, R.A.; Brem, S.; Mohan, S.; Wolf, R.L.; et al. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI. AJNR Am. J. Neuroradiol. 2016, 37, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, G.A.; Zikou, A.; Tsiouris, S.; Goussia, A.; Kosta, P.; Papadopoulos, A.; Voulgaris, S.; Tsekeris, P.; Kyritsis, A.P.; Fotopoulos, A.D.; et al. Comparison of Diffusion Tensor, Dynamic Susceptibility Contrast MRI and 99mTc-Tetrofosmin Brain SPECT for the Detection of Recurrent High-Grade Glioma. Magn. Reson. Imaging 2014, 32, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Price, S.J.; Jena, R.; Burnet, N.G.; Carpenter, T.A.; Pickard, J.D.; Gillard, J.H. Predicting Patterns of Glioma Recurrence Using Diffusion Tensor Imaging. Eur. Radiol. 2007, 17, 1675–1684. [Google Scholar] [CrossRef]
- Yuan, J.; Siakallis, L.; Li, H.B.; Brandner, S.; Zhang, J.; Li, C.; Mancini, L.; Bisdas, S. Structural- and DTI- MRI Enable Automated Prediction of IDH Mutation Status in CNS WHO Grade 2–4 Glioma Patients: A Deep Radiomics Approach. BMC Med. Imaging 2024, 24, 104. [Google Scholar] [CrossRef]
- Park, C.J.; Choi, Y.S.; Park, Y.W.; Ahn, S.S.; Kang, S.-G.; Chang, J.-H.; Kim, S.H.; Lee, S.-K. Diffusion Tensor Imaging Radiomics in Lower-Grade Glioma: Improving Subtyping of Isocitrate Dehydrogenase Mutation Status. Neuroradiology 2020, 62, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, V.; Chatzisotiriou, A.; Seimenis, I. Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging-Tractography in Resective Brain Surgery: Lesion Coverage Strategies and Patient Outcomes. Brain Sci. 2023, 13, 1574. [Google Scholar] [CrossRef]
- Kazda, T.; Bulik, M.; Pospisil, P.; Lakomy, R.; Smrcka, M.; Slampa, P.; Jancalek, R. Advanced MRI Increases the Diagnostic Accuracy of Recurrent Glioblastoma: Single Institution Thresholds and Validation of MR Spectroscopy and Diffusion Weighted MR Imaging. NeuroImage Clin. 2016, 11, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Aseel, A.; McCarthy, P.; Mohammed, A. Brain Magnetic Resonance Spectroscopy to Differentiate Recurrent Neoplasm from Radiation Necrosis: A Systematic Review and Meta-Analysis. J. Neuroimaging 2023, 33, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Chuang, M.-T.; Liu, Y.-S.; Tsai, Y.-S.; Chen, Y.-C.; Wang, C.-K. Differentiating Radiation-Induced Necrosis from Recurrent Brain Tumor Using MR Perfusion and Spectroscopy: A Meta-Analysis. PLoS ONE 2016, 11, e0141438. [Google Scholar] [CrossRef] [PubMed]
- Martinez Luque, E.; Liu, Z.; Sung, D.; Goldberg, R.M.; Agarwal, R.; Bhattacharya, A.; Ahmed, N.S.; Allen, J.W.; Fleischer, C.C. An Update on MR Spectroscopy in Cancer Management: Advances in Instrumentation, Acquisition, and Analysis. Radiol. Imaging Cancer 2024, 6, e230101. [Google Scholar] [CrossRef] [PubMed]
- Bulik, M.; Jancalek, R.; Vanicek, J.; Skoch, A.; Mechl, M. Potential of MR Spectroscopy for Assessment of Glioma Grading. Clin. Neurol. Neurosurg. 2013, 115, 146–153. [Google Scholar] [CrossRef]
- Overcast, W.B.; Davis, K.M.; Ho, C.Y.; Hutchins, G.D.; Green, M.A.; Graner, B.D.; Veronesi, M.C. Advanced Imaging Techniques for Neuro-Oncologic Tumor Diagnosis, with an Emphasis on PET-MRI Imaging of Malignant Brain Tumors. Curr. Oncol. Rep. 2021, 23, 34. [Google Scholar] [CrossRef] [PubMed]
- Howe, F.A.; Barton, S.J.; Cudlip, S.A.; Stubbs, M.; Saunders, D.E.; Murphy, M.; Wilkins, P.; Opstad, K.S.; Doyle, V.L.; McLean, M.A.; et al. Metabolic Profiles of Human Brain Tumors Using Quantitative in Vivo 1H Magnetic Resonance Spectroscopy. Magn. Reson. Med. 2003, 49, 223–232. [Google Scholar] [CrossRef]
- Bogner-Strauss, J.G. N-Acetylaspartate Metabolism Outside the Brain: Lipogenesis, Histone Acetylation, and Cancer. Front. Endocrinol. 2017, 8, 240. [Google Scholar] [CrossRef] [PubMed]
- Moffett, J.R.; Puthillathu, N.; Vengilote, R.; Jaworski, D.M.; Namboodiri, A.M. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics, and Oncogenesis—Part 2: Acetate and ACSS2 in Health and Disease. Front. Physiol. 2020, 11, 580171. [Google Scholar] [CrossRef] [PubMed]
- Zand, B.; Previs, R.A.; Zacharias, N.M.; Rupaimoole, R.; Mitamura, T.; Nagaraja, A.S.; Guindani, M.; Dalton, H.J.; Yang, L.; Baddour, J.; et al. Role of Increased N-Acetylaspartate Levels in Cancer. J. Natl. Cancer Inst. 2016, 108, djv426. [Google Scholar] [CrossRef] [PubMed]
- Galijasevic, M.; Steiger, R.; Mangesius, S.; Mangesius, J.; Kerschbaumer, J.; Freyschlag, C.F.; Gruber, N.; Janjic, T.; Gizewski, E.R.; Grams, A.E. Magnetic Resonance Spectroscopy in Diagnosis and Follow-Up of Gliomas: State-of-the-Art. Cancers 2022, 14, 3197. [Google Scholar] [CrossRef] [PubMed]
- Ranjith, G.; Parvathy, R.; Vikas, V.; Chandrasekharan, K.; Nair, S. Machine Learning Methods for the Classification of Gliomas: Initial Results Using Features Extracted from MR Spectroscopy. Neuroradiol. J. 2015, 28, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Firdous, S.; Nawaz, Z.; Abid, R.; Cheng, L.L.; Musharraf, S.G.; Sadaf, S. Integrating HRMAS-NMR Data and Machine Learning-Assisted Profiling of Metabolite Fluxes to Classify Low- and High-Grade Gliomas. Interdiscip. Sci. Comput. Life Sci. 2024, 16, 854–871. [Google Scholar] [CrossRef] [PubMed]
- Rivera, C.A.; Bhatia, S.; Morell, A.A.; Daggubati, L.C.; Merenzon, M.A.; Sheriff, S.A.; Luther, E.; Chandar, J.; Levy, A.S.; Metzler, A.R.; et al. Metabolic Signatures Derived from Whole-Brain MR-Spectroscopy Identify Early Tumor Progression in High-Grade Gliomas Using Machine Learning. J. Neurooncol. 2024, 170, 579–589. [Google Scholar] [CrossRef]
