Probiotic Spores of Shouchella clausii SF174 and Displayed Bromelain Show Beneficial Additive Potential
Abstract
:1. Introduction
2. Results
2.1. Probiotic Spores of S. clausii SF174 Efficiently Adsorb Bromelain
2.2. Spore-Adsorbed Bromelain Is Stable at Simulated Gastric Conditions and Released at Simulated Intestinal Conditions
2.3. Spore-Adsorbed Bromelain Is Released in an Active Form upon Spore Germination
2.4. The Antioxidant Activity of SF174 Spores Is Maintained upon Bromelain Adsorption
2.5. SF174 Spores Efficiently Adsorb Food-Grade Bromelain
3. Discussion
4. Materials and Methods
4.1. Induction of Sporulation and Spore Purification
4.2. Bromelain Adsorption
4.3. Protease Activity of Bromelain
4.4. Hydrogen Peroxide Scavenging Assay
4.5. DPPH Assay
4.6. Gastric Condition
4.7. Intestinal Conditions
4.8. Induction of Germination
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hungin, A.P.S.; Mitchell, C.R.; Whorwell, P.; Mulligan, C.; Cole, O.; Agreus, L.; Fracasso, P.; Lionis, C.; Mendive, J.; Philippart de Foy, J.-M.; et al. for the European Society for Primary Care Gastroenterology. Systematic review: Probiotics in the management of lower gastrointestinal symptoms—An updated evidence-based international consensus. Aliment. Pharmacol. Ther. 2018, 47, 1054–1070. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Costa, F.F.; Dias, T.G.; Mendes, P.M.; Viana, J.P.M.; Madeira, E.B.; Pereira, A.L.F.; Ferreira, A.G.N.; Neto, M.S.; Dutra, R.P.; Reis, A.S.; et al. Antioxidant and antimicrobial properties of probiotics: Insights from in vitro assays. Probiotics Antimicrob. Proteins 2024. [Google Scholar] [CrossRef] [PubMed]
- Szajewska, H.; Scott, K.P.; de Meij, T.; Forslund-Startceva, S.K.; Knight, R.; Koren, O.; Little, P.; Johnston, B.C.; Łukasik, J.; Suez, J.; et al. Antibiotic-perturbed microbiota and the role of probiotics. Nat. Rev. Gastroenterol. Hepatol. 2024. [Google Scholar] [CrossRef]
- Wang, D.; Xu, R.; Liu, S.; Sun, X.; Zhang, T.; Shi, L.; Wang, Y. Enhancing the application of probiotics in probiotic food products from the perspective of improving stress resistance by regulating cell physiological function: A review. Food Res. Int. 2025, 199, 115369. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Wu, F.; Zhou, D.; Tan, B.; Chen, T. Commercial probiotic products in public health: Current status and potential limitations. Crit. Rev. Food Sci. Nutr. 2024, 64, 6455–6476. [Google Scholar] [CrossRef]
- Mazzantini, D.; Calvigioni, M.; Celandroni, F.; Lupetti, A.; Ghelardi, E. Spotlight on the compositional quality of probiotic formulations marketed worldwide. Front. Microbiol. 2021, 12, 693973. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Polk, D.B. Probiotics and immune health. Curr. Opin. Gastroenterol. 2011, 27, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Cutting, S.M. Bacillus probiotics. Food Microbiol. 2011, 28, 214–220. [Google Scholar] [CrossRef]
- Duc, L.H.; Hong, H.A.; Barbosa, T.M.; Henriques, A.O.; Cutting, S.M. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 2004, 70, 2161–2171. [Google Scholar] [CrossRef]
- Kharwar, A.; Bazaz, M.R.; Dandekar, M.P. Quantitative and qualitative characterization of commercially available oral suspension of probiotic products containing Bacillus clausii spores. BMC Microbiol. 2022, 22, 217. [Google Scholar] [CrossRef] [PubMed]
- McKenney, P.T.; Driks, A.; Eichenberger, P. The Bacillus subtilis endospore: Assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 2013, 11, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Christie, G.; Setlow, P. Bacillus spore germination: Knowns; unknowns and what we need to learn. Cell Signal. 2020, 74, 109729. [Google Scholar] [CrossRef]
- Casula, G.; Cutting, S.M. Bacillus probiotics: Spore germination in the gastrointestinal tract. Appl. Environ. Microbiol. 2002, 68, 2344–2352. [Google Scholar] [CrossRef]
