The Silkworm (Bombyx mori) Neuropeptide Orcokinin’s Efficiency in Whitening and Skincare
Abstract
:1. Introduction
2. Results
2.1. Orcokinin Has an Inhibitory Effect on Tyrosinase
2.2. Skin Adaptability Test of Orcokinin Mature Peptide
2.3. Skincare Product and Whitening Effects
3. Discussion
4. Materials and Methods
4.1. Peptide Preparation
4.2. Tyrosinase Inhibition Rate Detection
4.3. Skin Adaptability Testing
4.4. Preparation of Whitening Cream and Effect Detection of Whitening Skincare
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ons, S.; Belles, X.; Maestro, J.L. Orcokinins contribute to the regulation of vitellogenin transcription in the cockroach Blattella germanica. J. Insect Physiol. 2015, 82, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Stangier, J.; Hilbich, C.; Burdzik, S.; Keller, R. Orcokinin: A novel myotropic peptide from the nervous system of the crayfish, Orconectes limosus. Peptides 1992, 13, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Skiebe, P.; Dreger, M.; Meseke, M.; Evers, J.F.; Hucho, F. Identification of orcokinins in single neurons in the stomatogastric nervous system of the crayfish, Cherax destructor. J. Comp. Neurol. 2002, 444, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Christie, A.E.; McCoole, M.D.; Harmon, S.M.; Baer, K.N.; Lenz, P.H. Genomic analyses of the Daphnia pulex peptidome. Gen. Comp. Endocrinol. 2011, 171, 131–150. [Google Scholar] [CrossRef] [PubMed]
- Pascual, N.; Castresana, J.; Valero, M.L.; Andreu, D.; Belles, X. Orcokinins in insects and other invertebrates. Insect Biochem. Mol. Biol. 2004, 34, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Cui, Q.; Zhang, Y.; Wang, X.; Huang, X.; Li, X.; Zhao, Q.; Lei, G.; Li, B.; Wei, W. A review of pedal peptide/orcokinin-type neuropeptides. Curr. Protein Pept. Sci. 2021, 22, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, N.; Roller, L.; Zitnan, D.; Satake, H.; Mizoguchi, A.; Kataoka, H.; Tanaka, Y. Bombyx orcokinins are brain-gut peptides involved in the neuronal regulation of ecdysteroidogenesis. J. Comp. Neurol. 2011, 519, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Sterkel, M.; Oliveira, P.L.; Urlaub, H.; Hernandez-Martinez, S.; Rivera-Pomar, R.; Ons, S. OKB: A novel family of brain-gut neuropeptides from insects. Insect Biochem. Mol. Biol. 2012, 42, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Veenstra, J.A.; Ida, T. More Drosophila enteroendocrine peptides: Orcokinin B and the CCHamides 1 and 2. Cell Tissue Res. 2014, 357, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Kim, H.G.; Park, Y. Alternatively spliced orcokinin isoforms and their functions in Tribolium castaneum. Insect Biochem. Mol. Biol. 2015, 65, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wulff, J.P.; Sierra, I.; Sterkel, M.; Holtof, M.; Wielendaele, P.V.; Francini, F.; Broeck, J.V.; Ons, S. Orcokinin neuropeptides regulate ecdysis in the hemimetabolous insect Rhodnius prolixus. Insect Biochem. Mol. Biol. 2017, 81, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhao, Q.; Qiu, Z.; Shen, X.; Xia, D. Alternative splicing and expression analysis of orcokinin gene in the silkworm, Bombyx mori. Acta Sericologica Sin. 2018, 44, 849–858. [Google Scholar] [CrossRef]
- Christie, A.E. Identification of putative neuropeptidergic signaling systems in the spiny lobster, Panulirus argus. Invertebr. Neurosci. 2020, 20, 2. [Google Scholar] [CrossRef] [PubMed]
- Chipman, A.D.; Ferrier, D.E.; Brena, C.; Qu, J.; Hughes, D.S.; Schroder, R.; Torres-Oliva, M.; Znassi, N.; Jiang, H.; Almeida, F.C.; et al. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol. 2014, 12, e1002005. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Pulver, S.R.; Kelley, W.P.; Thirumalai, V.; Sweedler, J.V.; Marder, E. Orcokinin peptides in developing and adult crustacean stomatogastric nervous systems and pericardial organs. J. Comp. Neurol. 2002, 444, 227–244. [Google Scholar] [CrossRef] [PubMed]