- D’Amico, A. Review of Clinical Practice Utility of Positron Emission Tomography with 18F-Fluorodeoxyglucose in Assessing Tumour Response to Therapy. Radiol. Med. 2015, 120, 345–351. [Google Scholar] [CrossRef]
- Juhász, C.; Dwivedi, S.; Kamson, D.O.; Michelhaugh, S.K.; Mittal, S. Comparison of Amino Acid Positron Emission Tomographic Radiotracers for Molecular Imaging of Primary and Metastatic Brain Tumors. Mol. Imaging 2014, 13. [Google Scholar] [CrossRef] [PubMed]
- Law, I.; Albert, N.L.; Arbizu, J.; Boellaard, R.; Drzezga, A.; Galldiks, N.; la Fougère, C.; Langen, K.-J.; Lopci, E.; Lowe, V.; et al. Joint EANM/EANO/RANO Practice Guidelines/SNMMI Procedure Standards for Imaging of Gliomas Using PET with Radiolabelled Amino Acids and [18F]FDG: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 540–557. [Google Scholar] [CrossRef]
- Galldiks, N.; Niyazi, M.; Grosu, A.L.; Kocher, M.; Langen, K.-J.; Law, I.; Minniti, G.; Kim, M.M.; Tsien, C.; Dhermain, F.; et al. Contribution of PET Imaging to Radiotherapy Planning and Monitoring in Glioma Patients—A Report of the PET/RANO Group. Neuro Oncol. 2021, 23, 881–893. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, A.; Chassé, M.; Varlow, C.; Pees, A.; Vasdev, N. Strategies for Designing Novel Positron Emission Tomography (PET) Radiotracers to Cross the Blood-Brain Barrier. J. Label. Comp. Radiopharm. 2023, 66, 205–221. [Google Scholar] [CrossRef]
- Pike, V.W. PET Radiotracers: Crossing the Blood-Brain Barrier and Surviving Metabolism. Trends Pharmacol. Sci. 2009, 30, 431–440. [Google Scholar] [CrossRef]
- Binneboese, A.; Covington, M.F.; Horn, K.P.; Archibald, Z.G.; Boucher, K.M.; Morton, K.A.; Hoffman, J.M. Correlation between FDG-PET Uptake and Survival in Patients with Primary Brain Tumors. Am. J. Nucl. Med. Mol. Imaging 2021, 11, 196–206. [Google Scholar] [PubMed]
- Verger, A.; Kas, A.; Darcourt, J.; Guedj, E. PET Imaging in Neuro-Oncology: An Update and Overview of a Rapidly Growing Area. Cancers 2022, 14, 1103. [Google Scholar] [CrossRef]
- Treglia, G.; Muoio, B.; Trevisi, G.; Mattoli, M.V.; Albano, D.; Bertagna, F.; Giovanella, L. Diagnostic Performance and Prognostic Value of PET/CT with Different Tracers for Brain Tumors: A Systematic Review of Published Meta-Analyses. Int. J. Mol. Sci. 2019, 20, 4669. [Google Scholar] [CrossRef] [PubMed]
- Santo, G.; Laudicella, R.; Linguanti, F.; Nappi, A.G.; Abenavoli, E.; Vergura, V.; Rubini, G.; Sciagrà, R.; Arnone, G.; Schillaci, O.; et al. The Utility of Conventional Amino Acid PET Radiotracers in the Evaluation of Glioma Recurrence Also in Comparison with MRI. Diagn 2022, 12, 844. [Google Scholar] [CrossRef] [PubMed]
- Kant, S.; Kesarwani, P.; Prabhu, A.; Graham, S.F.; Buelow, K.L.; Nakano, I.; Chinnaiyan, P. Enhanced Fatty Acid Oxidation Provides Glioblastoma Cells Metabolic Plasticity to Accommodate to Its Dynamic Nutrient Microenvironment. Cell Death Dis. 2020, 11, 253. [Google Scholar] [CrossRef]
- Lin, H.; Patel, S.; Affleck, V.S.; Wilson, I.; Turnbull, D.M.; Joshi, A.R.; Maxwell, R.; Stoll, E.A. Fatty Acid Oxidation Is Required for the Respiration and Proliferation of Malignant Glioma Cells. Neuro Oncol. 2017, 19, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Maher, E.A.; Marin-Valencia, I.; Bachoo, R.M.; Mashimo, T.; Raisanen, J.; Hatanpaa, K.J.; Jindal, A.; Jeffrey, F.M.; Choi, C.; Madden, C.; et al. Metabolism of [U-13 C]Glucose in Human Brain Tumors in Vivo. NMR Biomed. 2012, 25, 1234–1244. [Google Scholar] [CrossRef]
- Carracedo, A.; Cantley, L.C.; Pandolfi, P.P. Cancer Metabolism: Fatty Acid Oxidation in the Limelight. Nat. Rev. Cancer 2013, 13, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Mashimo, T.; Pichumani, K.; Vemireddy, V.; Hatanpaa, K.J.; Singh, D.K.; Sirasanagandla, S.; Nannepaga, S.; Piccirillo, S.G.; Kovacs, Z.; Foong, C.; et al. Acetate Is a Bioenergetic Substrate for Human Glioblastoma and Brain Metastases. Cell 2014, 159, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
- Filippi, L.; Evangelista, L.; Schillaci, O. [18F]Fluoropivalate, Mitochondria, and the Resurrection of Short-Chain Fatty Acids. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3802–3805. [Google Scholar] [CrossRef]
- Vassileva, V.; Braga, M.; Barnes, C.; Przystal, J.; Ashek, A.; Allott, L.; Brickute, D.; Abrahams, J.; Suwan, K.; Carcaboso, A.M.; et al. Effective Detection and Monitoring of Glioma Using [18F]FPIA PET Imaging. Biomedicines 2021, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Inglese, M.; Grech-Sollars, M.; Aravind, P.; Dubash, S.; Barwick, T.D.; O’Neill, K.; Wang, J.; Saleem, A.; O’Callaghan, J.; et al. Feasibility of [18F]Fluoropivalate Hybrid PET/MRI for Imaging Lower and Higher Grade Glioma: A Prospective First-in-Patient Pilot Study. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3982–3995. [Google Scholar] [CrossRef]
- Dubash, S.R.; Keat, N.; Kozlowski, K.; Barnes, C.; Allott, L.; Brickute, D.; Hill, S.; Huiban, M.; Barwick, T.D.; Kenny, L.; et al. Clinical Translation of 18F-Fluoropivalate—A PET Tracer for Imaging Short-Chain Fatty Acid Metabolism: Safety, Biodistribution, and Dosimetry in Fed and Fasted Healthy Volunteers. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2549–2561. [Google Scholar] [CrossRef]
- Islam, S. [18F]FPIA PET-CT in Glioblastoma Multiforme (GBM) (FAM-GBM); Imperial College London: London, UK, 2023. [Google Scholar]
- Islam, S. An Observational Study to Determine Changes in 18F-Fluoropivalate-PET During Postoperative Chemoradiotherapy for Patients with Primary Glioblastoma Multiforme; Imperial College Healthcare NHS Trust: London, UK, 2023. [Google Scholar]
