Genetic and Physiological Characterization of the Pentose Phosphate Pathway in the Yeast Kluyveromyces lactis
Abstract
:1. Introduction
2. Results
2.1. Analyses of PPP
2.2. Epistasis Analyses Indicate a Physiological Control by Metabolic Intermediates
2.3. Proteome Analyses After Depletion of Transketolase or Transaldolase Indicate a Relation to Mitochondrial Functions
2.4. Heterologous Expression of TKL and TAL Genes from Yeasts and Humans
3. Discussion
4. Materials and Methods
4.1. Media, Strains, and Culture Conditions
4.2. Construction of Deletion Mutants, Integration of Heterologous Genes and Establishment of the tetOFF System
4.3. Growth Curves
4.4. Tetrad and Epistasis Analyses
4.5. Enzyme Assays
4.6. Proteome Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Barnett, J.A.; Payne, R.W.; Yarrow, D. Yeasts—Characteristics and Identification, 3rd ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Lagunas, R.; Dominguez, C.; Busturia, A.; Saez, M.J. Mechanisms of appearance of the Pasteur effect in Saccharomyces cerevisiae: Inactivation of sugar transport systems. J. Bacteriol. 1982, 152, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Royt, P.W.; MacQuillan, A.M. The Pasteur effect and catabolite repression in an oxidative yeast, Kluyveromyces lactis. Antonie Van Leeuwenhoek 1979, 45, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Goffrini, P.; Wesolowski-Louvel, M.; Ferrero, I. A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis. Mol. Gen. Genet. 1991, 228, 401–409. [Google Scholar] [CrossRef]
- Heinisch, J.; Kirchrath, L.; Liesen, T.; Vogelsang, K.; Hollenberg, C.P. Molecular genetics of phosphofructokinase in the yeast Kluyveromyces lactis. Mol. Microbiol. 1993, 8, 559–570. [Google Scholar] [CrossRef]
- Bertels, L.K.; Fernandez Murillo, L.; Heinisch, J.J. The pentose phosphate pathway in yeasts—More than a poor cousin of glycolysis. Biomolecules 2021, 11, 725. [Google Scholar] [CrossRef]
- Jacoby, J.; Hollenberg, C.P.; Heinisch, J.J. Transaldolase mutants in the yeast Kluyveromyces lactis provide evidence that glucose can be metabolized through the pentose phosphate pathway. Mol. Microbiol. 1993, 10, 867–876. [Google Scholar] [CrossRef]
- Saliola, M.; Scappucci, G.; De Maria, I.; Lodi, T.; Mancini, P.; Falcone, C. Deletion of the glucose-6-phosphate dehydrogenase gene KlZWF1 affects both fermentative and respiratory metabolism in Kluyveromyces lactis. Eukaryot. Cell 2007, 6, 19–27. [Google Scholar] [CrossRef]
- Heinisch, J.J.; Knuesting, J.; Scheibe, R. Investigation of heterologously expressed glucose-6-phosphate dehydrogenase genes in a yeast zwf1 deletion. Microorganisms 2020, 8, 546. [Google Scholar] [CrossRef]
- Stincone, A.; Prigione, A.; Cramer, T.; Wamelink, M.M.; Campbell, K.; Cheung, E.; Olin-Sandoval, V.; Gruning, N.M.; Kruger, A.; Tauqeer Alam, M.; et al. The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. Camb. Philos. Soc. 2015, 90, 927–963. [Google Scholar] [CrossRef]
- Jacoby, J.J.; Heinisch, J.J. Analysis of a transketolase gene from Kluyveromyces lactis reveals that the yeast enzymes are more related to transketolases of prokaryotic origins than to those of higher eukaryotes. Curr. Genet. 1997, 31, 15–21. [Google Scholar] [CrossRef]
