Spatial Transcriptomics in Human Cardiac Tissue
Abstract
:1. Introduction
2. Spatial Transcriptomics: Current Technologies, Platforms, and Experimental Considerations
2.1. Imaging-Based Technologies
2.2. Sequencing-Based Technologies
2.3. Considerations for Selecting a Spatial Transcriptomic Method
2.3.1. Biological Question: Hypothesis Testing vs. Hypothesis Generation
2.3.2. Species and Tissue Compatibility
2.3.3. Tissue Size
2.3.4. Spatial Resolution
3. Spatial Transcriptomics Data Analysis
3.1. Pre-Processing
3.2. Downstream Data Analysis
3.2.1. Dimensionality Reduction and Clustering
3.2.2. Integration with Single Cell RNA Sequencing Data
3.2.3. Interaction Analysis
4. Applications of Spatial Transcriptomics in Human Cardiac Research
4.1. Cardiac Development
4.2. Cardiac Electro-Anatomy and Immunology
4.3. Ischemic Heart Disease
5. Current Limitations
5.1. Cost, Technical Requirements, and Accessibility
5.2. Human Sample Limitations
5.3. Data Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 27 November 2024).
- Egido, J.; Zaragoza, C.; Gomez-Guerrero, C.; Martin-Ventura, J.L.; Blanco-Colio, L.; Lavin, B.; Mallavia, B.; Tarin, C.; Mas, S.; Ortiz, A. Animal Models of Cardiovascular Diseases. J. Biomed. Biotechnol. 2011, 2011, 497841. [Google Scholar]
- Nugraha, B.; Buono, M.F.; von Boehmer, L.; Hoerstrup, S.P.; Emmert, M.Y. Human Cardiac Organoids for Disease Modeling. Clin. Pharmacol. Ther. 2019, 105, 79–85. [Google Scholar] [CrossRef]
- Moretti, A.; Laugwitz, K.-L.; Dorn, T.; Sinnecker, D.; Mummery, C. Pluripotent Stem Cell Models of Human Heart Disease. Cold Spring Harb. Perspect. Med. 2013, 3, a014027. [Google Scholar] [CrossRef]
- Miranda, A.M.A.; Janbandhu, V.; Maatz, H.; Kanemaru, K.; Cranley, J.; Teichmann, S.A.; Hübner, N.; Schneider, M.D.; Harvey, R.P.; Noseda, M. Single-Cell Transcriptomics for the Assessment of Cardiac Disease. Nat. Rev. Cardiol. 2023, 20, 289–308. [Google Scholar] [CrossRef]
- Rao, A.; Barkley, D.; França, G.S.; Yanai, I. Exploring Tissue Architecture Using Spatial Transcriptomics. Nature 2021, 596, 211–220. [Google Scholar] [CrossRef]
- Tian, L.; Chen, F.; Macosko, E.Z. The Expanding Vistas of Spatial Transcriptomics. Nat. Biotechnol. 2023, 41, 773–782. [Google Scholar] [CrossRef]
- You, Y.; Fu, Y.; Li, L.; Zhang, Z.; Jia, S.; Lu, S.; Ren, W.; Liu, Y.; Xu, Y.; Liu, X.; et al. Systematic Comparison of Sequencing-Based Spatial Transcriptomic Methods. Nat. Methods 2024, 21, 1743–1754. [Google Scholar] [CrossRef]
- Zhuang, X. Spatially Resolved Single-Cell Genomics and Transcriptomics by Imaging. Nat. Methods 2021, 18, 18–22. [Google Scholar] [CrossRef]
- Larsson, L.; Frisén, J.; Lundeberg, J. Spatially Resolved Transcriptomics Adds a New Dimension to Genomics. Nat. Methods 2021, 18, 15–18. [Google Scholar] [CrossRef]
- Crosetto, N.; Bienko, M.; van Oudenaarden, A. Spatially Resolved Transcriptomics and Beyond. Nat. Rev. Genet. 2015, 16, 57–66. [Google Scholar] [CrossRef]