- Papin-Michault, C.; Bonnetaud, C.; Dufour, M.; Almairac, F.; Coutts, M.; Patouraux, S.; Virolle, T.; Darcourt, J.; Burel-Vandenbos, F. Study of LAT1 Expression in Brain Metastases: Towards a Better Understanding of the Results of Positron Emission Tomography Using Amino Acid Tracers. PLoS ONE 2016, 11, e0157139. [Google Scholar] [CrossRef] [PubMed]
- Manzarbeitia-Arroba, B.; Hodolic, M.; Pichler, R.; Osipova, O.; Soriano-Castrejón, Á.M.; García-Vicente, A.M. 18F-Fluoroethyl-L Tyrosine Positron Emission Tomography Radiomics in the Differentiation of Treatment-Related Changes from Disease Progression in Patients with Glioblastoma. Cancers 2023, 16, 195. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Mathew, R.; Ashtekar, R.; Dasgupta, A.; Puranik, A.; Mahajan, A.; Janu, A.; Choudhari, A.; Desai, S.; Patnam, N.G.; et al. The Complementary Role of MRI and FET PET in High-Grade Gliomas to Differentiate Recurrence from Radionecrosis. Front. Nucl. Med. 2023, 3, 1040998. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, J.; Xu, W.; Weng, J.; Gao, L.; Tao, L.; Liang, F.; Zhang, J. Accuracy of 18F-FDOPA Positron Emission Tomography and 18F-FET Positron Emission Tomography for Differentiating Radiation Necrosis from Brain Tumor Recurrence. World Neurosurg. 2018, 114, e1211–e1224. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.J.; Deaton, T.K.; Territo, W.; Graner, B.; Gauger, A.; Snyder, S.E.; Schulte, M.L.; Green, M.A.; Hutchins, G.D.; Veronesi, M.C. Hybrid 18F-Fluoroethyltyrosine PET and MRI with Perfusion to Distinguish Disease Progression from Treatment-Related Change in Malignant Brain Tumors: The Quest to Beat the Toughest Cases. J. Nucl. Med. 2023, 64, 1087–1092. [Google Scholar] [CrossRef]
- Brendle, C.; Maier, C.; Bender, B.; Schittenhelm, J.; Paulsen, F.; Renovanz, M.; Roder, C.; Castaneda-Vega, S.; Tabatabai, G.; Ernemann, U.; et al. Impact of 18F-FET PET/MRI on Clinical Management of Brain Tumor Patients. J. Nucl. Med. 2022, 63, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Galldiks, N.; Abdulla, D.S.Y.; Scheffler, M.; Wolpert, F.; Werner, J.-M.; Hüllner, M.; Stoffels, G.; Schweinsberg, V.; Schlaak, M.; Kreuzberg, N.; et al. Treatment Monitoring of Immunotherapy and Targeted Therapy Using 18F-FET PET in Patients with Melanoma and Lung Cancer Brain Metastases: Initial Experiences. J. Nucl. Med. 2021, 62, 464–470. [Google Scholar] [CrossRef]
- Di Carli, M. FET-PET for Evaluation of Response of Recurrent GBM to Avastin; Harvard University: Cambridge, MA, USA, 2019. [Google Scholar]
- Karlberg, A.; Berntsen, E.M.; Johansen, H.; Skjulsvik, A.J.; Reinertsen, I.; Dai, H.Y.; Xiao, Y.; Rivaz, H.; Borghammer, P.; Solheim, O.; et al. 18F-FACBC PET/MRI in Diagnostic Assessment and Neurosurgery of Gliomas. Clin. Nucl. Med. 2019, 44, 550. [Google Scholar] [CrossRef] [PubMed]
- Michaud, L.; Beattie, B.J.; Akhurst, T.; Dunphy, M.; Zanzonico, P.; Finn, R.; Mauguen, A.; Schöder, H.; Weber, W.A.; Lassman, A.B.; et al. 18F-Fluciclovine (18F-FACBC) PET Imaging of Recurrent Brain Tumors. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1353–1367. [Google Scholar] [CrossRef] [PubMed]
- Tsuyuguchi, N.; Terakawa, Y.; Uda, T.; Nakajo, K.; Kanemura, Y. Diagnosis of Brain Tumors Using Amino Acid Transport PET Imaging with 18F-Fluciclovine: A Comparative Study with L-Methyl-11C-Methionine PET Imaging. Asia Ocean. J. Nucl. Med. Biol. 2017, 5, 85–94. [Google Scholar] [CrossRef]
- Nabavizadeh, A.; Bagley, S.J.; Doot, R.K.; Ware, J.B.; Young, A.J.; Ghodasara, S.; Zhao, C.; Anderson, H.; Schubert, E.; Carpenter, E.L.; et al. Distinguishing Progression from Pseudoprogression in Glioblastoma Using 18F-Fluciclovine PET. J. Nucl. Med. 2022, 64, 852–858. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, R. Characterization of 18F-Fluciclovine PET Amino Acid Radiotracer in Resected Brain Metastasis (CONCORDANT); Baptist Health South Florida: Coral Gables, FL, USA, 2024. [Google Scholar]
- Trifiletti, D. 18F-Fluciclovine PET/MRI Imaging for the Detection of Tumor Recurrence After Radiation Injury to the Brain; Mayo Clinic: Jacksonville, FL, USA, 2024. [Google Scholar]
- Ahmed, S.; Elsayed, I. Availability and Affordability of PET Tracers, the Challenges and Opportunities in Developing Countries. Egypt. J. Nucl. Med. 2022, 25, 1–7. [Google Scholar] [CrossRef]
- Dash, A.; Chakravarty, R. Radionuclide Generators: The Prospect of Availing PET Radiotracers to Meet Current Clinical Needs and Future Research Demands. Am. J. Nucl. Med. Mol. Imaging 2019, 9, 30–66. [Google Scholar]
- Weinberg, B.D.; Kuruva, M.; Shim, H.; Mullins, M.E. Clinical Applications of Magnetic Resonance Spectroscopy (MRS) in of Brain Tumors: From Diagnosis to Treatment. Radiol. Clin. N. Am. 2021, 59, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Douglas, D.B.; Iv, M.; Douglas, P.K.; Ariana, A.; Vos, S.B.; Bammer, R.; Zeineh, M.; Wintermark, M. Diffusion Tensor Imaging of TBI: Potentials and Challenges. Top. Magn. Reson. Imaging 2015, 24, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Nensa, F.; Beiderwellen, K.; Heusch, P.; Wetter, A. Clinical Applications of PET/MRI: Current Status and Future Perspectives. Diagn. Interv. Radiol. 2014, 20, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Ma, L.; Yang, L.; Lu, R.; Xi, C. Artificial Intelligence Algorithm-Based Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) in the Treatment of Glioma Biopsy. Contrast Media Mol. Imaging 2022, 2022, 5411801. [Google Scholar] [CrossRef] [PubMed]
