Rapid Natural Killer Cell Gene Responses, Generated by TLR Ligand-Induced Trained Immunity, Provide Protection to Bacterial Infection in rag1−/− Mutant Zebrafish (Danio rerio)
Abstract
:1. Introduction
2. Results
2.1. Survival Trials
2.2. Quantitative Gene Expression
2.2.1. Kidney
2.2.2. Liver
2.3. Principal Component Analysis
2.4. Expression of MPEG-1+ and NITR9+ Leukocytes in Kidney and Liver Tissues
2.4.1. Kidney
2.4.2. Liver
3. Discussion
4. Material and Methods
4.1. Zebrafish Care
4.2. Innate Immune Training
4.3. Survival Trials
4.3.1. Preparation of Bacterial Cultures
4.3.2. Lethal Dose Determination
4.3.3. Bacterial Infections
4.4. Quantifying Gene Expression
4.5. Principal Component Analysis
4.6. Nitr9 and Mpeg-1 Expression by Fluorescence-Activated Cell Sorting (FACS)
4.7. Data Analysis and Statistical Evaluation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrie-Hanson, L.; Hohn, C.; Hanson, L. Characterization of rag1 mutant zebrafish leukocytes. BMC Immunol. 2009, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Hohn, C.; Petrie-Hanson, L. Rag1−/− Mutant Zebrafish Demonstrate Specific Protection following Bacterial Re-Exposure. PLoS ONE 2012, 7, e44451. [Google Scholar] [CrossRef] [PubMed]
- Muire, P.J.; Hanson, L.A.; Wills, R.; Petrie-Hanson, L. Differential gene expression following TLR stimulation in rag1−/− mutant zebrafish tissues and morphological descriptions of lymphocyte-like cell populations. PLoS ONE 2017, 12, e0184077. [Google Scholar] [CrossRef] [PubMed]
- Krishnavajhala, A.; Muire, P.J.; Hanson, L.; Wan, H.; McCarthy, F.; Zhou, A.; Petrie-Hanson, L. Transcriptome Changes Associated with Protective Immunity in T and B Cell-Deficient Rag1−/− Mutant Zebrafish. Int. J. Immunol. 2017, 5, 20. [Google Scholar] [CrossRef]
- Peterman, B.; Petrie-Hanson, L. Beta-glucan induced trained immunity is associated with changes in gut Nccrp-1+ and Mpeg-1+cell populations in rag1−/− zebrafish. J. Aquac. Mar. Biol. Ecol. 2021, 1–12. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, N.; Hong, Y.; Tie, R.; Fan, D.; Lin, A.; Chen, Y.; Xiang, L.-x.; Shao, J.-z. Single-cell RNA sequencing unveils the hidden powers of zebrafish kidney for generating both hematopoiesis and adaptive antiviral immunity. eLife 2024, 13, RP92424. [Google Scholar] [CrossRef]
- Gomes, M.C.; Brokatzky, D.; Bielecka, M.K.; Wardle, F.C.; Mostowy, S. Shigella induces epigenetic reprogramming of zebrafish neutrophils. Sci. Adv. 2023, 9, eadf9706. [Google Scholar] [CrossRef]
- Petit, J.; Wiegertjes, G.F. Long-lived effects of administering β-glucans: Indications for trained immunity in fish. Dev. Comp. Immunol. 2016, 64, 93–102. [Google Scholar] [CrossRef]
- Petrie-Hanson, L.; Peterman, A.E.B. Trained Immunity Provides Long-Term Protection against Bacterial Infections in Channel Catfish. Pathogens 2022, 11, 1140. [Google Scholar] [CrossRef]
- Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; Van Der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020, 20, 375–388. [Google Scholar] [CrossRef]
- Netea, M.G.; Joosten, L.A.B.; Latz, E.; Mills, K.H.G.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.J.; Xavier, R.J. Trained immunity: A program of innate immune memory in health and disease. Science 2016, 352, aaf1098. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, A.; Villalba-Guerrero, C.; Olivier, M. Trained immunity: A “new” weapon in the fight against infectious diseases. Front. Immunol. 2023, 14, 1147476. [Google Scholar] [CrossRef] [PubMed]
