Heterogeneous Activation of NaClO by Nano-CoMn2O4 Spinel for Methylene Blue Decolorization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of CoMn2O4
2.2. Catalytic Performance of CoMn2O4
2.3. Effect of Parameters
2.4. Mechanism Analysis
2.5. Proposed MB Decolorization Pathway
2.6. The Reusability of CoMn2O4
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of CoMn2O4
3.3. Experimental Procedures
3.4. Characterization
3.5. Analytic Methods
3.6. Repeat Discoloration Experiment Procedures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reoyo-Prats, B.; Sellier, A.; Khaska, S.; Le Gal, L.C.; Weiss, K.; Goetz, V.; Plantard, G. Continuous degradation of micropollutants in real world treated wastewaters by photooxidation in dynamic conditions. Water Res. 2022, 221, 118777. [Google Scholar]
- Jiaqi, B.; Zhiwei, D.; Hui, L.; Tianhao, L.; Yanjing, Y.; Shian, Z. Bimetallic modified halloysite particle electrode enhanced electrocatalytic oxidation for the degradation of sulfanilamide. J. Environ. Manag. 2022, 312, 114975. [Google Scholar]
- Bingkun, H.; Zelin, W.; Hongyu, Z.; Jiayi, L.; Chenying, Z.; Zhaokun, X.; Zhicheng, P.; Gang, Y.; Bo, L. Recent advances in single-atom catalysts for advanced oxidation processes in water purification. J. Hazard. Mater. 2021, 412, 125253. [Google Scholar]
- Li, W.; Guo, H.; Wang, C.; Zhang, Y.; Cheng, X.; Wang, J.; Yang, B.; Du, E. ROS reevaluation for degradation of 4-chloro-3, 5-dimethylphenol (PCMX) by UV and UV/persulfate processes in the water: Kinetics, mechanism, DFT studies and toxicity evolution. Chem. Eng. J. 2020, 390, 124610. [Google Scholar] [CrossRef]
- Lin, H.; Gao, W.; Meng, F.; Liao, B.-Q.; Leung, K.-T.; Zhao, L.; Chen, J.; Hong, H. Membrane bioreactors for industrial wastewater treatment: A critical review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 677–740. [Google Scholar] [CrossRef]
- Miao, W.; Liu, Y.; Wang, D.; Du, N.; Ye, Z.; Hou, Y.; Mao, S.; Ostrikov, K.K. The role of Fe-Nx single-atom catalytic sites in peroxymonosulfate activation: Formation of surface-activated complex and non-radical pathways. Chem. Eng. J. 2021, 423, 130250. [Google Scholar] [CrossRef]
- Priyadarshini, M.; Das, I.; Ghangrekar, M.M.; Blaney, L. Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. J. Environ. Manag. 2022, 316, 115295. [Google Scholar] [CrossRef]
- Abd Manan, T.S.B.; Khan, T.; Sivapalan, S.; Jusoh, H.; Sapari, N.; Sarwono, A.; Ramli, R.M.; Harimurti, S.; Beddu, S.; Sadon, S.N. Application of response surface methodology for the optimization of polycyclic aromatic hydrocarbons degradation from potable water using photo-Fenton oxidation process. Sci. Total Environ. 2019, 665, 196–212. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, H.; He, Y.; Huang, B.; Zhou, C.; Yao, G.; Lai, B. Critical review of reductant-enhanced peroxide activation processes: Trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions. Appl. Catal. B 2021, 286, 119900. [Google Scholar] [CrossRef]
- Wang, F.; Xu, J.; Wang, Z.; Lou, Y.; Pan, C.; Zhu, Y. Unprecedentedly efficient mineralization performance of photocatalysis-self-Fenton system towards organic pollutants over oxygen-doped porous g-C3N4 nanosheets. Appl. Catal. B 2022, 312, 121438. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, J.; Gao, B.; Hao, J. Ozone direct oxidation pretreatment and catalytic oxidation post-treatment coupled with ABMBR for landfill leachate treatment. Sci. Total Environ. 2021, 794, 148557. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guo, W.; Liu, B.; Wu, Q.; Luo, H.; Zhao, Q.; Si, Q.; Sseguya, F.; Ren, N. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism. Water Res. 2019, 160, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Zhi, S.; Tian, L.; Li, N.; Zhang, K. A novel system of MnO2-mullite-cordierite composite particle with NaClO for Methylene blue decolorization. J. Environ. Manag. 2018, 213, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Hu, J. Degradation of carbamazepine by UVA/WO3/hypochlorite process: Kinetic modelling, water matrix effects, and density functional theory calculations. Environ. Res. 2021, 201, 111569. [Google Scholar] [CrossRef]
- Subhan, S.; Rahman, A.U.; Yaseen, M.; Rashid, H.U.; Ishaq, M.; Sahibzada, M.; Tong, Z. Ultra-fast and highly efficient catalytic oxidative desulfurization of dibenzothiophene at ambient temperature over low Mn loaded Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts using NaClO as oxidant. Fuel 2019, 237, 793–805. [Google Scholar] [CrossRef]
- Kirihara, M.; Okada, T.; Sugiyama, Y.; Akiyoshi, M.; Matsunaga, T.; Kimura, Y. Sodium hypochlorite pentahydrate crystals (NaOCl 5H2O): A convenient and environmentally benign oxidant for organic synthesis. Org. Process Res. Dev. 2017, 21, 1925–1937. [Google Scholar] [CrossRef]
- Lau, S.S.; Abraham, S.M.; Roberts, A.L. Chlorination revisited: Does Cl–serve as a catalyst in the chlorination of phenols? Environ. Sci. Technol. 2016, 50, 13291–13298. [Google Scholar] [CrossRef]
- Pan, X.; Wei, J.; Zou, M.; Chen, J.; Qu, R.; Wang, Z. Products distribution and contribution of (de) chlorination, hydroxylation and coupling reactions to 2, 4-dichlorophenol removal in seven oxidation systems. Water Res. 2021, 194, 116916. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Liao, Y.; Wang, Q.; Yu, J. Studies on the degradation of trace phenol and indole odorants by chlorine and permanganate in drinking water treatment. Chemosphere 2022, 286, 131551. [Google Scholar] [CrossRef]
- Sedlak, D.L.; von Gunten, U. The chlorine dilemma. Science 2011, 331, 42–43. [Google Scholar] [CrossRef]
- He, T.; Deng, L.; Lai, B.; Xu, S.; Wang, L.; Zhang, Y.; Zheng, D.; Hu, C. The performance of Fe2+/ClO− system in advanced removal of fulvic acid under mild conditions. J. Environ. Chem. Eng. 2022, 10, 107515. [Google Scholar] [CrossRef]
- Li, H.; Lin, M.; Xiao, T.; Long, J.; Liu, F.; Li, Y.; Liu, Y.; Liao, D.; Chen, Z.; Zhang, P. Highly efficient removal of thallium (I) from wastewater via hypochlorite catalytic oxidation coupled with adsorption by hydrochar coated nickel ferrite composite. J. Hazard. Mater. 2020, 388, 122016. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-W.; Lee, E.-H.; Chung, D.-Y.; Moon, J.-K.; Shin, H.-S.; Kim, J.-S.; Shin, D.-W.J.C.E.J. Manufacture characteristics of metal oxide–hydroxides for the catalytic decomposition of a sodium hypochlorite solution. Chem. Eng. J. 2012, 200, 52–58. [Google Scholar] [CrossRef]
- Li, G.; Wang, N.; Liu, B.; Zhang, X. Decolorization of azo dye Orange II by ferrate (VI)–hypochlorite liquid mixture, potassium ferrate (VI) and potassium permanganate. Desalination 2009, 249, 936–941. [Google Scholar] [CrossRef]
- Fu, J.; Xu, Z.; Li, Q.-S.; Chen, S.; An, S.-Q.; Zeng, Q.-F.; Zhu, H.-L. Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite. J. Environ. Sci. 2010, 22, 512–518. [Google Scholar] [CrossRef]
- Xiong, S.; Huang, N.; Peng, Y.; Chen, J.; Li, J. Balance of activation and ring-breaking for toluene oxidation over CuO-MnOx bimetallic oxides. J. Hazard. Mater. 2021, 415, 125637. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Yang, S.; Liang, H.; Men, Y. Boosting total oxidation of acetone over spinel MCo2O4 (M = Co, Ni, Cu) hollow mesoporous spheres by cation-substituting effect. J. Colloid Interface Sci. 2019, 539, 65–75. [Google Scholar] [CrossRef]