- Waylen, L.N.; Nim, H.T.; Martelotto, L.G.; Ramialison, M. From Whole-Mount to Single-Cell Spatial Assessment of Gene Expression in 3D. Commun. Biol. 2020, 3, 602. [Google Scholar] [CrossRef]
- Moses, L.; Pachter, L. Museum of Spatial Transcriptomics. Nat. Methods 2022, 19, 534–546. [Google Scholar] [CrossRef]
- Femino, A.M.; Fay, F.S.; Fogarty, K.; Singer, R.H. Visualization of Single RNA Transcripts in Situ. Science 1998, 280, 585–590. [Google Scholar] [CrossRef]
- Lubeck, E.; Coskun, A.F.; Zhiyentayev, T.; Ahmad, M.; Cai, L. Single-Cell in Situ RNA Profiling by Sequential Hybridization. Nat. Methods 2014, 11, 360–361. [Google Scholar] [CrossRef]
- Williams, C.G.; Lee, H.J.; Asatsuma, T.; Vento-Tormo, R.; Haque, A. An Introduction to Spatial Transcriptomics for Biomedical Research. Genome Med. 2022, 14, 68. [Google Scholar] [CrossRef]
- Chen, K.H.; Boettiger, A.N.; Moffitt, J.R.; Wang, S.; Zhuang, X. RNA Imaging. Spatially Resolved, Highly Multiplexed RNA Profiling in Single Cells. Science 2015, 348, aaa6090. [Google Scholar] [CrossRef]
- Xia, C.; Babcock, H.P.; Moffitt, J.R.; Zhuang, X. Multiplexed Detection of RNA Using MERFISH and Branched DNA Amplification. Sci. Rep. 2019, 9, 7721. [Google Scholar] [CrossRef]
- Wang, G.; Moffitt, J.R.; Zhuang, X. Multiplexed Imaging of High-Density Libraries of RNAs with MERFISH and Expansion Microscopy. Sci. Rep. 2018, 8, 4847. [Google Scholar] [CrossRef]
- Moffitt, J.R.; Hao, J.; Wang, G.; Chen, K.H.; Babcock, H.P.; Zhuang, X. High-Throughput Single-Cell Gene-Expression Profiling with Multiplexed Error-Robust Fluorescence in Situ Hybridization. Proc. Natl. Acad. Sci. USA 2016, 113, 11046–11051. [Google Scholar] [CrossRef]
- Ke, R.; Mignardi, M.; Pacureanu, A.; Svedlund, J.; Botling, J.; Wählby, C.; Nilsson, M. In Situ Sequencing for RNA Analysis in Preserved Tissue and Cells. Nat. Methods 2013, 10, 857–860. [Google Scholar] [CrossRef]
- Jemt, A.; Salmén, F.; Lundmark, A.; Mollbrink, A.; Fernández Navarro, J.; Ståhl, P.L.; Yucel-Lindberg, T.; Lundeberg, J. An Automated Approach to Prepare Tissue-Derived Spatially Barcoded RNA-Sequencing Libraries. Sci. Rep. 2016, 6, 37137. [Google Scholar] [CrossRef] [PubMed]
- Salmén, F.; Ståhl, P.L.; Mollbrink, A.; Navarro, J.F.; Vickovic, S.; Frisén, J.; Lundeberg, J. Barcoded Solid-Phase RNA Capture for Spatial Transcriptomics Profiling in Mammalian Tissue Sections. Nat. Protoc. 2018, 13, 2501–2534. [Google Scholar] [CrossRef]
- Rodriques, S.G.; Stickels, R.R.; Goeva, A.; Martin, C.A.; Murray, E.; Vanderburg, C.R.; Welch, J.; Chen, L.M.; Chen, F.; Macosko, E.Z. Slide-Seq: A Scalable Technology for Measuring Genome-Wide Expression at High Spatial Resolution. Science 2019, 363, 1463–1467. [Google Scholar] [CrossRef]
- Chen, A.; Liao, S.; Cheng, M.; Ma, K.; Wu, L.; Lai, Y.; Qiu, X.; Yang, J.; Xu, J.; Hao, S.; et al. Spatiotemporal Transcriptomic Atlas of Mouse Organogenesis Using DNA Nanoball-Patterned Arrays. Cell 2022, 185, 1777–1792.e21. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Zhao, G.; Lee, Y.J.; Buzdin, A.; Mu, X.; Zhao, J.; Chen, H.; Li, X. Spatial Transcriptomics: Technologies, Applications and Experimental Considerations. Genomics 2023, 115, 110671. [Google Scholar] [CrossRef] [PubMed]