- De Zuani, M.; Frič, J. Train the Trainer: Hematopoietic Stem Cell Control of Trained Immunity. Front. Immunol. 2022, 13, 827250. [Google Scholar] [CrossRef] [PubMed]
- Kain, B.N.; Luna, P.; Hormaechea Agulla, D.; Maneix, L.; Morales-Mantilla, D.E.; Le, D.; Tran, B.; Florez, M.A.; Toups, J.; Han, H.; et al. Specificity and Heterogeneity of Trained Immunity in Hematopoietic Stem and Progenitor Cells. Blood 2021, 138, 2149. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Hu, J.; You, X.; Yang, J.; Zhang, Y.; Liu, Q.; Yang, D. Tissue-resident trained immunity in hepatocytes protects against septic liver injury in zebrafish. Cell Rep. 2024, 43, 114324. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, C.; Yang, Z.; Qu, R.; Li, Y.; Fan, Y.; Tang, J.; Xie, T.; Wen, Z. Cross-organ single-cell transcriptome profiling reveals macrophage and dendritic cell heterogeneity in zebrafish. Cell Rep. 2023, 42, 112793. [Google Scholar] [CrossRef]
- Martins, R.R.; Ellis, P.S.; MacDonald, R.B.; Richardson, R.J.; Henriques, C.M. Resident Immunity in Tissue Repair and Maintenance: The Zebrafish Model Coming of Age. Front. Cell Dev. Biol. 2019, 7, 12. [Google Scholar] [CrossRef]
- Ifrim, D.C.; Quintin, J.; Joosten, L.A.B.; Jacobs, C.; Jansen, T.; Jacobs, L.; Gow, N.A.R.; Williams, D.L.; Van Der Meer, J.W.M.; Netea, M.G. Trained Immunity or Tolerance: Opposing Functional Programs Induced in Human Monocytes after Engagement of Various Pattern Recognition Receptors. Clin. Vaccine Immunol. 2014, 21, 534–545. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. TLR signaling. Cell Death Differ. 2006, 13, 816–825. [Google Scholar] [CrossRef]
- Nishizawa, T.; Takami, I.; Kokawa, Y.; Yoshimizu, M. Fish immunization using a synthetic double-stranded RNA Poly(I:C), an interferon inducer, offers protection against RGNNV, a fish nodavirus. Dis. Aquat. Org. 2009, 83, 115–122. [Google Scholar] [CrossRef]
- Jensen, I.; Albuquerque, A.; Sommer, A.-I.; Robertsen, B. Effect of poly I:C on the expression of Mx proteins and resistance against infection by infectious salmon anaemia virus in Atlantic salmon. Fish Shellfish Immunol. 2002, 13, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Su, B.; Zhou, S.; Shang, M.; Yan, H.; Liu, F.; Gao, C.; Tan, F.; Li, C. Identification and expression analysis of toll-like receptor genes (TLR8 and TLR9) in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. Fish Shellfish Immunol. 2016, 58, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Souza-Fonseca-Guimaraes, F.; Parlato, M.; Fitting, C.; Cavaillon, J.-M.; Adib-Conquy, M. NK Cell Tolerance to TLR Agonists Mediated by Regulatory T Cells after Polymicrobial Sepsis. J. Immunol. 2012, 188, 5850–5858. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.-x.; Sun, L. Immune effects of R848: Evidences that suggest an essential role of TLR7/8-induced, Myd88- and NF-κB-dependent signaling in the antiviral immunity of Japanese flounder (Paralichthys olivaceus). Dev. Comp. Immunol. 2015, 49, 113–120. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X.; Cao, Z.; Li, J.; Long, H.; Wu, Y.; Zhang, Z.; Sun, Y. R848 Is Involved in the Antibacterial Immune Response of Golden Pompano (Trachinotus ovatus) Through TLR7/8-MyD88-NF-κB-Signaling Pathway. Front. Immunol. 2021, 11, 617522. [Google Scholar] [CrossRef]