- Shi, P.; Su, R.; Zhu, S.; Zhu, M.; Li, D.; Xu, S. Supported cobalt oxide on graphene oxide: Highly efficient catalysts for the removal of Orange II from water. J. Hazard. Mater. 2012, 229, 331–339. [Google Scholar] [CrossRef]
- Li, K.; Chen, C.; Zhang, H.; Hu, X.; Sun, T.; Jia, J. Effects of phase structure of MnO2 and morphology of δ-MnO2 on toluene catalytic oxidation. Appl. Surf. Sci. 2019, 496, 143662. [Google Scholar] [CrossRef]
- Wang, F.; Dai, H.; Deng, J.; Bai, G.; Ji, K.; Liu, Y. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: Highly effective catalysts for the removal of toluene. Environ. Sci. Technol. 2012, 46, 4034–4041. [Google Scholar] [CrossRef]
- Deng, J.; Ya, C.; Ge, Y.; Cheng, Y.; Chen, Y.; Xu, M.; Wang, H. Activation of peroxymonosulfate by metal (Fe, Mn, Cu and Ni) doping ordered mesoporous Co3O4 for the degradation of enrofloxacin. RSC Adv. 2018, 8, 2338–2349. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Gou, L.; Cheng, F.; Zhang, M.; Guo, M. An efficient and low-cost magnetic heterogenous Fenton-like catalyst for degrading antibiotics in wastewater: Mechanism, pathway and stability. J. Environ. Manag. 2022, 302, 114119. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-B.; Huang, C.; Doong, R.-a.; Wang, M.-H.; Chen, C.-W.; Dong, C.-D. Manipulating the morphology of 3D flower-like CoMn2O4 bimetallic catalyst for enhancing the activation of peroxymonosulfate toward the degradation of selected persistent pharmaceuticals in water. Chem. Eng. J. 2022, 436, 135244. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Wan, J.; Wang, L. Facile synthesis of carbon-doped CoMn2O4/Mn3O4 composite catalyst to activate peroxymonosulfate for ciprofloxacin degradation. Sep. Purif. Technol. 2022, 287, 120576. [Google Scholar] [CrossRef]
- Yang, X.; Wei, G.; Wu, P.; Liu, P.; Liang, X.; Chu, W. Novel halloysite nanotube-based ultrafine CoMn2O4 catalyst for efficient degradation of pharmaceuticals through peroxymonosulfate activation. Appl. Surf. Sci. 2022, 588, 152899. [Google Scholar] [CrossRef]
- Din, M.I.; Khalid, R.; Najeeb, J.; Hussain, Z. Fundamentals and photocatalysis of methylene blue dye using various nanocatalytic assemblies-a critical review. J. Cleaner Prod. 2021, 298, 126567. [Google Scholar] [CrossRef]
- Aragaw, T.A. Potential and prospects of reductases in azo dye degradation: A minireview. Microbe 2024, 4, 100162. [Google Scholar] [CrossRef]
- Hien, S.A.; Trellu, C.; Oturan, N.; Assémian, A.S.; Briton, B.G.H.; Drogui, P.; Adouby, K.; Oturan, M.A. Comparison of homogeneous and heterogeneous electrochemical advanced oxidation processes for treatment of textile industry wastewater. J. Hazard. Mater. 2022, 437, 129326. [Google Scholar] [CrossRef]
- Goswami, D.; Mukherjee, J.; Mondal, C.; Bhunia, B. Bioremediation of azo dye: A review on strategies, toxicity assessment, mechanisms, bottlenecks and prospects. Sci. Total Environ. 2024, 954, 176426. [Google Scholar] [CrossRef]
- Misran, E.; Supardan, M.D.; Iryani, D.A.; Pramananda, V.; Sihombing, A.F.; Sitorus, D.V. Ultrasonic assisted adsorption of methylene blue using blood clam shell as a low-cost adsorbent. Results Eng. 2024, 23, 102715. [Google Scholar] [CrossRef]
- El-Sharkawy, E.; Soliman, A.Y.; Al-Amer, K.M. Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation. J. Colloid Interface Sci. 2007, 310, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Bruning, H.; Yntema, D.; Mayer, M.; Rijnaarts, H. Homogeneous photosensitized degradation of pharmaceuticals by using red light LED as light source and methylene blue as photosensitizer. Chem. Eng. J. 2017, 316, 872–881. [Google Scholar] [CrossRef]