- Safabakhsh, S.; Sar, F.; Martelotto, L.; Haegert, A.; Singhera, G.; Hanson, P.; Parker, J.; Collins, C.; Rohani, L.; Laksman, Z. Isolating Nuclei From Frozen Human Heart Tissue for Single-Nucleus RNA Sequencing. Curr Protoc 2022, 2, e480. [Google Scholar] [CrossRef]
- Yue, L.; Liu, F.; Hu, J.; Yang, P.; Wang, Y.; Dong, J.; Shu, W.; Huang, X.; Wang, S. A Guidebook of Spatial Transcriptomic Technologies, Data Resources and Analysis Approaches. Comput. Struct. Biotechnol. J. 2023, 21, 940–955. [Google Scholar] [CrossRef] [PubMed]
- Partel, G.; Hilscher, M.M.; Milli, G.; Solorzano, L.; Klemm, A.H.; Nilsson, M.; Wählby, C. Automated Identification of the Mouse Brain’s Spatial Compartments from in Situ Sequencing Data. BMC Biol. 2020, 18, 144. [Google Scholar] [CrossRef]
- Chen, S.; Loper, J.; Chen, X.; Vaughan, A.; Zador, A.M.; Paninski, L. BARcode DEmixing through Non-Negative Spatial Regression (BarDensr). PLoS Comput. Biol. 2021, 17, e1008256. [Google Scholar] [CrossRef] [PubMed]
- Eichenberger, B.T.; Zhan, Y.; Rempfler, M.; Giorgetti, L.; Chao, J.A. DeepBlink: Threshold-Independent Detection and Localization of Diffraction-Limited Spots. Nucleic Acids Res. 2021, 49, 7292–7297. [Google Scholar] [CrossRef] [PubMed]
- Petukhov, V.; Xu, R.J.; Soldatov, R.A.; Cadinu, P.; Khodosevich, K.; Moffitt, J.R.; Kharchenko, P. V Cell Segmentation in Imaging-Based Spatial Transcriptomics. Nat. Biotechnol. 2022, 40, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Partel, G.; Wählby, C. Spage2vec: Unsupervised Representation of Localized Spatial Gene Expression Signatures. FEBS J. 2021, 288, 1859–1870. [Google Scholar] [CrossRef] [PubMed]
- Prabhakaran, S. Sparcle: Assigning Transcripts to Cells in Multiplexed Images. Bioinform. Adv. 2022, 2, vbac048. [Google Scholar] [CrossRef]
- Wolf, F.A.; Angerer, P.; Theis, F.J. SCANPY: Large-Scale Single-Cell Gene Expression Data Analysis. Genome Biol. 2018, 19, 15. [Google Scholar] [CrossRef] [PubMed]
- Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M.; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive Integration of Single-Cell Data. Cell 2019, 177, 1888–1902.e21. [Google Scholar] [CrossRef] [PubMed]
- Dries, R.; Zhu, Q.; Dong, R.; Eng, C.-H.L.; Li, H.; Liu, K.; Fu, Y.; Zhao, T.; Sarkar, A.; Bao, F.; et al. Giotto: A Toolbox for Integrative Analysis and Visualization of Spatial Expression Data. Genome Biol. 2021, 22, 78. [Google Scholar] [CrossRef] [PubMed]
- Saiselet, M.; Rodrigues-Vitória, J.; Tourneur, A.; Craciun, L.; Spinette, A.; Larsimont, D.; Andry, G.; Lundeberg, J.; Maenhaut, C.; Detours, V. Transcriptional Output, Cell-Type Densities, and Normalization in Spatial Transcriptomics. J. Mol. Cell Biol. 2020, 12, 906–908. [Google Scholar] [CrossRef]