- Hofer, S.; Homberg, U. Evidence for a role of orcokinin-related peptides in the circadian clock controlling locomotor activity of the cockroach Leucophaea maderae. J. Exp. Biol. 2006, 209 Pt 14, 2794–2803. [Google Scholar] [CrossRef] [PubMed]
- Wulff, J.P.; Capriotti, N.; Ons, S. Orcokinins regulate the expression of neuropeptide precursor genes related to ecdysis in the hemimetabolous insect Rhodnius prolixus. J. Insect Physiol. 2018, 108, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y. Recent topics on the regulatory mechanism of ecdysteroidogenesis by the prothoracic glands in insects. Front. Endocrinol. 2011, 2, 107. [Google Scholar] [CrossRef] [PubMed]
- Prota, G. Progress in the chemistry of melanins and related metabolites. Med. Res. Rev. 1988, 8, 525–556. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, J.; Liu, L.; He, C.; Bi, Y.; Li, H. Progress in metabolic mechanism and research methods of melanin production. China Surfactant Deterg. Cosmet. 2023, 53, 1194–1203. [Google Scholar] [CrossRef]
- Pinkert, S.; Zeuss, D. Thermal biology: Melanin-based energy harvesting across the tree of life. Curr. Biol. 2018, 28, R887–R889. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Lee, Y.S.; Kim, N.; Choi, H.D.; Lim, K.M. 5G electromagnetic radiation attenuates skin melanogenesis in vitro by suppressing ROS generation. Antioxidants 2022, 11, 1449. [Google Scholar] [CrossRef] [PubMed]
- Ohbayashi, N.; Fukuda, M. Recent advances in understanding the molecular basis of melanogenesis in melanocytes. F1000Research 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Chuan, D. Summary of mechanism action of common freckle whitening agents. Fine Spec. Chem. 2024, 32, 11–21. [Google Scholar] [CrossRef]
- Wu, X.; Hammer, J.A., 3rd. Making sense of melanosome dynamics in mouse melanocytes. Pigment Cell Res. 2000, 13, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Hamed, S.H. Efficacy and Mechanism of Action of a New Tyrosinase Inhibitory Agent; University of Cincinnati: Cincinnati, OH, USA, 2004. [Google Scholar]
- Kolbe, L.; Mann, T.; Gerwat, W.; Batzer, J.; Ahlheit, S.; Scherner, C.; Wenck, H.; Stäb, F. 4-n-butylresorcinol.; a highly effective tyrosinase inhibitor for the topical treatment of hyperpigmentation. J. Eur. Acad. Dermatol. Venereol. 2013, 27 (Suppl. S1), 19–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhao, Q.; Qiu, Z.; Bi, S.; Wang, W.; Wu, M.; Chen, A.; Xia, D.; He, X.; Tang, S.; et al. The silkworm (Bombyx mori) neuropeptide orcokinin is involved in the regulation of pigmentation. Insect Biochem. Mol. Biol. 2019, 114, 103229. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yi, W.; Wan, Y.; Ma, L.; Song, H. 1-(1-Arylethylidene)thiosemicarbazide derivatives: A new class of tyrosinase inhibitors. Bioorg Med. Chem. 2008, 16, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhang, W.; Wang, Q.; Kong, D. Progress in neuropeptide function and analytical methods research. Chin. Pharm. J. 2023, 58, 213–221. [Google Scholar] [CrossRef]
- Hu, J.; Chen, B.; Qu, S.; Liu, S.; Yang, X.; Qiao, K.; Su, Y.; Liu, Z.; Chen, X.; Liu, Z.; et al. Anti-melanogenic effects of Takifugu flavidus muscle hydrolysate in B16F10 melanoma cells and zebrafish. Mar. Drugs 2024, 22, 206. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.; Kvalnes, K.; deLong, M.A.; Wickett, R.; Manga, P.; Boissy, R.E. DeoxyArbutin and its derivatives inhibit tyrosinase activity and melanin synthesis without inducing reactive oxygen species or apoptosis. J. Drugs Dermatol. 2012, 11, e28-34. [Google Scholar] [PubMed]