- Lang, L.; Xu, Z. In situ synthesis of porous Fe3O4/C microbelts and their enhanced electrochemical performance for lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 1698–1703. [Google Scholar] [CrossRef]
- Taghavimoghaddam, J.; Knowles, G.P.; Chaffee, A.L. Preparation and characterization of mesoporous silica supported cobalt oxide as a catalyst for the oxidation of cyclohexanol. J. Mol. Catal. A Chem. 2012, 358, 79–88. [Google Scholar] [CrossRef]
- Khan, A.; Zhang, K.; Taraqqi-A-Kamal, A.; Wang, X.; Chen, Y.; Zhang, Y. Degradation of antibiotics in aqueous media using manganese nanocatalyst-activated peroxymonosulfate. J. Colloid Interface Sci. 2021, 599, 805–818. [Google Scholar] [CrossRef]
- Yun, W.-C.; Lin, K.-Y.A.; Tong, W.-C.; Lin, Y.-F.; Du, Y. Enhanced degradation of paracetamol in water using sulfate radical-based advanced oxidation processes catalyzed by 3-dimensional Co3O4 nanoflower. Chem. Eng. J. 2019, 373, 1329–1337. [Google Scholar] [CrossRef]
- Cai, F.; Sun, C.; Sun, Z.; Lai, Y.; Ding, H. Sulfur-functionalized CoMn2O4 as a Fenton-like catalyst for the efficient rhodamine B degradation. Appl. Surf. Sci. 2023, 623, 157044. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Li, Y.; Guo, M. Novel CoMn2O4 as a highly efficient catalyst for the oxidation of o-, m-, p-xylene: Preparation and kinetic study. Mol. Catal. 2022, 528, 112482. [Google Scholar] [CrossRef]
- Deborde, M.; Von Gunten, U. Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review. Water Res. 2008, 42, 13–51. [Google Scholar] [CrossRef]
- Li, C.-X.; Chen, C.-B.; Lu, J.-Y.; Cui, S.; Li, J.; Liu, H.-Q.; Li, W.-W.; Zhang, F. Metal organic framework-derived CoMn2O4 catalyst for heterogeneous activation of peroxymonosulfate and sulfanilamide degradation. Chem. Eng. J. 2018, 337, 101–109. [Google Scholar] [CrossRef]
- Li, L.; Lai, C.; Huang, F.; Cheng, M.; Zeng, G.; Huang, D.; Li, B.; Liu, S.; Zhang, M.; Qin, L. Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: Synergism of bio-char and Fe–Mn binary oxides. Water Res. 2019, 160, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zheng, Y.; Zuo, J.; Feng, X.; Wang, X.; Zhang, T.; Zhang, K.; Jiang, L. Insights into the high performance of Mn-Co oxides derived from metal-organic frameworks for total toluene oxidation. J. Hazard. Mater. 2018, 349, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chen, S.; Liu, Z.; Yang, C.; Chen, W. Catalytic oxidation of methylene blue by using Ni-Fe bimetallic catalyst/NaClO system: Performance, kinetics, mechanism, and DFT calculations. Sep. Purif. Technol. 2023, 306, 122612. [Google Scholar] [CrossRef]
- Wu, Q.; Siddique, M.S.; Yu, W. Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: Kinetics and mechanistic studies. J. Hazard. Mater. 2021, 401, 123261. [Google Scholar] [CrossRef]
- Woodward, R.T.; Fam, D.W.; Anthony, D.B.; Hong, J.; McDonald, T.O.; Petit, C.; Shaffer, M.S.; Bismarck, A. Hierarchically porous carbon foams from pickering high internal phase emulsions. Carbon 2016, 101, 253–260. [Google Scholar] [CrossRef]
- Kihal, I.; Douafer, S.; Lahmar, H.; Rekhila, G.; Hcini, S.; Trari, M.; Benamira, M. CoMn2O4: A new spinel photocatalyst for hydrogen photo-generation under visible light irradiation. J. Photochem. Photobiol. A 2024, 446, 115170. [Google Scholar] [CrossRef]
- Li, Z.; He, H.; Cao, H.; Sun, S.; Diao, W.; Gao, D.; Lu, P.; Zhang, S.; Guo, Z.; Li, M. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B 2019, 240, 112–121. [Google Scholar] [CrossRef]