- Hong, D.; Yang, F.; Fessler, J.A.; Balzano, L. Optimally Weighted PCA for High-Dimensional Heteroscedastic Data. SIAM J. Math. Data Sci. 2023, 5, 222–250. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Yuan, Y.; Bar-Joseph, Z. GCNG: Graph Convolutional Networks for Inferring Gene Interaction from Spatial Transcriptomics Data. Genome Biol. 2020, 21, 300. [Google Scholar] [CrossRef]
- Ghazanfar, S.; Lin, Y.; Su, X.; Lin, D.M.; Patrick, E.; Han, Z.-G.; Marioni, J.C.; Yang, J.Y.H. Investigating Higher-Order Interactions in Single-Cell Data with ScHOT. Nat. Methods 2020, 17, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Asp, M.; Giacomello, S.; Larsson, L.; Wu, C.; Fürth, D.; Qian, X.; Wärdell, E.; Custodio, J.; Reimegård, J.; Salmén, F.; et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart. Cell 2019, 179, 1647–1660.e19. [Google Scholar] [CrossRef] [PubMed]
- Farah, E.N.; Hu, R.K.; Kern, C.; Zhang, Q.; Lu, T.Y.; Ma, Q.; Tran, S.; Zhang, B.; Carlin, D.; Monell, A.; et al. Spatially Organized Cellular Communities Form the Developing Human Heart. Nature 2024, 627, 854–864. [Google Scholar] [CrossRef]
- Lázár, E.; Mauron, R.; Andrusivová, Ž.; Foyer, J.; He, M.; Larsson, L.; Shakari, N.; Salas, S.M.; Avenel, C.; Sariyar, S.; et al. Spatial Dynamics of the Developing Human Heart. bioRxiv 2024. [Google Scholar]
- Kanemaru, K.; Cranley, J.; Muraro, D.; Miranda, A.M.A.; Ho, S.Y.; Wilbrey-Clark, A.; Patrick Pett, J.; Polanski, K.; Richardson, L.; Litvinukova, M.; et al. Spatially Resolved Multiomics of Human Cardiac Niches. Nature 2023, 619, 801–810. [Google Scholar] [CrossRef]
- Vyas, V.; Sandhar, B.; Keane, J.M.; Wood, E.G.; Blythe, H.; Jones, A.; Shahaj, E.; Fanti, S.; Williams, J.; Metic, N.; et al. Tissue-Resident Memory T Cells in Epicardial Adipose Tissue Comprise Transcriptionally Distinct Subsets That Are Modulated in Atrial Fibrillation. Nat. Cardiovasc. Res. 2024, 3, 1067–1082. [Google Scholar] [CrossRef]
- Amrute, J.M.; Luo, X.; Penna, V.; Yang, S.; Yamawaki, T.; Hayat, S.; Bredemeyer, A.; Jung, I.-H.; Kadyrov, F.F.; Heo, G.S.; et al. Targeting Immune-Fibroblast Cell Communication in Heart Failure. Nature 2024, 635, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Kuppe, C.; Ramirez Flores, R.O.; Li, Z.; Hayat, S.; Levinson, R.T.; Liao, X.; Hannani, M.T.; Tanevski, J.; Wünnemann, F.; Nagai, J.S.; et al. Spatial Multi-Omic Map of Human Myocardial Infarction. Nature 2022, 608, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Linna-Kuosmanen, S.; Schmauch, E.; Galani, K.; Ojanen, J.; Boix, C.A.; Örd, T.; Toropainen, A.; Singha, P.K.; Moreau, P.R.; Harju, K.; et al. Transcriptomic and Spatial Dissection of Human Ex Vivo Right Atrial Tissue Reveals Proinflammatory Microvascular Changes in Ischemic Heart Disease. Cell Rep. Med. 2024, 5, 101556. [Google Scholar] [CrossRef]
- Ninh, V.K.; Calcagno, D.M.; Yu, J.D.; Zhang, B.; Taghdiri, N.; Sehgal, R.; Mesfin, J.M.; Chen, C.J.; Kalhor, K.; Toomu, A.; et al. Spatially Clustered Type I Interferon Responses at Injury Borderzones. Nature 2024, 633, 174–181. [Google Scholar] [CrossRef]