- Bungart, D.; Kegel, G.; Burdzik, S.; Keller, R. Structure-activity relationships of the crustacean myotropic neuropeptide orcokinin. Peptides 1995, 16, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Qiu, Z.; Xia, D.; Tang, S.; Shen, X.; Zhao, Q. Transcriptome analysis of the epidermis of the purple quail-like (q-lp) mutant of silkworm, Bombyx mori. PLoS ONE 2017, 12, e0175994. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yin, S.; Wei, Z.; Xiao, Z.; Kang, Z.; Wu, Y.; Huang, Y.; Jia, Q.; Peng, Y.; Ru, Z.; et al. Newly identified peptide Nigrocin-OA27 inhibits UVB induced melanin production via the MITF/TYR pathway. Peptides 2024, 177, 171215. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Feng, C.; Wang, H.; Li, J.; Liu, N.; Fu, Z.; Wang, Y.; Wu, Y.; Liu, Y.; et al. Peptide OA-VI12 restrains melanogenesis in B16 cells and C57B/6 mouse ear skin via the miR-122-5p/Mitf/Tyr axis. Amino Acids 2023, 55, 1687–1699. [Google Scholar] [CrossRef] [PubMed]
Grouping | Reagent | OD Value | |||
---|---|---|---|---|---|
10 s | 60 s | 120 s | 180 s | ||
Sample Background | PBS, Peptide | 0.047 ± 0.003 | - | - | 0.047 ± 0.001 |
Reagent Background | PBS, Tyrosinase | 0.042 ± 0.004 | - | - | 0.043 ± 0.004 |
Negative Control | PBS, Dopa, Tyrosinase | 0.121 ± 0.035 | 0.052 ± 0.041 | 0.046 ± 0.009 | 0.043 ± 0.001 |
Positive Control | PBS, Dopa, Tyrosinase, β-Arbutin | 0.125 ± 0.004 | - | - | 0.041 ± 0.005 |
BommoOKA_type1 | PBS, Dopa, Tyrosinase, BommoOKA_type1 | 0.082 ± 0.052 | 0.043 ± 0.040 | 0.044 ± 0.004 | 0.043 ± 0.002 |
BommoOKA_type2 | PBS, Dopa, Tyrosinase, BommoOKA_type2 | 0.138 ± 0.044 | 0.085 ± 0.015 | 0.059 ± 0.013 | 0.064 ± 0.050 |
BommoOKA_type3 | PBS, Dopa, Tyrosinase, BommoOKA_type3 | 0.156 ± 0.056 | 0.103 ± 0.030 | 0.105 ± 0.023 | 0.042 ± 0.001 |
BommoOKA_type4 | PBS, Dopa, Tyrosinase, BommoOKA_type4 | 0.187 ± 0.037 | 0.131 ± 0.036 | 0.075 ± 0.013 | 0.058 ± 0.005 |
BommoOKA_type5 | PBS, Dopa, Tyrosinase, BommoOKA_type5 | 0.165 ± 0.042 | 0.085 ± 0.012 | 0.043 ± 0.007 | 0.042 ± 0.009 |
BommoOKB_type1 | PBS, Dopa, Tyrosinase, BommoOKB_type1 | 0.165 ± 0.031 | 0.119 ± 0.011 | 0.073 ± 0.025 | 0.058 ± 0.007 |
Grouping | Sample Background | Negative Control | Reagent Background | Positive Control | Experimental Group |
---|---|---|---|---|---|
PBS | √ | √ | √ | √ | √ |
Dopa | - | √ | - | √ | √ |
Tyrosinase | - | √ | √ | √ | √ |
β-Arbutin | - | - | - | √ | - |
Peptides | √ | - | - | - | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Xiao, X.; Yang, Y.; Liang, G.; Lu, S.; Tang, L.; Huang, H.; He, J.; Tong, X. The Silkworm (Bombyx mori) Neuropeptide Orcokinin’s Efficiency in Whitening and Skincare. Int. J. Mol. Sci. 2025, 26, 961. https://doi.org/10.3390/ijms26030961
Wang P, Xiao X, Yang Y, Liang G, Lu S, Tang L, Huang H, He J, Tong X. The Silkworm (Bombyx mori) Neuropeptide Orcokinin’s Efficiency in Whitening and Skincare. International Journal of Molecular Sciences. 2025; 26(3):961. https://doi.org/10.3390/ijms26030961
Chicago/Turabian StyleWang, Pingyang, Xiao Xiao, Ya Yang, Guiqiu Liang, Shengtao Lu, Liang Tang, Hongyan Huang, Ji He, and Xiaoling Tong. 2025. "The Silkworm (Bombyx mori) Neuropeptide Orcokinin’s Efficiency in Whitening and Skincare" International Journal of Molecular Sciences 26, no. 3: 961. https://doi.org/10.3390/ijms26030961
APA StyleWang, P., Xiao, X., Yang, Y., Liang, G., Lu, S., Tang, L., Huang, H., He, J., & Tong, X. (2025). The Silkworm (Bombyx mori) Neuropeptide Orcokinin’s Efficiency in Whitening and Skincare. International Journal of Molecular Sciences, 26(3), 961. https://doi.org/10.3390/ijms26030961