- Sareen, H.; Ma, Y.; Becker, T.M.; Roberts, T.L.; de Souza, P.; Powter, B. Molecular Biomarkers in Glioblastoma: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 8835. [Google Scholar] [CrossRef]
- Szopa, W.; Burley, T.A.; Kramer-Marek, G.; Kaspera, W. Diagnostic and Therapeutic Biomarkers in Glioblastoma: Current Status and Future Perspectives. Biomed. Res. Int. 2017, 2017, 8013575. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; Stupp, R.; Hegi, M.E.; van den Bent, M.; Tonn, J.C.; Sanson, M.; Wick, W.; Reifenberger, G. Personalized Care in Neuro-Oncology Coming of Age: Why We Need MGMT and 1p/19q Testing for Malignant Glioma Patients in Clinical Practice. Neuro Oncol. 2012, 14 (Suppl. S4), iv100–iv108. [Google Scholar] [CrossRef]
- Chiu, F.-Y.; Yen, Y. Imaging Biomarkers for Clinical Applications in Neuro-Oncology: Current Status and Future Perspectives. Biomark. Res. 2023, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Brandner, S.; McAleenan, A.; Jones, H.E.; Kernohan, A.; Robinson, T.; Schmidt, L.; Dawson, S.; Kelly, C.; Leal, E.S.; Faulkner, C.L.; et al. Diagnostic Accuracy of 1p/19q Codeletion Tests in Oligodendroglioma: A Comprehensive Meta-analysis Based on a Cochrane Systematic Review. Neuropathol. Appl. Neurobiol. 2022, 48, e12790. [Google Scholar] [CrossRef] [PubMed]
- Familiari, P.; Lapolla, P.; Picotti, V.; Palmieri, M.; Pesce, A.; Carosi, G.; Relucenti, M.; Nottola, S.; Gianno, F.; Minasi, S.; et al. Role of 1p/19q Codeletion in Diffuse Low-Grade Glioma Tumour Prognosis. Anticancer Res. 2023, 43, 2659–2670. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Aziz, N.; Nasir, M.; Rangwala, H.S.; Fatima, H.; Mubarak, F. Accuracy of MRI in Detecting 1p/19q Co-Deletion Status of Gliomas: A Single-Center Retrospective Study. Cureus 2024, 16, e51863. [Google Scholar] [CrossRef]
- Parsons, D.W.; Jones, S.; Zhang, X.; Lin, J.C.-H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.-M.; Gallia, G.L.; et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science 2008, 321, 1807. [Google Scholar] [CrossRef]
- Śledzińska, P.; Bebyn, M.G.; Furtak, J.; Kowalewski, J.; Lewandowska, M.A. Prognostic and Predictive Biomarkers in Gliomas. Int. J. Mol. Sci. 2021, 22, 10373. [Google Scholar] [CrossRef]
- Cadoux-Hudson, T.; Schofield, C.J.; McCullagh, J.S.O. Isocitrate Dehydrogenase Gene Variants in Cancer and Their Clinical Significance. Biochem. Soc. Trans. 2021, 49, 2561–2572. [Google Scholar] [CrossRef]
- Sun, H.; Yin, L.; Li, S.; Han, S.; Song, G.; Liu, N.; Yan, C. Prognostic Significance of IDH Mutation in Adult Low-Grade Gliomas: A Meta-Analysis. J. Neurooncol. 2013, 113, 277–284. [Google Scholar] [CrossRef]
- Capper, D.; Zentgraf, H.; Balss, J.; Hartmann, C.; von Deimling, A. Monoclonal Antibody Specific for IDH1 R132H Mutation. Acta Neuropathol. 2009, 118, 599–601. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.; Holmen, S.; Colman, H. IDH1 and IDH2 Mutations in Gliomas. Curr. Neurol. Neurosci. Rep. 2013, 13, 345. [Google Scholar] [CrossRef] [PubMed]
- Copaciu, R.; Rashidian, J.; Lloyd, J.; Yahyabeik, A.; McClure, J.; Cummings, K.; Su, Q. Characterization of an IDH1 R132H Rabbit Monoclonal Antibody, MRQ-67, and Its Applications in the Identification of Diffuse Gliomas. Antibodies 2023, 12, 14. [Google Scholar] [CrossRef]
- Rivera, A.L.; Pelloski, C.E.; Gilbert, M.R.; Colman, H.; De La Cruz, C.; Sulman, E.P.; Bekele, B.N.; Aldape, K.D. MGMT Promoter Methylation Is Predictive of Response to Radiotherapy and Prognostic in the Absence of Adjuvant Alkylating Chemotherapy for Glioblastoma. Neuro Oncol. 2010, 12, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; Felsberg, J.; Hartmann, C.; Berger, H.; Steinbach, J.P.; Schramm, J.; Westphal, M.; Schackert, G.; Simon, M.; Tonn, J.C.; et al. Molecular Predictors of Progression-Free and Overall Survival in Patients with Newly Diagnosed Glioblastoma: A Prospective Translational Study of the German Glioma Network. J. Clin. Oncol. 2009, 27, 5743–5750. [Google Scholar] [CrossRef]
- Butler, M.; Pongor, L.; Su, Y.-T.; Xi, L.; Raffeld, M.; Quezado, M.; Trepel, J.; Aldape, K.; Pommier, Y.; Wu, J. MGMT Status as a Clinical Biomarker in Glioblastoma. Trends Cancer 2020, 6, 380–391. [Google Scholar] [CrossRef] [PubMed]
- McAleenan, A.; Kelly, C.; Spiga, F.; Kernohan, A.; Cheng, H.-Y.; Dawson, S.; Schmidt, L.; Robinson, T.; Brandner, S.; Faulkner, C.L.; et al. Prognostic Value of Test(s) for O6-methylguanine–DNA Methyltransferase (MGMT) Promoter Methylation for Predicting Overall Survival in People with Glioblastoma Treated with Temozolomide. Cochrane Database Syst. Rev. 2021, 2021, CD013316. [Google Scholar] [CrossRef]
- Colebatch, A.J.; Dobrovic, A.; Cooper, W.A. TERT Gene: Its Function and Dysregulation in Cancer. J. Clin. Pathol. 2019, 72, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Hasanau, T.; Pisarev, E.; Kisil, O.; Nonoguchi, N.; Le Calvez-Kelm, F.; Zvereva, M. Detection of TERT Promoter Mutations as a Prognostic Biomarker in Gliomas: Methodology, Prospects, and Advances. Biomedicines 2022, 10, 728. [Google Scholar] [CrossRef]
- Lee, H.; Lee, B.; Kim, D.G.; Cho, Y.A.; Kim, J.-S.; Suh, Y.-L. Detection of TERT Promoter Mutations Using Targeted Next-Generation Sequencing: Overcoming GC Bias through Trial and Error. Cancer Res. Treat. 2022, 54, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Jozsa, F.; Gaier, C.; Ma, Y.; Kitchen, N.; McEvoy, A.; Miserocchi, A.; Samandouras, G.; Sethi, H.; Thorne, L.; Hill, C.; et al. Safety and Efficacy of Brain Biopsy: Results from a Single Institution Retrospective Cohort Study. Brain Spine 2023, 3, 101763. [Google Scholar] [CrossRef] [PubMed]