- Zhang, C.-L.; Liu, J.-T.; Li, H.; Qin, L.; Cao, F.-H.; Zhang, W. The controlled synthesis of Fe3C/Co/N-doped hierarchically structured carbon nanotubes for enhanced electrocatalysis. Appl. Catal. B 2020, 261, 118224. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, D.; Li, S.; Zhang, L.; Zheng, G.; Guo, L. Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation. Chem. Eng. J. 2019, 357, 258–268. [Google Scholar] [CrossRef]
- Zhou, A.; Guo, X.; Zhong, S.; Kang, Q.; Chen, M.; Jin, D.; Fan, M.; Zhou, R.; Ma, T. Three birds, one-stone strategy for synthesis of hierarchically arrayed defective MnCo2O4@NF catalyst for photothermal preferential oxidation of CO in H2-rich streams. Chem. Eng. J. 2023, 471, 144835. [Google Scholar] [CrossRef]
- Zhao, Q.; Zheng, Y.; Song, C.; Liu, Q.; Ji, N.; Ma, D.; Lu, X. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation. Appl. Catal. B 2020, 265, 118552. [Google Scholar] [CrossRef]
- Fan, G.; Yao, L.; Wang, Y.; Peng, X.; Xu, J.; Pang, S.; Xu, K.-q.; Du, B.; Chen, J.; Hong, Z. The dual pathway mechanisms of peroxyacetic acid activation by CoMn2O4 spinel for efficient levofloxacin degradation. J. Environ. Chem. Eng. 2023, 11, 109774. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, S.; Feng, R.; Ma, Z.; Gao, Y.; Xing, S. Comparative study for low-temperature catalytic oxidation of o-xylene over doped OMS-2 catalysts: Role of Ag and Cu. Mol. Catal. 2017, 442, 164–172. [Google Scholar] [CrossRef]
- Li, J.; Shi, Q.; Zhao, R.; Liu, Y.; Liu, P.; Liu, L. Facile synthesis of CoMn2O4 spinel catalyst as peroxymonosulfate activator for efficient rhodamine B degradation. Mater. Lett. 2023, 351, 135108. [Google Scholar] [CrossRef]
- Li, A.; Song, H.; Meng, H.; Lu, Y.; Li, C. Ultrafast desulfurization of diesel oil with ionic liquid based PMoO catalysts and recyclable NaClO oxidant. Chem. Eng. J. 2020, 380, 122453. [Google Scholar] [CrossRef]
- Jaafar, A.; Boussaoud, A. Effects of some Advanced Oxidation Processes and Chlorine on disappearance of Methylene Blue. Int. J. Innov. Appl. Stud. 2015, 10, 509–515. [Google Scholar]
- Zhang, Y.; Rong, C.; Song, Y.; Wang, Y.; Pei, J.; Tang, X.; Zhang, R.; Yu, K. Oxidation of the antibacterial agent norfloxacin during sodium hypochlorite disinfection of marine culture water. Chemosphere 2017, 182, 245–254. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Z.; Tian, P.; Sheng, Y.; Xu, J.; Han, Y.-F. Oxidative degradation of nitrobenzene by a Fenton-like reaction with Fe-Cu bimetallic catalysts. Appl. Catal. B 2019, 244, 1–10. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J. Hazard. Mater. 2011, 186, 256–264. [Google Scholar] [CrossRef]
- Guo, Y.; Long, J.; Huang, J.; Yu, G.; Wang, Y. Can the commonly used quenching method really evaluate the role of reactive oxygen species in pollutant abatement during catalytic ozonation? Water Res. 2022, 215, 118275. [Google Scholar] [CrossRef]
- Hua, Z.; Guo, K.; Kong, X.; Lin, S.; Wu, Z.; Wang, L.; Huang, H.; Fang, J. PPCP degradation and DBP formation in the solar/free chlorine system: Effects of pH and dissolved oxygen. Water Res. 2019, 150, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wei, G.; Wu, P.; Liu, P.; Liang, X.; Chu, W. Controlling oxygen vacancies of CoMn2O4 by loading on planar and tubular clay minerals and its application for boosted PMS activation. J. Hazard. Mater. 2022, 436, 129060. [Google Scholar] [CrossRef]