- Gari, E.; Piedrafita, L.; Aldea, M.; Herrero, E. A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 1997, 13, 837–848. [Google Scholar] [CrossRef]
- Heinisch, J.J.; Buchwald, U.; Gottschlich, A.; Heppeler, N.; Rodicio, R. A tool kit for molecular genetics of Kluyveromyces lactis comprising a congenic strain series and a set of versatile vectors. FEMS Yeast Res. 2010, 10, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Lobo, Z.; Maitra, P.K. Pentose phosphate pathway mutants of yeast. Mol. Gen. Genet. 1982, 185, 367–368. [Google Scholar] [CrossRef] [PubMed]
- Clasquin, M.F.; Melamud, E.; Singer, A.; Gooding, J.R.; Xu, X.; Dong, A.; Cui, H.; Campagna, S.R.; Savchenko, A.; Yakunin, A.F.; et al. Riboneogenesis in yeast. Cell 2011, 145, 969–980. [Google Scholar] [CrossRef]
- Rodicio, R.; Schmitz, H.P.; Heinisch, J.J. Genetic and physiological characterization of fructose-1,6-bisphosphate aldolase and glyceraldehyde-3-phosphate dehydrogenase in the Crabtree-negative yeast Kluyveromyces lactis. Int. J. Mol. Sci. 2022, 23, 772. [Google Scholar] [CrossRef]
- Pecota, D.C.; Da Silva, N.A. Evaluation of the tetracycline promoter system for regulated gene expression in Kluyveromyces marxianus. Biotechnol. Bioeng. 2005, 92, 117–123. [Google Scholar] [CrossRef]
- Sprengel, R.; Hasan, M.T. Tetracycline-controlled genetic switches. Handb. Exp. Pharmacol. 2007, 178, 49–72. [Google Scholar]
- Thoms, S.; Debelyy, M.O.; Nau, K.; Meyer, H.E.; Erdmann, R. Lpx1p is a peroxisomal lipase required for normal peroxisome morphology. FEBS J. 2008, 275, 504–514. [Google Scholar] [CrossRef]
- Johnson, D.R.; Knoll, L.J.; Levin, D.E.; Gordon, J.I. Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: An assessment of their role in regulating protein N-myristoylation and cellular lipid metabolism. J. Cell Biol. 1994, 127, 751–762. [Google Scholar] [CrossRef]
- Stanway, C.A.; Gibbs, J.M.; Berardi, E. Expression of the FOX1 gene of Saccharomyces cerevisiae is regulated by carbon source, but not by the known glucose repression genes. Curr. Genet. 1995, 27, 404–408. [Google Scholar] [CrossRef]
- Cohen, G.; Fessl, F.; Traczyk, A.; Rytka, J.; Ruis, H. Isolation of the catalase A gene of Saccharomyces cerevisiae by complementation of the cta1 mutation. Mol. Gen. Genet. 1985, 200, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Hiltunen, J.K.; Wenzel, B.; Beyer, A.; Erdmann, R.; Fossa, A.; Kunau, W.H. Peroxisomal multifunctional beta-oxidation protein of Saccharomyces cerevisiae. Molecular analysis of the fox2 gene and gene product. J. Biol. Chem. 1992, 267, 6646–6653. [Google Scholar] [CrossRef] [PubMed]
- Steffan, J.S.; McAlister-Henn, L. Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase. J. Biol. Chem. 1992, 267, 24708–24715. [Google Scholar] [CrossRef]
- Igual, J.C.; Matallana, E.; Gonzalez-Bosch, C.; Franco, L.; Perez-Ortin, J.E. A new glucose-repressible gene identified from the analysis of chromatin structure in deletion mutants of yeast SUC2 locus. Yeast 1991, 7, 379–389. [Google Scholar] [CrossRef]
- Palmieri, L.; Lasorsa, F.M.; Iacobazzi, V.; Runswick, M.J.; Palmieri, F.; Walker, J.E. Identification of the mitochondrial carnitine carrier in Saccharomyces cerevisiae. FEBS Lett. 1999, 462, 472–476. [Google Scholar] [CrossRef]