- Yekula, A.; Muralidharan, K.; Rosh, Z.; Youngkin, A.E.; Kang, K.M.; Balaj, L.; Carter, B.S. Liquid Biopsy Strategies to Distinguish Progression from Pseudoprogression and Radiation Necrosis in Glioblastomas. Adv. Biosyst. 2020, 4, e2000029. [Google Scholar] [CrossRef]
- Leon, S.A.; Shapiro, B.; Sklaroff, D.M.; Yaros, M.J. Free DNA in the Serum of Cancer Patients and the Effect of Therapy. Cancer Res. 1977, 37, 646–650. [Google Scholar]
- Khalili, N.; Shooli, H.; Hosseini, N.; Fathi Kazerooni, A.; Familiar, A.; Bagheri, S.; Anderson, H.; Bagley, S.J.; Nabavizadeh, A. Adding Value to Liquid Biopsy for Brain Tumors: The Role of Imaging. Cancers 2023, 15, 5198. [Google Scholar] [CrossRef]
- Connal, S.; Cameron, J.M.; Sala, A.; Brennan, P.M.; Palmer, D.S.; Palmer, J.D.; Perlow, H.; Baker, M.J. Liquid Biopsies: The Future of Cancer Early Detection. J. Transl. Med. 2023, 21, 118. [Google Scholar] [CrossRef] [PubMed]
- Piccioni, D.E.; Achrol, A.S.; Kiedrowski, L.A.; Banks, K.C.; Boucher, N.; Barkhoudarian, G.; Kelly, D.F.; Juarez, T.; Lanman, R.B.; Raymond, V.M.; et al. Analysis of Cell-Free Circulating Tumor DNA in 419 Patients with Glioblastoma and Other Primary Brain Tumors. CNS Oncol. 2019, 8, CNS34. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.M.; Shah, R.H.; Pentsova, E.I.; Pourmaleki, M.; Briggs, S.; Distefano, N.; Zheng, Y.; Skakodub, A.; Mehta, S.A.; Campos, C.; et al. Tracking Tumor Evolution in Glioma through Liquid Biopsies of Cerebrospinal Fluid. Nature 2019, 565, 654–658. [Google Scholar] [CrossRef]
- Wang, J.; Bettegowda, C. Applications of DNA-Based Liquid Biopsy for Central Nervous System Neoplasms. J. Mol. Diagn. 2017, 19, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Cantor, E.; Wierzbicki, K.; Tarapore, R.S.; Ravi, K.; Thomas, C.; Cartaxo, R.; Nand Yadav, V.; Ravindran, R.; Bruzek, A.K.; Wadden, J.; et al. Serial H3K27M Cell-Free Tumor DNA (Cf-tDNA) Tracking Predicts ONC201 Treatment Response and Progression in Diffuse Midline Glioma. Neuro Oncol. 2022, 24, 1366–1374. [Google Scholar] [CrossRef]
- Koschmann, C. ONC201 in Pediatric H3 K27M Gliomas; Chimerix: Durham, NC, USA, 2023. [Google Scholar]
- Cornelli, L.; Van Paemel, R.; Ferro dos Santos, M.R.; Roelandt, S.; Willems, L.; Vandersteene, J.; Baert, E.; Mus, L.M.; Van Roy, N.; De Wilde, B.; et al. Diagnosis of Pediatric Central Nervous System Tumors Using Methylation Profiling of cfDNA from Cerebrospinal Fluid. Clin. Epigenetics 2024, 16, 87. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S.; Ishikawa, A.; Kuroda, M. Roles of Exosomes and Microvesicles in Disease Pathogenesis. Adv. Drug Deliv. Rev. 2013, 65, 398–401. [Google Scholar] [CrossRef] [PubMed]
- Schiera, G.; Di Liegro, C.M.; Vento, F.; Di Liegro, I. Role of Extracellular Vesicles in the Progression of Brain Tumors. Biology 2024, 13, 586. [Google Scholar] [CrossRef] [PubMed]
- Mut, M.; Adiguzel, Z.; Cakir-Aktas, C.; Hanalioğlu, Ş.; Gungor-Topcu, G.; Kiyga, E.; Isikay, I.; Sarac, A.; Soylemezoglu, F.; Strobel, T.; et al. Extracellular-Vesicle-Based Cancer Panels Diagnose Glioblastomas with High Sensitivity and Specificity. Cancers 2023, 15, 3782. [Google Scholar] [CrossRef]
- Rackles, E.; Zaccheroni, E.; Lopez, P.H.; Faletti, S.; Bene, M.D.; DiMeco, F.; Pelicci, G.; Falcon-Perez, J.M. Increased Levels of Circulating Cell-free Double-stranded Nucleic Acids in the Plasma of Glioblastoma Patients. J. Extracell. Biol. 2024, 3, e168. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.M.; Putt, M.; Yang, X.-Y.; Lustig, R.A.; Martinez-Lage, M.; Williams, D.; Desai, A.; Wolf, R.; Brem, S.; Koch, C.J. Initial Evidence That Blood-Borne Microvesicles Are Biomarkers for Recurrence and Survival in Newly Diagnosed Glioblastoma Patients. J. Neurooncol. 2016, 127, 391–400. [Google Scholar] [CrossRef]
- Koch, C.J.; Lustig, R.A.; Yang, X.-Y.; Jenkins, W.T.; Wolf, R.L.; Martinez-Lage, M.; Desai, A.; Williams, D.; Evans, S.M. Microvesicles as a Biomarker for Tumor Progression versus Treatment Effect in Radiation/Temozolomide-Treated Glioblastoma Patients. Transl. Oncol. 2014, 7, 752–758. [Google Scholar] [CrossRef]
- Lin, D.; Shen, L.; Luo, M.; Zhang, K.; Li, J.; Yang, Q.; Zhu, F.; Zhou, D.; Zheng, S.; Chen, Y.; et al. Circulating Tumor Cells: Biology and Clinical Significance. Signal Transduct. Target. Ther. 2021, 6, 404. [Google Scholar] [CrossRef] [PubMed]
- Westphal, M.; Pantel, K.; Ricklefs, F.L.; Maire, C.; Riethdorf, S.; Mohme, M.; Wikman, H.; Lamszus, K. Circulating Tumor Cells and Extracellular Vesicles as Liquid Biopsy Markers in Neuro-Oncology: Prospects and Limitations. Neurooncol. Adv. 2022, 4, ii45–ii52. [Google Scholar] [CrossRef] [PubMed]
- Ju, M.; Kao, G.D.; Steinmetz, D.; Chandrasekaran, S.; Keefe, S.M.; Guzzo, T.J.; Christodouleas, J.P.; Hahn, S.M.; Dorsey, J.F. Application of a Telomerase-Based Circulating Tumor Cell (CTC) Assay in Bladder Cancer Patients Receiving Postoperative Radiation Therapy. Cancer Biol. Ther. 2014, 15, 683–687. [Google Scholar] [CrossRef]
- MacArthur, K.M.; Kao, G.D.; Chandrasekaran, S.; Alonso-Basanta, M.; Chapman, C.; Lustig, R.A.; Wileyto, E.P.; Hahn, S.M.; Dorsey, J.F. Detection of Brain Tumor Cells in the Peripheral Blood by a Telomerase Promoter-Based Assay. Cancer Res. 2014, 74, 2152–2159. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Xu, Y.; Yan, T.; Xiong, W.; Zhu, X.; Sun, Q.; Deng, G.; Yuan, F.; Ye, L.; Hu, P.; et al. Use of Circulating Tumor Cells and Microemboli to Predict Diagnosis and Prognosis in Diffuse Glioma. J. Neurosurg. 2024, 141, 673–683. [Google Scholar] [CrossRef]