- Klesius, P.H.; Shoemaker, C.A. The United States of America, assignee. Modified live Edwardsiella ictaluri against enteric septicemia in channel catfish. U.S. Patent 6,019,981, 1 February 2000. [Google Scholar]
- Petrie-Hanson, L.; Romano, C.L.; Mackey, R.B.; Khosravi, P.; Hohn, C.M.; Boyle, C.R. Evaluation of Zebrafish Danio rerio as a Model for Enteric Septicemia of Catfish (ESC). J. Aquat. Anim. Health 2007, 19, 151–158. [Google Scholar] [CrossRef]
- Pereiro, P.; Varela, M.; Diaz-Rosales, P.; Romero, A.; Dios, S.; Figueras, A.; Novoa, B. Zebrafish Nk-lysins: First insights about their cellular and functional diversification. Dev. Comp. Immunol. 2015, 51, 148–159. [Google Scholar] [CrossRef]
- Zhang, M.; Long, H.; Sun, L. A NK-lysin from Cynoglossus semilaevis enhances antimicrobial defense against bacterial and viral pathogens. Dev. Comp. Immunol. 2013, 40, 258–265. [Google Scholar] [CrossRef]
- Klose, C.S.N.; Blatz, K.; d’Hargues, Y.; Hernandez, P.P.; Kofoed-Nielsen, M.; Ripka, J.F.; Ebert, K.; Arnold, S.J.; Diefenbach, A.; Palmer, E.; et al. The Transcription Factor T-bet Is Induced by IL-15 and Thymic Agonist Selection and Controls CD8+ Intraepithelial Lymphocyte Development. Immunity 2014, 41, 230–243. [Google Scholar] [CrossRef]
- Shah, R.N.; Rodriguez-Nunez, I.; Eason, D.D.; Haire, R.N.; Bertrand, J.Y.; Wittamer, V.; Traver, D.; Nordone, S.K.; Litman, G.W.; Yoder, J.A. Development and Characterization of Anti-Nitr9 Antibodies. Adv. Hematol. 2012, 2012, 1–9. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, J.-m.; Chen, X.; Shah, R.N.; Liu, J.; Orcutt, T.M.; Traver, D.; Djeu, J.Y.; Litman, G.W.; Yoder, J.A. The zebrafish activating immune receptor Nitr9 signals via Dap12. Immunogenetics 2007, 59, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol. 2008, 9, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Riksen, N.P.; Netea, M.G. Immunometabolic control of trained immunity. Mol. Asp. Med. 2021, 77, 100897. [Google Scholar] [CrossRef] [PubMed]
- Librán-Pérez, M.; Costa, M.M.; Figueras, A.; Novoa, B. β-glucan administration induces metabolic changes and differential survival rates after bacterial or viral infection in turbot (Scophthalmus maximus). Fish Shellfish Immunol. 2018, 82, 173–182. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Esteban, M.Á. Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Rev. Aquac. 2018, 10, 950–974. [Google Scholar] [CrossRef]
- Wang, J.; Grishin, A.V.; Ford, H.R. Experimental Anti-Inflammatory Drug Semapimod Inhibits TLR Signaling by Targeting the TLR Chaperone gp96. J. Immunol. 2016, 196, 5130–5137. [Google Scholar] [CrossRef]
- Kumar, L.; Greiner, R. Gene expression based survival prediction for cancer patients—A topic modeling approach. PLoS ONE 2019, 14, e0224446. [Google Scholar] [CrossRef]
- Gravendeel, L.A.M.; Kouwenhoven, M.C.M.; Gevaert, O.; de Rooi, J.J.; Stubbs, A.P.; Duijm, J.E.; Daemen, A.; Bleeker, F.E.; Bralten, L.B.C.; Kloosterhof, N.K.; et al. Intrinsic Gene Expression Profiles of Gliomas Are a Better Predictor of Survival than Histology. Cancer Res. 2009, 69, 9065–9072. [Google Scholar] [CrossRef]