- Elgersma, Y.; van Roermund, C.W.; Wanders, R.J.; Tabak, H.F. Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J. 1995, 14, 3472–3479. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Dippenaar, N.; Pretorius, I.S.; Bauer, F.F. Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: Three carnitine acetyltransferases are essential in a carnitine-dependent strain. Yeast 2001, 18, 585–595. [Google Scholar] [CrossRef]
- Schmalix, W.; Bandlow, W. The ethanol-inducible YAT1 gene from yeast encodes a presumptive mitochondrial outer carnitine acetyltransferase. J. Biol. Chem. 1993, 268, 27428–27439. [Google Scholar] [CrossRef]
- Epstein, C.B.; Waddle, J.A.; Hale, W.T.; Dave, V.; Thornton, J.; Macatee, T.L.; Garner, H.R.; Butow, R.A. Genome-wide responses to mitochondrial dysfunction. Mol. Biol. Cell 2001, 12, 297–308. [Google Scholar] [CrossRef]
- Luttik, M.A.; Kotter, P.; Salomons, F.A.; van der Klei, I.J.; van Dijken, J.P.; Pronk, J.T. The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J. Bacteriol. 2000, 182, 7007–7013. [Google Scholar] [CrossRef]
- Jia, Y.K.; Becam, A.M.; Herbert, C.J. The CIT3 gene of Saccharomyces cerevisiae encodes a second mitochondrial isoform of citrate synthase. Mol. Microbiol. 1997, 24, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Francois, J.M.; Thompson-Jaeger, S.; Skroch, J.; Zellenka, U.; Spevak, W.; Tatchell, K. GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae. EMBO J. 1992, 11, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.M.; Parker, R. The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J. Cell Biol. 2009, 185, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Garay-Arroyo, A.; Covarrubias, A.A. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 1999, 15, 879–892. [Google Scholar] [CrossRef]
- Singh, K.; Graf, B.; Linden, A.; Sautner, V.; Urlaub, H.; Tittmann, K.; Stark, H.; Chari, A. Discovery of a regulatory subunit of the yeast fatty acid synthase. Cell 2020, 180, 1130–1143.e20. [Google Scholar] [CrossRef]
- Biteau, B.; Labarre, J.; Toledano, M.B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 2003, 425, 980–984. [Google Scholar] [CrossRef]
- Dujon, B.; Sherman, D.; Fischer, G.; Durrens, P.; Casaregola, S.; Lafontaine, I.; De Montigny, J.; Marck, C.; Neuveglise, C.; Talla, E.; et al. Genome evolution in yeasts. Nature 2004, 430, 35–44. [Google Scholar] [CrossRef]
- Rodicio, R.; Heinisch, J.J. Yeast on the milky way: Genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 2013, 30, 165–177. [Google Scholar] [CrossRef]
- Saliola, M.; Tramonti, A.; Lanini, C.; Cialfi, S.; De Biase, D.; Falcone, C. Intracellular NADPH levels affect the oligomeric state of the glucose 6-phosphate dehydrogenase. Eukaryot. Cell 2012, 11, 1503–1511. [Google Scholar] [CrossRef]
- Miosga, T.; Zimmermann, F.K. Cloning and characterization of the first two genes of the non-oxidative part of the Saccharomyces cerevisiae pentose-phosphate pathway. Curr. Genet. 1996, 30, 404–409. [Google Scholar] [CrossRef]