- Najafi, S.; Asemani, Y.; Majidpoor, J.; Mahmoudi, R.; Aghaei-Zarch, S.M.; Mortezaee, K. Tumor-Educated Platelets. Clin. Chim. Acta 2024, 552, 117690. [Google Scholar] [CrossRef] [PubMed]
- Best, M.G.; Sol, N.; Kooi, I.; Tannous, J.; Westerman, B.A.; Rustenburg, F.; Schellen, P.; Verschueren, H.; Post, E.; Koster, J.; et al. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015, 28, 666–676. [Google Scholar] [CrossRef]
- Qi, C.; Wei, B.; Zhou, W.; Yang, Y.; Li, B.; Guo, S.; Li, J.; Ye, J.; Li, J.; Zhang, Q.; et al. P-Selectin-Mediated Platelet Adhesion Promotes Tumor Growth. Oncotarget 2015, 6, 6584–6596. [Google Scholar] [CrossRef] [PubMed]
- Campanella, R.; Guarnaccia, L.; Cordiglieri, C.; Trombetta, E.; Caroli, M.; Carrabba, G.; La Verde, N.; Rampini, P.; Gaudino, C.; Costa, A.; et al. Tumor-Educated Platelets and Angiogenesis in Glioblastoma: Another Brick in the Wall for Novel Prognostic and Targetable Biomarkers, Changing the Vision from a Localized Tumor to a Systemic Pathology. Cells 2020, 9, 294. [Google Scholar] [CrossRef] [PubMed]
- Sol, N.; in ‘t Veld, S.G.J.G.; Vancura, A.; Tjerkstra, M.; Leurs, C.; Rustenburg, F.; Schellen, P.; Verschueren, H.; Post, E.; Zwaan, K.; et al. Tumor-Educated Platelet RNA for the Detection and (Pseudo)Progression Monitoring of Glioblastoma. Cell Rep. Med. 2020, 1, 100101. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, D.; Guo, H.; Ma, W. Beyond Blood: Advancing the Frontiers of Liquid Biopsy in Oncology and Personalized Medicine. Cancer Sci. 2024, 115, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Menna, G.; Piaser Guerrato, G.; Bilgin, L.; Ceccarelli, G.M.; Olivi, A.; Della Pepa, G.M. Is There a Role for Machine Learning in Liquid Biopsy for Brain Tumors? A Systematic Review. Int. J. Mol. Sci. 2023, 24, 9723. [Google Scholar] [CrossRef]
- Eledkawy, A.; Hamza, T.; El-Metwally, S. Precision Cancer Classification Using Liquid Biopsy and Advanced Machine Learning Techniques. Sci. Rep. 2024, 14, 5841. [Google Scholar] [CrossRef] [PubMed]
- Eid, T.; Ghandour, L.; Ghanem, J.A.; Assi, H.; Mahfouz, R. Liquid Biopsy in Brain Tumors: Potential for Impactful Clinical Applications. Hum. Gene 2024, 42, 201333. [Google Scholar] [CrossRef]
- Robinson, S.D.; de Boisanger, J.; Pearl, F.M.G.; Critchley, G.; Rosenfelder, N.; Giamas, G. A Brain Metastasis Liquid Biopsy: Where Are We Now? Neuro-Oncol. Adv. 2024, 6, vdae066. [Google Scholar] [CrossRef] [PubMed]
- Bakker, A.; Ixkes, A.E.; Venugopal, H.; Ries, M.G.; Lak, N.S.M.; de Vos, F.Y.F.L.; van Vuurden, D.G.; Snijders, T.J. Focused Ultrasound-Enhanced Liquid Biopsy: A Promising Diagnostic Tool for Brain Tumor Patients. Cancers 2024, 16, 1576. [Google Scholar] [CrossRef] [PubMed]
- Fagery, M.; Khorshidi, H.A.; Wong, S.Q.; Vu, M.; IJzerman, M. Health Economic Evidence and Modeling Challenges for Liquid Biopsy Assays in Cancer Management: A Systematic Literature Review. Pharmacoeconomics 2023, 41, 1229–1248. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; El-Rifai, W.; Bedognetti, D.; Batra, S.K.; Haris, M.; et al. Liquid Biopsy: A Step Closer to Transform Diagnosis, Prognosis and Future of Cancer Treatments. Mol. Cancer 2022, 21, 79. [Google Scholar] [CrossRef] [PubMed]
- Abdusalomov, A.B.; Mukhiddinov, M.; Whangbo, T.K. Brain Tumor Detection Based on Deep Learning Approaches and Magnetic Resonance Imaging. Cancers 2023, 15, 4172. [Google Scholar] [CrossRef]
- Da Silva, H.E.C.; Santos, G.N.M.; Leite, A.F.; Mesquita, C.R.M.; de Souza Figueiredo, P.T.; Stefani, C.M.; de Melo, N.S. The Use of Artificial Intelligence Tools in Cancer Detection Compared to the Traditional Diagnostic Imaging Methods: An Overview of the Systematic Reviews. PLoS ONE 2023, 18, e0292063. [Google Scholar] [CrossRef] [PubMed]
- Nakhate, V.; Gonzalez Castro, L.N. Artificial Intelligence in Neuro-Oncology. Front. Neurosci. 2023, 17, 1217629. [Google Scholar] [CrossRef] [PubMed]
- Philip, A.K.; Samuel, B.A.; Bhatia, S.; Khalifa, S.A.M.; El-Seedi, H.R. Artificial Intelligence and Precision Medicine: A New Frontier for the Treatment of Brain Tumors. Life 2022, 13, 24. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.; Anyanwu, E.; Goes, J.; Besser, S.A.; Anand, S.; Madduri, R.; Getty, N.; Kelle, S.; Kawaji, K.; Mor-Avi, V.; et al. Comparison of Machine Learning and Deep Learning for View Identification from Cardiac Magnetic Resonance Images. Clin. Imaging 2022, 82, 121–126. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.-W.; et al. Artificial Intelligence: A Powerful Paradigm for Scientific Research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef] [PubMed]
- Zohuri, B.; Behgounia, F. Chapter 8—Application of Artificial Intelligence Driving Nano-Based Drug Delivery System. In A Handbook of Artificial Intelligence in Drug Delivery; Philip, A., Shahiwala, A., Rashid, M., Faiyazuddin, M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 145–212. ISBN 978-0-323-89925-3. [Google Scholar]
- Aytaç, U.C.; Güneş, A.; Ajlouni, N. A Novel Adaptive Momentum Method for Medical Image Classification Using Convolutional Neural Network. BMC Med. Imaging 2022, 22, 34. [Google Scholar] [CrossRef]
- Madan, S.; Lentzen, M.; Brandt, J.; Rueckert, D.; Hofmann-Apitius, M.; Fröhlich, H. Transformer Models in Biomedicine. BMC Med. Inform. Decis. Mak. 2024, 24, 214. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, M.; Asadi, H. How to Use Transformers for Transfer Learning? 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4461376 (accessed on 6 January 2025).