- Gastanadui, M.G.; Margaroli, C.; Litovsky, S.; Richter, R.P.; Wang, D.; Xing, D.; Wells, J.M.; Gaggar, A.; Nanda, V.; Patel, R.P.; et al. Spatial Transcriptomic Approach to Understanding Coronary Atherosclerotic Plaque Stability. Arterioscler. Thromb. Vasc. Biol. 2024, 44, e264–e276. [Google Scholar] [CrossRef]
- Ståhl, P.L.; Salmén, F.; Vickovic, S.; Lundmark, A.; Navarro, J.F.; Magnusson, J.; Giacomello, S.; Asp, M.; Westholm, J.O.; Huss, M.; et al. Visualization and Analysis of Gene Expression in Tissue Sections by Spatial Transcriptomics. Science 2016, 353, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Langseth, C.M.; Salas, S.M.; Metousis, A.; Alana, E.R.; Garcia-Moreno, F.; Grillo, M.; Nilsson, M. Open-Source, High-Throughput Targeted in-Situ Transcriptomics for Developmental Biologists. bioRxiv 2023. [Google Scholar]
- Kumar, A.; Schrader, A.W.; Boroojeny, A.E.; Asadian, M.; Lee, J.; Song, Y.J.; Zhao, S.D.; Han, H.-S.; Sinha, S. Intracellular Spatial Transcriptomic Analysis Toolkit (InSTAnT). Res. Sq. 2023, 15, 7794. [Google Scholar] [CrossRef] [PubMed]
- Megill, C.; Martin, B.; Weaver, C.; Bell, S.; Prins, L.; Badajoz, S.; McCandless, B.; Pisco, A.O.; Kinsella, M.; Griffin, F.; et al. Cellxgene: A Performant, Scalable Exploration Platform for High Dimensional Sparse Matrices. bioRxiv 2021. [Google Scholar]
- Wang, G.; Wu, S.; Xiong, Z.; Qu, H.; Fang, X.; Bao, Y. CROST: A Comprehensive Repository of Spatial Transcriptomics. Nucleic Acids Res. 2024, 52, D882–D890. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, W.; Yang, T.; Li, L.; Ma, X.; Chen, J.; Wang, J.; Huang, Y.; Gould, J.; Lu, H.; et al. STOmicsDB: A Comprehensive Database for Spatial Transcriptomics Data Sharing, Analysis and Visualization. Nucleic Acids Res. 2024, 52, D1053–D1061. [Google Scholar] [CrossRef]
No | Platform | Method | Species Compatibility | Tissue Compatibility | Capture Area Size | RNA Targets | Resolution | Tissue Section |
---|---|---|---|---|---|---|---|---|
1 | 10x Genomics Visium | Sequencing-based | Human, mouse | Fresh frozen, fixed frozen, FFPE | 6.5 mm × 6.5 mm | Whole transcriptome | Single cell, 2 × 2 µm | Standard glass slides |
2 | STomics Stereo-seq | Sequencing-based | Human, mouse, others | Fresh frozen | 1 cm × 1 cm, up to 13 cm × 13 cm | Whole transcriptome | Subcellular | Stereo-seq chip slides |
3 | Curio Bioscience CurioSeeker | Sequencing-based | Human, mouse, others | Fresh frozen | 3 mm × 3 mm or 10 mm × 10 mm | Whole transcriptome | Single cell | CurioSeeker tiles |
4 | 10x Genomics Xenium | Imaging-based | Human, mouse | Fresh frozen, FFPE | 22.5 mm × 10.5 mm | 5000 genes | Subcellular | Xenium slides |
5 | NanoString CosMX | Imaging-based | Human, mouse | Fresh frozen, FFPE | 20 mm × 15 mm | 6000 genes | Subcellular | Standard glass slides |
6 | Resolve Biosciences Molecular Cartography | Imaging-based | Human, mouse, others | Fresh frozen, FFPE | 8 placement areas, each area 1 cm2, in total maximum 26 mm2 across all samples | 100 genes | Subcellular | Molecular Cartography slides |
7 | Vizgen MERSCOPE | Imaging-based | Human, mouse | Fresh frozen, fixed frozen, FFPE | 3 cm2 | 1000 genes | Subcellular | MERSCOPE slides |