- Han, Z.-Y.; Fu, Z.-J.; Wang, Y.-Z.; Zhang, C.; Chen, Q.-W.; An, J.-X.; Zhang, X.-Z. Probiotics functionalized with a gallium-polyphenol network modulate the intratumor microbiota and promote anti-tumor immune response in pancreatic cancer. Nat. Comm. 2024, 15, 7096. [Google Scholar] [CrossRef]
- Yang, M.; Hutchinson, N.; Ye, N.; Timek, H.; Jennings, M.; Yin, J.; Guan, M.; Wang, Z.; Chen, P.; Yang, S.; et al. Engineered Bacillus subtilis as oral probiotics to enhance clearance of blood lactate. ACS Synth. Biol. 2025, 14, 101–112. [Google Scholar] [CrossRef]
- Liang, J.; Bai, M.; Bi, Y.; Jian, X.; Wang, S.; Jiang, S.; Zhao, Y.; Ma, W.; Yin, S.; Zhang, W. Heydrickxia coagulans spore-based nanoparticle generator for improved oral insulin delivery and hypoglycemic therapy. J. Control Release 2025, 378, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Ricca, E.; Baccigalupi, L.; Isticato, R. Spore-adsorption: Mechanism and Application of a non-recombinant display system. Biotechnol. Adv. 2021, 47, 107693. [Google Scholar] [CrossRef]
- Sirec, T.; Strazzulli, A.; Isticato, R.; De Felice, M.; Moracci, M.; Ricca, E. Adsorption of beta-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutant spores of Bacillus subtilis. Microb. Cell Factories 2012, 11, 100. [Google Scholar] [CrossRef] [PubMed]
- National Center for Complementary and Integrative Health; US National Institutes of Health. Bromelain. 2016. Available online: https://www.nccih.nih.gov/health/bromelain (accessed on 1 December 2024).
- Gwozdzinski, L.; Bernasinska-Slomczewska, J.; Wiktorowska-Owczarek, A.; Kowalczyk, E.; Pieniazek, A. Diosmin and bromelain stimulate glutathione and total thiols production in red blood cells. Molecules 2023, 28, 2291. [Google Scholar] [CrossRef] [PubMed]
- Ferah Okkay, I.; Okkay, U.; Bayram, C.; Cicek, B.; Sezen, S.; Aydin, I.C.; Mendil, A.S.; Hacimuftuoglu, A. Bromelain protects against cisplatin-induced ocular toxicity through mitigating oxidative stress and inflammation. Drug Chem. Toxicol. 2023, 46, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Pezzani, R.; Jimenez-Garcia, M.; Capo, X.; Sonmez Gurer, E.; Sharopov, F.; Rachel, T.Y.L.; Ntieche Woutouoba, D.; Rescigno, A.; Peddio, S.; Zucca, P. Anticancer properties of bromelain: State-of-the-art and recent trends. Front. Oncol. 2023, 12, 1068778. [Google Scholar] [CrossRef]
- Maurer, H.R. Bromelain: Biochemistry; pharmacology and medical use. Cell. Mol. Life Sci. C. 2001, 58, 1234–1245. [Google Scholar] [CrossRef]
- Tarcias-Pascacio, V.G.; Castaneda-Valbuena, D.; Tavano, O.; Abellanas-Perez, P.; de Andrades, D.; Santiz-Gomez, J.A.; Berenguer-Murcia, A.; Fernandez-Lafuente, R. A review on the immobilization of bromelain. Int. J. Biol. Macromol. 2024, 273, 133089. [Google Scholar]
- Nwagu, T.N.; Ugwuodo, C.J. Stabilizing bromelain for therapeutic applications by adsorption immobilization on spores of probiotic Bacillus. Int. J. Biol. Macromol. 2019, 127, 406–414. [Google Scholar] [CrossRef]
- Ugwuodo, C.J.; Nwagu, T.N.; Ugwu, T.T.; Onwosi, C.O. Enhancement of the anti-inflammatory effect of bromelain by its immobilization on probiotic spore of Bacillus cereus. Probiotics Antimicrob. Proteins 2020, 13, 847–861. [Google Scholar] [CrossRef]
- Fakhry, S.; Sorrentini, I.; Ricca, E.; De Felice, M.; Baccigalupi, L. Characterisation of spore forming Bacilli isolated from the human gastrointestinal tract. J. Appl. Microbiol. 2008, 105, 2178–2186. [Google Scholar] [CrossRef]
- Mazzoli, A.; Donadio, G.; Lanzilli, M.; Saggese, A.; Guarino, A.M.; Rivetti, M.; Crescenzo, R.; Ricca, E.; Ferrandino, I.; Iossa, S.; et al. Bacillus megaterium SF185 spores exert protective effects against oxidative stress in vivo and in vitro. Sci. Rep. 2019, 9, 12082. [Google Scholar] [CrossRef] [PubMed]
- Saggese, A.; Giglio, R.; D’Anzi, N.; Baccigalupi, L.; Ricca, E. Comparative genomics and physiological characterization of two aerobic spore formers isolated from human ileal samples. Int. J. Mol. Sci. 2022, 23, 14946. [Google Scholar] [CrossRef]