- Barinov, L.; Jairaj, A.; Becker, M.; Seymour, S.; Lee, E.; Schram, A.; Lane, E.; Goldszal, A.; Quigley, D.; Paster, L. Impact of Data Presentation on Physician Performance Utilizing Artificial Intelligence-Based Computer-Aided Diagnosis and Decision Support Systems. J. Digit. Imaging 2019, 32, 408–416. [Google Scholar] [CrossRef]
- Khalighi, S.; Reddy, K.; Midya, A.; Pandav, K.B.; Madabhushi, A.; Abedalthagafi, M. Artificial Intelligence in Neuro-Oncology: Advances and Challenges in Brain Tumor Diagnosis, Prognosis, and Precision Treatment. npj Precis. Oncol. 2024, 8, 80. [Google Scholar] [CrossRef]
- Lv, C.; Shu, X.-J.; Chang, H.; Qiu, J.; Peng, S.; Yu, K.; Chen, S.-B.; Rao, H. Classification of High-Grade Glioblastoma and Single Brain Metastases Using a New SCAT-Inception Model Trained with MRI Images. Front. Neurosci. 2024, 18, 1349781. [Google Scholar] [CrossRef]
- Cepeda, S.; García-García, S.; Arrese, I.; Fernández-Pérez, G.; Velasco-Casares, M.; Fajardo-Puentes, M.; Zamora, T.; Sarabia, R. Comparison of Intraoperative Ultrasound B-Mode and Strain Elastography for the Differentiation of Glioblastomas From Solitary Brain Metastases. An Automated Deep Learning Approach for Image Analysis. Front. Oncol. 2020, 10, 590756. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Qiu, J.; Liang, Q.; Jiang, J.; Zhao, K.; Chang, H.; Lv, C.; Zhang, W.; Li, B.; Ye, J.; et al. Deep Learning Models for Rapid Discrimination of High-Grade Gliomas from Solitary Brain Metastases Using Multi-Plane T1-Weighted Contrast-Enhanced (T1CE) Images. Quant. Imaging Med. Surg. 2024, 14, 5762–5773. [Google Scholar] [CrossRef] [PubMed]
- Khawaldeh, S.; Pervaiz, U.; Rafiq, A.; Alkhawaldeh, R.S. Noninvasive Grading of Glioma Tumor Using Magnetic Resonance Imaging with Convolutional Neural Networks. Appl. Sci. 2018, 8, 27. [Google Scholar] [CrossRef]
- Quon, J.L.; Bala, W.; Chen, L.C.; Wright, J.; Kim, L.H.; Han, M.; Shpanskaya, K.; Lee, E.H.; Tong, E.; Iv, M.; et al. Deep Learning for Pediatric Posterior Fossa Tumor Detection and Classification: A Multi-Institutional Study. AJNR Am. J. Neuroradiol. 2020, 41, 1718–1725. [Google Scholar] [CrossRef]
- Kora, P.; Ooi, C.P.; Faust, O.; Raghavendra, U.; Gudigar, A.; Chan, W.Y.; Meenakshi, K.; Swaraja, K.; Plawiak, P.; Rajendra Acharya, U. Transfer Learning Techniques for Medical Image Analysis: A Review. Biocybern. Biomed. Eng. 2022, 42, 79–107. [Google Scholar] [CrossRef]
- Luján-García, J.E.; Yáñez-Márquez, C.; Villuendas-Rey, Y.; Camacho-Nieto, O. A Transfer Learning Method for Pneumonia Classification and Visualization. Appl. Sci. 2020, 10, 2908. [Google Scholar] [CrossRef]
- Valverde, J.M.; Imani, V.; Abdollahzadeh, A.; De Feo, R.; Prakash, M.; Ciszek, R.; Tohka, J. Transfer Learning in Magnetic Resonance Brain Imaging: A Systematic Review. J. Imaging 2021, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Yip, S.S.; Aerts, H.J.W.L. Applications and Limitations of Radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [Google Scholar] [CrossRef] [PubMed]
- Beig, N.; Bera, K.; Tiwari, P. Introduction to Radiomics and Radiogenomics in Neuro-Oncology: Implications and Challenges. Neurooncol. Adv. 2021, 2, iv3–iv14. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, M.; Suman, A.A.; Suero Molina, E.; Pan, E.; Di Ieva, A.; Liu, S. Radiomics and Machine Learning in Brain Tumors and Their Habitat: A Systematic Review. Cancers 2023, 15, 3845. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Yin, X.; Yang, P.; Cheng, L.; Hu, J.; Yang, J.; Wang, Y.; Fu, X.; Shang, L.; Li, L.; et al. A Transformer-Based Weakly Supervised Computational Pathology Method for Clinical-Grade Diagnosis and Molecular Marker Discovery of Gliomas. Nat. Mach. Intell. 2024, 6, 876–891. [Google Scholar] [CrossRef]
- Aly, M.; Ghallab, A.; Fathi, I.S. Tumor ViT-GRU-XAI: Advanced Brain Tumor Diagnosis Framework: Vision Transformer and GRU Integration for Improved MRI Analysis: A Case Study of Egypt. IEEE Access 2024, 12, 184726–184754. [Google Scholar] [CrossRef]
- Gomaa, A.; Huang, Y.; Hagag, A.; Schmitter, C.; Höfler, D.; Weissmann, T.; Breininger, K.; Schmidt, M.; Stritzelberger, J.; Delev, D.; et al. Comprehensive Multimodal Deep Learning Survival Prediction Enabled by a Transformer Architecture: A Multicenter Study in Glioblastoma. Neuro-Oncol. Adv. 2024, 6, vdae122. [Google Scholar] [CrossRef]
- Lata, K.; Singh, P.; Saini, S.; Cenkeramaddi, L.R. Deep Learning-Based Brain Tumor Detection in Privacy-Preserving Smart Health Care Systems. IEEE Access 2024, 12, 140722–140733. [Google Scholar] [CrossRef]
- Aggarwal, M.; Khullar, V.; Goyal, N.; Rastogi, R.; Singh, A.; Torres, V.Y.; Albahar, M.A. Privacy Preserved Collaborative Transfer Learning Model with Heterogeneous Distributed Data for Brain Tumor Classification. Int. J. Imaging Syst. Technol. 2024, 34, e22994. [Google Scholar] [CrossRef]
