1-(4-Fluorobenzoyl)-9H-carbazole
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Synthesis of 1-(4-Fluorobenzoyl)-9H-carbazole (1)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, J.; Jana, A.K.; Mal, D. Recent trends in the synthesis of carbazoles: An update. Tetrahedron 2012, 68, 6099–6121. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Rewcastle, G.W.; Vazquez de Miguel, L.M. Improved syntheses of substituted carbazoles and benzocarbazoles via lithiation of the (dialkylamino)methyl (aminal) derivatives. J. Org. Chem. 1988, 53, 794–799. [Google Scholar] [CrossRef]
- Bandgar, B.P.; Patil, A.V. A rapid, solvent-free, ligandless and mild method for preparing aromatic ketones from acyl chlorides and arylboronic acids via a Suzuki–Miyaura type of coupling reaction. Tetrahedron Lett. 2005, 46, 7627–7630. [Google Scholar] [CrossRef]
- Wu, J.-Q.; Yang, Z.; Zhang, S.-S.; Jiang, C.-Y.; Li, Q.; Huang, Z.-S.; Wang, H. From Indoles to Carbazoles: Tandem Cp*Rh(III)-Catalyzed C–H Activation/Brønsted Acid-Catalyzed Cyclization Reactions. ACS Catal. 2015, 5, 6453–6457. [Google Scholar] [CrossRef]
- Su, X.-X.; Chen, Y.-R.; Wu, J.-Q.; Wu, X.-Z.; Li, K.-T.; Wang, X.-N.; Sun, J.-W.; Wang, H.; Ou, T.-M. Design, synthesis, and evaluation of 9-(pyrimidin-2-yl)-9H-carbazole derivatives disrupting mitochondrial homeostasis in human lung adenocarcinoma. Eur. J. Med. Chem. 2022, 232, 114200. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Das, T.K.; Datta, D.B.; Mehta, S. Studies on enamides. Part 1: Photochemical rearrangements of N-aroylcarbazoles. Tetrahedron Lett. 1987, 28, 4611–4614. [Google Scholar] [CrossRef]
- Bonesi, S.M.; Erra-Balsells, R. Recent work on the synthesis of 3,6-dibenzoylcarbazole. J. Heterocycl. Chem. 1991, 28, 1035–1038. [Google Scholar] [CrossRef]
- Antonchick, A.P.; Samanta, R.; Kulikov, K.; Lategahn, J. Organocatalytic, Oxidative, Intramolecular C–H Bond Amination and Metal-free Cross-Amination of Unactivated Arenes at Ambient Temperature. Angew. Chem. Int. Ed. 2011, 50, 8605–8608. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Burgula, L.; Chakraborti, G.; Dash, J. Palladium-Catalyzed Pyridine-Directed Regioselective Oxidative C–H Acylation of Carbazoles by Using Aldehydes as the Acyl Source. Eur. J. Org. Chem. 2017, 2017, 332–340. [Google Scholar] [CrossRef]
- Laube, M.; Gassner, C.; Sharma, S.K.; Günther, R.; Pigorsch, A.; König, J.; Köckerling, M.; Wuest, F.; Pietzsch, J.; Kniess, T. Diaryl-Substituted (Dihydro)pyrrolo[3,2,1-hi]indoles, a Class of Potent COX-2 Inhibitors with Tricyclic Core Structure. J. Org. Chem. 2015, 80, 5611–5624. [Google Scholar] [CrossRef] [PubMed]
- Gassner, C.; Neuber, C.; Laube, M.; Bergmann, R.; Kniess, T.; Pietzsch, J. Development of a 18F-labeled Diaryl-Substituted Dihydropyrrolo[3,2,1-hi]indole as Potential Probe for Functional Imaging of Cyclooxygenase-2 with PET. ChemistrySelect 2016, 1, 5812–5820. [Google Scholar] [CrossRef]
- Laube, M.; Gassner, C.; Neuber, C.; Wodtke, R.; Ullrich, M.; Haase-Kohn, C.; Löser, R.; Köckerling, M.; Kopka, K.; Kniess, T.; et al. Deuteration versus ethylation–strategies to improve the metabolic fate of an 18F-labeled celecoxib derivative. RSC Adv. 2020, 10, 38601–38611. [Google Scholar] [CrossRef] [PubMed]
- Adachi, M.; Sugasawa, T. Exclusive Ortho Cyanation and Alkylthiocarbonylation of Anilines and Phenols Using Boron Trichloride. Synth. Commun. 1990, 20, 71–84. [Google Scholar] [CrossRef]
- Lo, Y.S.; Walsh, D.A.; Welstead, W.J.; Mays, R.P.; Rose, E.K.; Causey, D.H.; Duncan, R.L. Synthesis of 2-amino-3-benzoylphenylacetic acid. J. Heterocycl. Chem. 1980, 17, 1663–1664. [Google Scholar] [CrossRef]
- Walsh, D.A. The Synthesis of 2-Aminobenzophenones. Synthesis 1980, 1980, 677. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, D.S.; Rosenbohm, C. Dry Column Vacuum Chromatography. Synthesis 2001, 2001, 2431–2434. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laube, M.; König, J.; Köckerling, M.; Kniess, T. 1-(4-Fluorobenzoyl)-9H-carbazole. Molbank 2022, 2022, M1430. https://doi.org/10.3390/M1430
Laube M, König J, Köckerling M, Kniess T. 1-(4-Fluorobenzoyl)-9H-carbazole. Molbank. 2022; 2022(3):M1430. https://doi.org/10.3390/M1430
Chicago/Turabian StyleLaube, Markus, Jonas König, Martin Köckerling, and Torsten Kniess. 2022. "1-(4-Fluorobenzoyl)-9H-carbazole" Molbank 2022, no. 3: M1430. https://doi.org/10.3390/M1430
APA StyleLaube, M., König, J., Köckerling, M., & Kniess, T. (2022). 1-(4-Fluorobenzoyl)-9H-carbazole. Molbank, 2022(3), M1430. https://doi.org/10.3390/M1430