- Kondo, H.; Nakamura, Y.; Dong, Y.X.; Nikawa, J.; Sueda, S. Pyridoxine biosynthesis in yeast: Participation of ribose 5-phosphate ketol-isomerase. Biochem. J. 2004, 379 Pt 1, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Schaaff-Gerstenschlager, I.; Mannhaupt, G.; Vetter, I.; Zimmermann, F.K.; Feldmann, H. TKL2, a second transketolase gene of Saccharomyces cerevisiae. Cloning, sequence and deletion analysis of the gene. Eur. J. Biochem. 1993, 217, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Schaaff-Gerstenschlager, I.; Zimmermann, F.K. Pentose-phosphate pathway in Saccharomyces cerevisiae: Analysis of deletion mutants for transketolase, transaldolase, and glucose 6-phosphate dehydrogenase. Curr. Genet. 1993, 24, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Boles, E.; Zimmermann, F.K. Induction of pyruvate decarboxylase in glycolysis mutants of Saccharomyces cerevisiae correlates with the concentrations of three-carbon glycolytic metabolites. Arch. Microbiol. 1993, 160, 324–328. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Q.; Khan, I.A.; Li, Y.; Wang, J.; Wang, J.; Liu, X.; Lin, F.; Lu, J. The methylcitrate cycle and its crosstalk with the glyoxylate cycle and tricarboxylic acid cycle in pathogenic fungi. Molecules 2023, 28, 6667. [Google Scholar] [CrossRef]
- Strijbis, K.; Distel, B. Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell 2010, 9, 1809–1815. [Google Scholar] [CrossRef]
- van Roermund, C.W.; Waterham, H.R.; Ijlst, L.; Wanders, R.J. Fatty acid metabolism in Saccharomyces cerevisiae. Cell. Mol. Life Sci. 2003, 60, 1838–1851. [Google Scholar] [CrossRef]
- Kolb, H.; Kempf, K.; Rohling, M.; Lenzen-Schulte, M.; Schloot, N.C.; Martin, S. Ketone bodies: From enemy to friend and guardian angel. BMC Med. 2021, 19, 313. [Google Scholar] [CrossRef]
- Gossing, M.; Smialowska, A.; Nielsen, J. Impact of forced fatty acid synthesis on metabolism and physiology of Saccharomyces cerevisiae. FEMS Yeast Res. 2018, 18, foy096. [Google Scholar] [CrossRef]
- Wanders, R.J.; Waterham, H.R. Biochemistry of mammalian peroxisomes revisited. Annu. Rev. Biochem. 2006, 75, 295–332. [Google Scholar] [CrossRef]
- Geldon, S.; Fernandez-Vizarra, E.; Tokatlidis, K. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Front. Cell Dev. Biol. 2021, 9, 720656. [Google Scholar] [CrossRef]
- Gonzalez Siso, M.I.; Cerdan, M.E. Kluyveromyces lactis: A suitable yeast model to study cellular defense mechanisms against hypoxia-induced oxidative stress. Oxid. Med. Cell Longev. 2012, 2012, 634674. [Google Scholar] [CrossRef] [PubMed]
- Backhaus, K.; Heilmann, C.J.; Sorgo, A.G.; Purschke, G.; de Koster, C.G.; Klis, F.M.; Heinisch, J.J. A systematic study of the cell wall composition of Kluyveromyces lactis. Yeast 2010, 27, 647–660. [Google Scholar] [CrossRef] [PubMed]
- Kirchrath, L.; Lorberg, A.; Schmitz, H.P.; Gengenbacher, U.; Heinisch, J.J. Comparative genetic and physiological studies of the MAP kinase Mpk1p from Kluyveromyces lactis and Saccharomyces cerevisiae. J. Mol. Biol. 2000, 300, 743–758. [Google Scholar] [CrossRef] [PubMed]
- Rothstein, R. Targeting, disruption, replacement, and allele rescue: Integrative DNA transformation in yeast. Methods Enzymol. 1991, 194, 281–301. [Google Scholar]
- Gueldener, U.; Heinisch, J.; Koehler, G.J.; Voss, D.; Hegemann, J.H. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002, 30, e23. [Google Scholar] [CrossRef]
- Heinisch, J.J. PFK2, ISP42, ERG2 and RAD14 are located on the right arm of chromosome XIII. Yeast 1993, 9, 1103–1105. [Google Scholar] [CrossRef]
- R Project. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2024. Available online: https://www.R-project.org/ (accessed on 2 February 2024).