- Ullah, F.; Nadeem, M.; Abrar, M.; Amin, F.; Salam, A.; Khan, S. Enhancing Brain Tumor Segmentation Accuracy through Scalable Federated Learning with Advanced Data Privacy and Security Measures. Mathematics 2023, 11, 4189. [Google Scholar] [CrossRef]
- Molnár-Gábor, F. Artificial Intelligence in Healthcare: Doctors, Patients and Liabilities. In Regulating Artificial Intelligence; Wischmeyer, T., Rademacher, T., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 337–360. ISBN 978-3-030-32361-5. [Google Scholar]
- Abràmoff, M.D.; Roehrenbeck, C.; Trujillo, S.; Goldstein, J.; Graves, A.S.; Repka, M.X.; Silva, E., III. “Zeke” A Reimbursement Framework for Artificial Intelligence in Healthcare. npj Digit. Med. 2022, 5, 72. [Google Scholar] [CrossRef] [PubMed]
- Misra, R.; Keane, P.A.; Hogg, H.D.J. How Should We Train Clinicians for Artificial Intelligence in Healthcare? Future Healthc. J. 2024, 11, 100162. [Google Scholar] [CrossRef]
- Koller, D.; Beam, A.; Manrai, A.; Ashley, E.; Liu, X.; Gichoya, J.; Holmes, C.; Zou, J.; Dagan, N.; Wong, T.Y.; et al. Why We Support and Encourage the Use of Large Language Models in NEJM AI Submissions. NEJM AI 2024, 1, AIe2300128. [Google Scholar] [CrossRef]
PET Radiotracer | 18F-Fluorodeoxyglucose (18F-FDG) | 18F-Fluoropivalate (18F-FPIA) | 18F-Fluoroethyltyrosine (18F-FET) | 18F-Fluciclovine (18F-FACBC) |
---|---|---|---|---|
Structural Analog | Glucose | Short Chain Fatty Acid | Amino Acid | Amino Acid |
Proposed Use | Identify tumors with high glucose metabolism | Target fatty acid metabolism in high-grade gliomas | Exploit increased amino acid uptake via LAT transporters | Exploit increased amino acid uptake via LAT transporters |
Clinical Significance | - Most used radiotracer for glycolysis detection - Widely researched | - Identify high-grade gliomas - Differentiate tumor grades - Monitor treatment effects | - Differentiate true progression from treatment-related changes | - Enhanced tumor-to-background contrast - Distinguish progression from radiation necrosis |
PET Radiotracer | Trial Code | Trial Title | Aims/Outcomes |
---|---|---|---|
18F-FPIA | NCT05801159 [104] | [18F]FPIA PET-CT in Glioblastoma Multiforme (GBM) (FAM-GBM) | - Using 18F-FPIA to assess the degree of fatty acid metabolism in GBM patients after treatment with chemoradiotherapy - Detecting treatment-related changes - Measuring 18F-FPIA uptake in tumors |
18F-FET | NCT01756352 [112] | FET-PET for Evaluation of Response of Recurrent GBM to Avastin | - Predicting progression-free survival using FET-PET in recurrent GBM patients receiving Avastin |
18F-FACBC | NCT05554302 [117] | Characterization of 18F-Fluciclovine PET Amino Acid Radiotracer in Resected Brain Metastasis (CONCORDANT) | - Assessing the extent of surgery in brain metastasis patients using 18F-Fluciclovine - Determining if 18F-Fluciclovine can detect residual tumors post-operatively beyond what MRI alone can identify - Earlier detection of recurrent tumors using 18F-Fluciclovine |
NCT06159335 [103] | 18F-FLUC-CEST PET/MR in Patients With Brain Mets | - Measuring 18F-Fluciclovine uptake in brain tumors with PET - Measuring cytosolic proteins in brain tumors using MR CEST | |
NCT04462419 [118] | 18F-fluciclovine PET/MRI Imaging for the Detection of Tumor Recurrence After Radiation Injury to the Brain | - Differentiating true tumor progression from radionecrosis in metastatic brain tumor patients who were previously treated with radiation therapy |
Biomarker | Method of Detection | Clinical Significance |
---|---|---|
1p/19q Co-deletion | FISH, PCR | Associated with better prognosis and survival in oligodendroglioma patients. |
IDH Isozyme Mutation | Sequencing, Detection of antibody against isozyme | Associated with better prognosis in specific brain tumors, especially diffuse gliomas. |
MGMT Methylation Status | MSP, qMSP, IHC, pyrosequencing | Indicates a better response to TMZ and radiation therapy, along with improved survival in GBM. |
TERT Promoter Mutation | Sequencing (Sanger/NGS) | Indicates worse prognosis in primary glioblastomas and oligodendrogliomas. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafanan, J.; Ghani, N.; Kazemeini, S.; Nadeem-Tariq, A.; Shih, R.; Vida, T.A. Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment. Int. J. Mol. Sci. 2025, 26, 917. https://doi.org/10.3390/ijms26030917
Rafanan J, Ghani N, Kazemeini S, Nadeem-Tariq A, Shih R, Vida TA. Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment. International Journal of Molecular Sciences. 2025; 26(3):917. https://doi.org/10.3390/ijms26030917
Chicago/Turabian StyleRafanan, John, Nabih Ghani, Sarah Kazemeini, Ahmed Nadeem-Tariq, Ryan Shih, and Thomas A. Vida. 2025. "Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment" International Journal of Molecular Sciences 26, no. 3: 917. https://doi.org/10.3390/ijms26030917
APA StyleRafanan, J., Ghani, N., Kazemeini, S., Nadeem-Tariq, A., Shih, R., & Vida, T. A. (2025). Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment. International Journal of Molecular Sciences, 26(3), 917. https://doi.org/10.3390/ijms26030917