8 | NanoString GeoMx | Hybrid | Human, mouse | Fresh frozen, fixed frozen, FFPE | 35.3 mm × 14.1 mm | Whole transcriptome | Area of illumination, minimum 5 μm × 5 μm | Standard glass slides |
Topics | Author | Year | Tissue Type | ST Technology | Commercial ST Platform | Other Omics Technology (Platform) | In Vitro/In Vivo Verification |
---|---|---|---|---|---|---|---|
Cardiac development | Asp et al. [43] | 2022 | Fresh frozen | Sequencing-based | - | scRNA-seq (10x Genomics) | - |
Imaging-based (ISS) | - | ||||||
Farah et al. [44] | 2024 | FFPE | Imaging-based (MERFISH) | - | scRNA-seq (10x Genomics) | Yes (hPSC model, mouse model) | |
Lazar et al. [45] | 2024 | Fresh frozen | Sequencing-based | Visium | scRNA-seq (10x Genomics) | - | |
Imaging-based (ISS) | - | ||||||
Cardiac electro-anatomy and immunology | Kanemaru et al. [46] | 2023 | Fresh frozen, OCT frozen, FFPE | Sequencing-based | Visium | scRNA-seq, scATAC-seq (10x Genomics) | Yes (hPSC model) |
Vyas et al. [47] | 2024 | FFPE | Hybrid | GeoMx DSP | scRNA-seq, scCITE-seq (10x Genomics) | Yes (hPSC model) | |
Amrute et al. [48] | 2024 | Used previously published ST datasets | scRNA-seq, scCITE-seq, scATAC-seq (10x Genomics) | Yes (human fibroblast models, mouse models) | |||
Ischemic heart disease | Kuppe et al. [49] | 2022 | Fresh frozen | Sequencing-based | Visium | scRNA-seq, scATAC-seq (10x Genomics) | Yes (immortalized human cell line, mouse model) |
Lina-Kuosmanen et al. [50] | 2024 | Fresh frozen | Sequencing-based | Visium | scRNA-seq (10x Genomics) | Yes (human vascular cell lines) | |
Imaging-based (ISH) | Molecular Cartography | ||||||
Ninh et al. [51] | 2024 | Used previously published ST datasets | - | Yes (hPSC model, mouse model) | |||
Gastanadui et al. [52] | 2024 | FFPE | Hybrid | GeoMx DSP | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, Q.; Tung, L.W.; Lin, B.; Sivakumar, R.; Sar, F.; Singhera, G.; Wang, Y.; Parker, J.; Le Bihan, S.; Singh, A.; et al. Spatial Transcriptomics in Human Cardiac Tissue. Int. J. Mol. Sci. 2025, 26, 995. https://doi.org/10.3390/ijms26030995
Nguyen Q, Tung LW, Lin B, Sivakumar R, Sar F, Singhera G, Wang Y, Parker J, Le Bihan S, Singh A, et al. Spatial Transcriptomics in Human Cardiac Tissue. International Journal of Molecular Sciences. 2025; 26(3):995. https://doi.org/10.3390/ijms26030995
Chicago/Turabian StyleNguyen, Quynh, Lin Wei Tung, Bruce Lin, Raam Sivakumar, Funda Sar, Gurpreet Singhera, Ying Wang, Jeremy Parker, Stephane Le Bihan, Amrit Singh, and et al. 2025. "Spatial Transcriptomics in Human Cardiac Tissue" International Journal of Molecular Sciences 26, no. 3: 995. https://doi.org/10.3390/ijms26030995
APA StyleNguyen, Q., Tung, L. W., Lin, B., Sivakumar, R., Sar, F., Singhera, G., Wang, Y., Parker, J., Le Bihan, S., Singh, A., M.V. Rossi, F., Collins, C., Bashir, J., & Laksman, Z. (2025). Spatial Transcriptomics in Human Cardiac Tissue. International Journal of Molecular Sciences, 26(3), 995. https://doi.org/10.3390/ijms26030995