- Vittoria, M.; Horwel, E.; Bastoni, D.; Saggese, A.; Baccigalupi, L.; Cutting, S.M.; Ricca, E. Bacillus subtilis SF106 and Bacillus clausii SF174 spores reduce the inflammation and modulate the gut microbiota in a colitis model. Benef. Microbes 2024, 15, 343–355. [Google Scholar] [CrossRef]
- Saggese, A.; Barrella, V.; Di Porzio, A.; Troise, A.D.; Scaloni, A.; Cigliano, L.; Scala, G.; Baccigalupi, L.; Iossa, S.; Ricca, E.; et al. Protective role of cells and spores of Shouchella clausii SF174 against fructose-induced gut dysfunctions in small and large intestine. J. Nutr. Biochem. 2024, 133, 109706. [Google Scholar] [CrossRef] [PubMed]
- Ataide, J.A.; Gerios, E.F.; Mazzola, P.G.; Souto, E.B. Bromelain-loaded nanoparticles: A comprehensive review of the state of the art. Adv. Colloid Interface Sci. 2018, 254, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Cangiano, G.; Sirec, T.; Panarella, C.; Isticato, R.; Baccigalupi, L.; De Felice, M.; Ricca, E. The sps gene products affect germination, hydrophobicity and protein adsorption of Bacillus subtilis spores. Appl. Environ. Microbiol. 2014, 80, 7293–7302. [Google Scholar] [CrossRef] [PubMed]
- Saptarini, N.M.; Rahayu, D.; Herawati, I.E. Antioxidant activity of crude bromelain of pineapple (Ananas comosus (L.) Merr) crown from Subang district, Indonesia. J. Pharm. BioAllied Sci. 2019, 11, S551–S555. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-M.; Hong, H.A.; Tong, H.V.; Hoang, T.H.; Brisson, A.; Cutting, S.M. Mucosal delivery of antigens using adsorption to bacterial spores. Vaccine 2010, 28, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Pesce, G.; Rusciano, G.; Sirec, T.; Isticato, R.; Sasso, A.; Ricca, E. Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers. Colloids Surf. B Biointerfaces 2014, 116C, 568–575. [Google Scholar] [CrossRef]
- Jiang, S.; Wan, Q.; Krajcikova, D.; Tang, J.; Tzokov, S.B.; Barak, I.; Bullogh, P.A. Diverse supramolecular structures formed by self-assembling proteins of the Bacillus subtilis spore coat. Mol. Microbiol. 2015, 97, 347–359. [Google Scholar] [CrossRef]
- Brien, S.; Lewith, G.; Walker, A.; Hicks, S.M.; Middleton, D. Bromelain as a Treatment for Osteoarthritis: A Review of Clinical Studies. Evid. Based Complement. Altern. Med. 2004, 1, 251–257. [Google Scholar] [CrossRef]
- Cutting, S.; Vander Horn, P.B. Genetic analysis. In Molecular Biological Methods for Bacillus; Harwood, C., Cutting, S., Eds.; John Wiley and Sons: Chichester, UK, 1990; pp. 27–74. [Google Scholar]
- Cupp-Enyard, C. Sigma’s Non-specific Protease Activity Assay—Casein as a Substrate. J. Vis. Exp. 2008, 19, e899. [Google Scholar] [CrossRef]
- Beers, R.F., Jr.; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952, 195, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corona, R.; Bontà, V.; Baccigalupi, L.; Ricca, E. Probiotic Spores of Shouchella clausii SF174 and Displayed Bromelain Show Beneficial Additive Potential. Int. J. Mol. Sci. 2025, 26, 942. https://doi.org/10.3390/ijms26030942
Corona R, Bontà V, Baccigalupi L, Ricca E. Probiotic Spores of Shouchella clausii SF174 and Displayed Bromelain Show Beneficial Additive Potential. International Journal of Molecular Sciences. 2025; 26(3):942. https://doi.org/10.3390/ijms26030942
Chicago/Turabian StyleCorona, Rowena, Valeria Bontà, Loredana Baccigalupi, and Ezio Ricca. 2025. "Probiotic Spores of Shouchella clausii SF174 and Displayed Bromelain Show Beneficial Additive Potential" International Journal of Molecular Sciences 26, no. 3: 942. https://doi.org/10.3390/ijms26030942
APA StyleCorona, R., Bontà, V., Baccigalupi, L., & Ricca, E. (2025). Probiotic Spores of Shouchella clausii SF174 and Displayed Bromelain Show Beneficial Additive Potential. International Journal of Molecular Sciences, 26(3), 942. https://doi.org/10.3390/ijms26030942