- Huang, Q.; Meng, G.; Zhang, X.; Fang, Z.; Yan, Y.; Liao, B.; Zhang, L.; Chen, P. Natural manganese sand activates sodium hypochlorite to enhance ionic organic contaminants removal: Optimization, modeling, and mechanism. Sci. Total Environ. 2023, 866, 161310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Nie, Y.; Hu, C.; Hu, X. Decolorization of methylene blue in layered manganese oxide suspension with H2O2. J. Hazard. Mater. 2011, 190, 780–785. [Google Scholar] [CrossRef]
- Zhou, G.; Lan, H.; Wang, H.; Xie, H.; Zhang, G.; Zheng, X. Catalytic combustion of PVOCs on MnOx catalysts. J. Mol. Catal. A Chem. 2014, 393, 279–288. [Google Scholar] [CrossRef]
- Kumar, L.; Verma, N.; Tomar, R.; Sehrawat, H.; Kumar, R.; Chandra, R. Development of bioactive 2-substituted benzimidazole derivatives using an MnO x/HT nanocomposite catalyst. Dalton Trans. 2023, 52, 3006–3015. [Google Scholar] [CrossRef]
- Lin, J.; Zong, R.; Zhou, M.; Zhu, Y. Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array. Appl. Catal. B 2009, 89, 425–431. [Google Scholar] [CrossRef]
- Chai, Y.; Cai, Y.; Guan, Y.; Ai, H.; Yang, Z. Enhanced degradation of organic dye in aqueous solutions by bicarbonate-activated hydrogen peroxide with a rosin-based copper catalyst. J. Water Process Eng. 2024, 66, 106035. [Google Scholar] [CrossRef]
- Zhang, W.; Tay, H.L.; Lim, S.S.; Wang, Y.; Zhong, Z.; Xu, R. Supported cobalt oxide on MgO: Highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl. Catal. B 2010, 95, 93–99. [Google Scholar] [CrossRef]
- Dong, Q.; Chen, Y.; Wang, L.; Ai, S.; Ding, H. Cu-modified alkalinized g-C3N4 as photocatalytically assisted heterogeneous Fenton-like catalyst. Appl. Surf. Sci. 2017, 426, 1133–1140. [Google Scholar] [CrossRef]
- Queirós, S.; Morais, V.; Rodrigues, C.S.; Maldonado-Hódar, F.; Madeira, L.M. Heterogeneous Fenton’s oxidation using Fe/ZSM-5 as catalyst in a continuous stirred tank reactor. Sep. Purif. Technol. 2015, 141, 235–245. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, K.; Cui, M.; Liu, T.; Chen, X.; Chen, Y.; Nie, X.; Xu, Z.; Li, C.-X. Insight into the degradation of tetracycline hydrochloride by non-radical-dominated peroxymonosulfate activation with hollow shell-core Co@NC: Role of cobalt species. Sep. Purif. Technol. 2022, 289, 120662. [Google Scholar] [CrossRef]
- Lyu, Z.; Xu, M.; Wang, J.; Li, A.; Corvini, P.F.-X. Hierarchical nano-vesicles with bimetal-encapsulated for peroxymonosulfate activation: Singlet oxygen-dominated oxidation process. Chem. Eng. J. 2022, 433, 133581. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Yan, Q. Peroxymonosulfate activation by algal carbocatalyst for organic dye oxidation: Insights into experimental and theoretical. Sci. Total Environ. 2022, 816, 151611. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Han, G.; Bai, J.; Wu, X. Heterogeneous Activation of NaClO by Nano-CoMn2O4 Spinel for Methylene Blue Decolorization. Int. J. Mol. Sci. 2025, 26, 940. https://doi.org/10.3390/ijms26030940
Zhao T, Han G, Bai J, Wu X. Heterogeneous Activation of NaClO by Nano-CoMn2O4 Spinel for Methylene Blue Decolorization. International Journal of Molecular Sciences. 2025; 26(3):940. https://doi.org/10.3390/ijms26030940
Chicago/Turabian StyleZhao, Tongwen, Gang Han, Juan Bai, and Xiaogang Wu. 2025. "Heterogeneous Activation of NaClO by Nano-CoMn2O4 Spinel for Methylene Blue Decolorization" International Journal of Molecular Sciences 26, no. 3: 940. https://doi.org/10.3390/ijms26030940
APA StyleZhao, T., Han, G., Bai, J., & Wu, X. (2025). Heterogeneous Activation of NaClO by Nano-CoMn2O4 Spinel for Methylene Blue Decolorization. International Journal of Molecular Sciences, 26(3), 940. https://doi.org/10.3390/ijms26030940