- Zamenhoff, S. Preparation and assay of deoxyribonucleic acids from animal tissue. Methods Enzymol. 1957, 3, 696–704. [Google Scholar]
Functional Category/Protein | Protein Function | Ratio Tkl1 Depletion | Ratio Tal1 Depletion |
---|---|---|---|
Peroxisomal proteins (fatty acid and triacylglycerol degradation) | |||
Lpx1 | triacylglycerol lipase of peroxisomes [19] | 34.82 | - |
Faa2 | fatty acyl-CoA synthetase [20] | 19.81 | 43.11 |
Fox1 (Pox1) | fatty acyl-CoA oxidase [21] | 7.07 | 13.41 |
Cta1 | catalase A [22] | 5.98 | 9.01 |
Fox2 (Pox2) | 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase [23] | 5.86 | 37.61 |
Mdh3 | peroxisomal malate dehydrogenase [24] | 2.35 | 4.39 |
Fox3 (Pot1) | 3-ketoacyl-CoA thiolase [25] | - | 13.41 |
Carnitine shuttle | |||
Crc1 | carnitine transmembrane transporter [26] | 13.75 | 21.46 |
Cat2 | carnitine acetyl transferase (peroxisomes and mitochondria) [27] | 8.17 | 24.89 |
Yat2 | cytosolic carnitine acetyl transferase [28] | 4.18 | 5.40 |
Yat1 | carnitine acetyl transferase at the outer mitochondrial membrane [29] | 3.16 | 3.16 |
2-Methylcitrate pathway | |||
Pdh1 | 2-methylcitrate dehydratase [30] | 22.12 | 38.37 |
Icl2 | 2-methylisocitrate lyase [31] | 9.21 | 21.77 |
Cit3 | mitochondrial citrate synthase [32] | 4.01 | 3.66 |
Stress-induced proteins | |||
Gac1 | regulatory subunit of protein phosphatase [33] | - | 64.00 |
Rny1 | RNase; promotes apoptosis under stress [34] | 44.22 | - |
Gre1 | hydrophilin essential for rehydration [35] | - | 31.27 |
Tma17 | regulatory subunit of fatty acid synthase [36] | 5.00 | 4.81 |
Srx1 | sulfiredoxin, acts on thioredoxin peroxidase Tsa1 [37] | 3.27 | 4.98 |
Gre3 | aldose reductase involved in methylgyoxal metabolism [35] | 3.01 | 2.46 |
Strain | Relevant Genotype | mU/mg Protein |
---|---|---|
Transketolase | ||
CBS2359 | TKL1 | 269 ± 11 |
KBO23-2B | tkl1::kanMX leu2::LEU2-TKL1 | 241 ± 7 |
KBO22-4A | tkl1::kanMX leu2::LEU2-ScTKL1 | 136 ± 12 |
KBO24-9C | tkl1::kanMX leu2::LEU2-ScTKL2 | b.d. |
KBO25-2C | tkl1::kanMX leu2::LEU2-ScPFK2p-HsTKL1 | 75 ± 5 |
Transaldolase | ||
CBS2359 | TAL1 | 149 ± 4 |
KBO28-5B | tal1::kanMX leu2::LEU2-TAL1 | 130 ± 5 |
KBO27-2A | tal1::kanMX leu2::LEU2-ScTAL1 | 37 ± 1 |
KBO30-2A | tal1::kanMX leu2::LEU2-ScPFK2p-HsTAL1 | 22 ± 2 |
Kl453-13A | tal1::ScLEU2 | b.d. |
Strain | Genotype |
---|---|
Diploid strains | |
KHO70 | MATa/MATalpha ura3/ura3 leu2/leu2 his3::loxP/HIS3 ade2::loxP/ADE2 ku80::loxP/ku80::loxP |
KHO221 | as KHO70 but with tal1::ScLEU2/TAL1 |
KHO344 | MATa/MATalpha ura3/URA3 leu2/LEU2 his3::loxP/his3::loxP rpe1::SpHIS5/RPE1 rho5::kanMX/RHO5 |
KHO404 | as KHO70 but with gnd1::ScLEU2/GND1 |
KHO410 | as KHO70 but with rki1::kanMX/RKI1 |
KHO431 | as KHO70 but with shb17::ScLEU2/SHB17 |
KHO489 | MATa/MATalpha ura3/URA3 leu2/leu2 fba1::kanMX/FBA1 shb17::ScLEU2/SHB17 |
KHO494 | MATa/MATalpha ura3/URA3 leu2/LEU2 his3::loxP/his3::loxP zwf1::SpHIS5/ZWF1 ku80::loxP/KU80 |
KHO507 | MATa/MATalpha ura3/URA3 leu2/LEU2 his3::loxP/his3::loxP sol4::SpHIS5/SOL4 ku80::loxP/KU80 |