- Shen, Y.-J.; Huang, S.-G. Improve Survival Prediction Using Principal Components of Gene Expression Data. Genom. Proteom. Bioinform. 2006, 4, 110–119. [Google Scholar] [CrossRef]
- White, R.J.; Collins, J.E.; Sealy, I.M.; Wali, N.; Dooley, C.M.; Digby, Z.; Stemple, D.L.; Murphy, D.N.; Billis, K.; Hourlier, T.; et al. A high-resolution mRNA expression time course of embryonic development in zebrafish. eLife 2017, 6, e30860. [Google Scholar] [CrossRef]
- Al-Sulaiti, M.M.; Soubra, L.; Ramadan, G.A.; Ahmed, A.Q.S.; Al-Ghouti, M.A. Total Hg levels distribution in fish and fish products and their relationships with fish types, weights, and protein and lipid contents: A multivariate analysis. Food Chem. 2023, 421, 136163. [Google Scholar] [CrossRef] [PubMed]
- Gavery, M.R.; Roberts, S.B. Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc. PeerJ 2013, 1, e215. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Jiang, X.; Chen, Y.; Sojka, D.K.; Wei, H.; Gao, X.; Sun, R.; Yokoyama, W.M.; Tian, Z. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J. Clin. Investig. 2013, 123, 1444–1456. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, L.E.; Wu, M.; Young, L.S. Interleukin-12-stimulated natural killer cells can activate human macrophages to inhibit growth of Mycobacterium avium. Infect. Immun. 1995, 63, 4099–4104. [Google Scholar] [CrossRef]
- Schuster, I.S.; Andoniou, C.E.; Degli-Esposti, M.A. Tissue-resident memory NK cells: Homing in on local effectors and regulators. Immunol. Rev. 2024, 323, 54–60. [Google Scholar] [CrossRef]
- Elibol-Flemming, B. Effects of Edwardsiella ictaluri infection on transcriptional expression of selected immune relevant genes in channel catfish. In Ictalurus Punctatus; Mississippi State University: Pascagoula, MS, USA, 2006. [Google Scholar]
- Ju, B.; Xu, Y.; He, J.; Liao, J.; Yan, T.; Hew, C.L.; Lam, T.J.; Gong, Z. Faithful expression of green fluorescent protein (GFP) in transgenic zebrafish embryos under control of zebrafish gene promoters. Dev. Genet. 1999, 25, 158–167. [Google Scholar] [CrossRef]
- Vojtech, L.N.; Sanders, G.E.; Conway, C.; Ostland, V.; Hansen, J.D. Host immune response and acute disease in a zebrafish model of Francisella pathogenesis. Infect. Immun. 2009, 77, 914–925. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
Treatment | Breslow–Wilcoxon | Mantel–Cox | Hazard Ratio | 95% CI of the Ratio |
---|---|---|---|---|
E33® v control | p < 0.0001 * | p <0.0001 * | 0.25 | 0.116 to 0.5364 |
Beta glucan v RE33® | p = 0.025 * | p = 0.014 * | 0.34 | 0.143 to 0.7963 |
Beta glucan + RE33® v RE33® | p = 0.001 * | p = 0.012 * | 0.36 | 0.157 to 0.307 |
Beta glucan + RE33® v beta glucan | p = 0.074 | p = 0.626 | 0.77 | 0.2705 to 2.199 |
Poly I:C v RE33® | p = 0.354 | p = 0.251 | 0.65 | 0.3005 to 1.402 |
Poly I:C + RE33® v RE33® | p = 0.033 * | p = 0.050 * | 0.48 | 0.2157 to 1.057 |
Poly I:C + RE33® v poly I:C | p = 0.084 | p =0.158 | 1.78 | 0.7626 to 4.195 |
R848 v RE33® | p = 0.174 | p = 0.187 | 0.60 | 0.2802 to 1.313 |
R848 + RE33® v RE33® | p = 0.019 * | p = 0.028 * | 0.42 | 0.1870 to 0.950 |
R848 + RE33® v R848 | p = 0.452 | p = 0.473 | 1.36 | 0.5678 to 3.286 |
Treatment | Tissue | Upregulated Gene, Hours Post E. ictaluri Challenge, Fold Change | ||
---|---|---|---|---|
1–100 | 101–1000 | >1000 | ||
beta glucan | Liver | nkla (6 h), 250 nklb (6 h), 734 nkld (6 h), 589 | ifnγ (6 h), 1369 nklc (6 h), 2135 | |
Kidney | ifnγ (24 h), 93 nkla (48 h), 2 | ifnγ (12 h), 575 nkld (12 h), 147 | nklb (6 h), 5536 | |
beta glucan + RE33® | Liver | nkld (12 h), 108 nitr9 (24 h), 576 nkla (24 h), 332 nklb (24 h), 598 nklc (24 h), 810 nkld (24 h), 246 | ifnγ (24 h), 1400 t-bet (24 h), 3104 | |
Kidney | nkla (48 h), 2 | ifnγ (48 h), 955 nkld (12 h), 165 nkld (24 h), 109 | ||
R848 + RE33® | Liver | nitr9 (24 h), 225 | ifnγ (48 h), 1127 | |
Kidney | nkla (48 h), 6 | nkld (24 h), 107 | ||
R848 | Liver | nitr9 (12 h), 359 | ||
Kidney | nkla (48 h), 13 | |||
RE33® | Liver | nitr9 (6 h), 284 nkla (12 h), 234 nkld (12 h), 117 | ifnγ (48 h), 2133 | |
Kidney | nkla (48 h), 4 | t-bet (6 h), 280,559 | ||
Saline injected, or sham control | Liver | ifnγ (12 h), 92 nklc (48 h), 71 | ifnγ (6 h), 101 | ifnγ (48 h), 1962 |
Kidney | nitr9 (6 h), 10 nitr9 (12 h), 12 nitr9 (48 h), 0.4 nkla (48 h), 6 | ifnγ (24 h), 992 |
Gene | Oligonucleotide Sequences (5′–3′) | GenBank Accession No. |
---|---|---|
arp | Fwd: CTGCAAAGATGCCCAGGGA Rev: TTGGAGCCGACATTGTCTGC Probe: [6~FAM]TTCTGAAAATCATCCAACTGCTGGATGACTACC [BHQ1a~ Q] [49] | NM_131580 |
ifnγ | Fwd: CTTTCCAGGCAAGAGTGCAGA Rev: TCAGCTCAAACAAAGCCTTTCG Probe: [6~FAM]AACGCTATGGGCGATCAAGGAAAACGAC[BHQ1a~ Q] [49] | NM_212864 |
t-bet | Fwd: GATCAAGCTCTCTCTGTGATAG Rev: GCTAAAGTCACACAGGTCT Probe: [6~FAM]TTCTGAAGGTCACGGTCACA[BHQ1a~Q] * | NM_001170599.1 |
nitr9 | Fwd: GTCAAAGGGACAAGGCTGATAGTT Rev: GTTCAAAACAGTGCATGTAAGACTCA Probe: [6~FAM]CAAGGTTTGGAAAAGCAC[BHQ1a~Q] [31] | AY570237.1 |
nkla | Fwd: TTTCTGGTCGGCTTGCTCAT Rev: TTCTCATTCACAGCCCGGTC Probe: [6~FAM]TCTGCAGCTCACTGGGAGGTTCGTGA[BHQ1a~Q] | NM_001311794 |
nklb | Fwd: TCCGCAACATCTTTCTGGTCA Rev: AGCCTGCTCATGAATGAAAATGA Probe: [6~FAM]CACGCCTGCAAATCTGAACCACCCA[BHQ1a~Q] | NM_001311792 |
nklc | Fwd: CTGCTTGTGCTGCTCACTTG Rev: AGCACACATGGAGATGAGAACA Probe: [6~FAM]GGGCTTGCAAGTGGGCCATGGGAA[BHQ1a~Q] | NM_001311793.1 |
nkld | Fwd: ACCCTGCTCATCTCCTCTGT Rev: CCCCAGCTAAAGCAAAACCC Probe: [6~FAM]TGCCTGGGATGTGCTGGGCTTGCAA[BHQ1a~Q] | NM_212741.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muire, P.J.; Hanson, L.A.; Petrie-Hanson, L. Rapid Natural Killer Cell Gene Responses, Generated by TLR Ligand-Induced Trained Immunity, Provide Protection to Bacterial Infection in rag1−/− Mutant Zebrafish (Danio rerio). Int. J. Mol. Sci. 2025, 26, 962. https://doi.org/10.3390/ijms26030962
Muire PJ, Hanson LA, Petrie-Hanson L. Rapid Natural Killer Cell Gene Responses, Generated by TLR Ligand-Induced Trained Immunity, Provide Protection to Bacterial Infection in rag1−/− Mutant Zebrafish (Danio rerio). International Journal of Molecular Sciences. 2025; 26(3):962. https://doi.org/10.3390/ijms26030962
Chicago/Turabian StyleMuire, Preeti J., Larry A. Hanson, and Lora Petrie-Hanson. 2025. "Rapid Natural Killer Cell Gene Responses, Generated by TLR Ligand-Induced Trained Immunity, Provide Protection to Bacterial Infection in rag1−/− Mutant Zebrafish (Danio rerio)" International Journal of Molecular Sciences 26, no. 3: 962. https://doi.org/10.3390/ijms26030962
APA StyleMuire, P. J., Hanson, L. A., & Petrie-Hanson, L. (2025). Rapid Natural Killer Cell Gene Responses, Generated by TLR Ligand-Induced Trained Immunity, Provide Protection to Bacterial Infection in rag1−/− Mutant Zebrafish (Danio rerio). International Journal of Molecular Sciences, 26(3), 962. https://doi.org/10.3390/ijms26030962