KHO526 | MATa/MATalpha ura3/ura3 leu2/leu2 his3::loxP/his3::loxP rki1::kanMX/RKI1 zwf1::SpHIS5/ZWF1 ku80::loxP/KU80 + pRKI1-URA3 |
KHO528 | MATa/MATalpha ura3/ura3 leu2/LEU2 his3::loxP/his3::loxP gnd1::kanMX/GND1 zwf1::SpHIS5/ZWF1 ku80::loxP/KU80 + pGND1-URA3 |
KHO554 | MATa/MATalpha ura3/URA3 leu2/leu2 leu2::LEU2-ScTAL1 tal1::kanMX/TAL1 |
KHO555 | MATa/MATalpha ura3/URA3 leu2/leu2 leu2::LEU2-ScTKL1 tkl1::kanMX/TKL1 ku80::loxP/KU80 |
KHO557 | MATa/MATalpha ura3/URA3 leu2/leu2 leu2::LEU2-TKL1 tkl1::kanMX/TKL1 ku80::loxP/KU80 |
KHO559 | MATa/MATalpha ura3/URA3 leu2/leu2 leu2::LEU2-TAL1 tal1::kanMX/TAL1 |
KHO561 | as KHO70 but with tkl1::ScLEU2/TKL1 |
KHO574 | MATa/MATalpha ura3/URA3 leu2/leu2 leu2::LEU2-HsTAL1 tal1::kanMX/TAL1 |
KHO577 | MATa/MATalpha ura3/URA3 leu2/leu2 leu2::LEU2-HsTKL1 tkl1::kanMX/TKL1 ku80::loxP/KU80 |
KHO579 | MATa/MATalpha ura3/URA3 leu2/leu2 leu2::LEU2-ScTKL2 tkl1::kanMX/TKL1 ku80::loxP/KU80 |
Kl1323 | as KHO70 but with tkl1::kanMX/TKL1 |
Kl1324 | as KHO70 but with tal1::kanMX/TAL1 |
Haploid strains | |
CBS2369 | Wild-type |
KBO22-4A | MATa ura3 his3::loxP leu2::LEU2-ScTKL1 tkl1::kanMX ku80::loxP |
KBO23-2B | MATa ura3 leu2::LEU2-KlTKL1 tkl1::kanMX ku80::loxP |
KBO24-9C | MATalpha his3::loxP leu2::LEU2-ScTKL2 tkl1::kanMX ku80::loxP |
KBO25-2C | MATa ura3 his3::loxP ade2::loxP leu2::LEU2-ScPFK2-HsTKL1 tkl1::kanMX ku80::loxP |
KBO27-2A | MATa ura3 leu2::LEU2-ScTAL1 Kltal1::kanMX |
KBO28-5B | MATa his3::loxP leu2::LEU2-KlTAL1 Kltal1::kanMX |
KBO30-2A | MATa leu2::LEU2-ScPFK2-HsTAL1 Kltal1::kanMX |
KHO69-8C | MATalpha ura3 leu2 his3::loxP ku80::loxP |
KHO239-2C | MATa ura3::tTA-SpHIS5 leu2 his3::loxP ade2::loxP lac4::loxP |
KHO382-1B | MATalpha his3::loxP ura3::tTA-SpHIS5 kanMX-tetOFFp::KlTKL1 |
KHO551-3B | MATa his3::loxP ura3::tTA-SpHIS5 kanMX-tetOFF-KlTAL1 |
Kl453-13A | MATa ura3 leu2 tal1::ScLEU2 ku80::loxP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertels, L.-K.; Walter, S.; Heinisch, J.J. Genetic and Physiological Characterization of the Pentose Phosphate Pathway in the Yeast Kluyveromyces lactis. Int. J. Mol. Sci. 2025, 26, 938. https://doi.org/10.3390/ijms26030938
Bertels L-K, Walter S, Heinisch JJ. Genetic and Physiological Characterization of the Pentose Phosphate Pathway in the Yeast Kluyveromyces lactis. International Journal of Molecular Sciences. 2025; 26(3):938. https://doi.org/10.3390/ijms26030938
Chicago/Turabian StyleBertels, Laura-Katharina, Stefan Walter, and Jürgen J. Heinisch. 2025. "Genetic and Physiological Characterization of the Pentose Phosphate Pathway in the Yeast Kluyveromyces lactis" International Journal of Molecular Sciences 26, no. 3: 938. https://doi.org/10.3390/ijms26030938
APA StyleBertels, L.-K., Walter, S., & Heinisch, J. J. (2025). Genetic and Physiological Characterization of the Pentose Phosphate Pathway in the Yeast Kluyveromyces lactis. International Journal of Molecular Sciences, 26(3), 938. https://doi.org/10.3390/ijms26030938