3-Benzoyl-2-hydroxy-3a-[(3-methylquinoxalin-2-yl)methyl]-1H-pyrrolo[2,1-c][1,4]benzothiazine-1,4(3aH)-dione
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. 3-Benzoyl-2-hydroxy-3a-[(3-methylquinoxalin-2-yl)methyl]-1H-pyrrolo[2,1-c][1,4]-benzothiazine-1,4-(3aH)-dione 12
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choudhary, S.; Silakari, O. Chapter 7: Thiazine: A Versatile Heterocyclic Scaffold for Multifactorial Diseases. In Key Heterocycle Cores for Designing Multitargeting Molecules, 1st ed.; Silakari, O., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 247–284. [Google Scholar] [CrossRef]
- Ajani, O.O. Present status of quinoxaline motifs: Excellent pathfinders in therapeutic medicine. Eur. J. Med. Chem. 2014, 85, 688–715. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Hollingsworth, R.I. Design and Evaluation of Dihydroxytetrahydro-1H-pyrrolo[2,1-c]-[1,4]benzothiazines as Conformationally Restricted Transition-State Inhibitors of β-Ribosidases. J. Org. Chem. 2005, 70, 9013–9016. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, N.; Reddy, B.Y.; Kumar, G.S.; Khera, M.K.; Srinivas, D.; Kumar, M.S.; Das, J.; Iqbal, J.; Trehan, S. Synthesis of novel tricyclic oxazolidinones by a tandem SN2 and SNAr reaction: SAR studies on conformationally constrained analogues of Linezolid. Bioorg. Med. Chem. Lett. 2006, 16, 4416–4419. [Google Scholar] [CrossRef] [PubMed]
- Ellouz, M.; Sebbar, N.K.; Fichtali, I.; Ouzidan, Y.; Mennane, Z.; Charof, R.; Mague, J.T.; Urrutigoïty, M.; Essassi, E.M. Synthesis and antibacterial activity of new 1,2,3-triazolylmethyl-2H-1,4-benzothiazin-3(4H)-one derivatives. Chem. Cent. J. 2018, 12, 123. [Google Scholar] [CrossRef] [PubMed]
- Skiles, J.W.; Suh, J.T.; Williams, B.E.; Menard, P.R.; Barton, J.N.; Loev, B.; Jones, H.; Neiss, E.S.; Schwab, A. Angiotensin-converting enzyme inhibitors: New orally active 1,4-thiazepine-2,5-diones, 1,4-thiazine-2,5-diones, and 1,4-benzothiazepine-2,5-diones possessing antihypertensive activity. J. Med. Chem. 1986, 29, 784–796. [Google Scholar] [CrossRef] [PubMed]
- Corelli, F.; Manetti, F.; Tafi, A.; Campiani, G.; Nacci, V.; Botta, M. Diltiazem-like Calcium Entry Blockers: A Hypothesis of the Receptor-Binding Site Based on a Comparative Molecular Field Analysis Model. J. Med. Chem. 1997, 40, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Kritz, H.; Oguogho, A.; Aghajanian, A.A.; Sinzinger, H. Semotiadil, a new calcium antagonist, is a very potent inhibitor of LDL-oxidation. Prostaglandins Leukot. Essent. Fat. Acids 1999, 61, 183–188. [Google Scholar] [CrossRef]
- Morales-Castellanos, J.J.; Ramírez-Hernández, K.; Gómez-Flores, N.S.; Rodas-Suárez, O.R.; Peralta-Cruz, J. Microwave-assisted Solvent-free Synthesis and in Vitro Antibacterial Screening of Quinoxalines and Pyrido[2,3b]pyrazines. Molecules 2012, 17, 5164–5176. [Google Scholar] [CrossRef]
- Abdelfattah, M.S.; Toume, K.; Ishibashi, M. Isolation and structure elucidation of izuminosides A–C: A rare phenazine glycosides from Streptomyces sp. IFM 11260. J. Antibiot. 2011, 64, 271–275. [Google Scholar] [CrossRef]
- Gazit, A.; App, H.; McMahon, G.; Chen, J.; Levitzki, A.; Bohmer, F.D. Tyrphostins. 5. Potent Inhibitors of Platelet-Derived Growth Factor Receptor Tyrosine Kinase: Structure—Activity Relationships in Quinoxalines, Quinolines, and Indole Tyrphostins. J. Med. Chem. 1996, 39, 2170–2177. [Google Scholar] [CrossRef]
- Suwanhom, P.; Saetang, J.; Khongkow, P.; Nualnoi, T.; Tipmanee, V.; Lomlim, L. Synthesis, Biological Evaluation, and In Silico Studies of New Acetylcholinesterase Inhibitors Based on Quinoxaline Scaffold. Molecules 2021, 26, 4895. [Google Scholar] [CrossRef]
- Konovalova, V.V.; Shklyaev, Y.V.; Maslivets, A.N. Reactions of fused pyrrole-2,3-diones with dinucleophiles. ARKIVOC 2015, i, 48–69. [Google Scholar] [CrossRef]
- Konovalova, V.V.; Maslivets, A.N. Synthesis of Spiro Compounds Based on 1H-Pyrrole-2,3-Diones. Mini-Rev. Org. Chem. 2019, 16, 173–192. [Google Scholar] [CrossRef]
- Lystsova, E.A.; Khramtsova, E.E.; Maslivets, A.N. Acyl(imidoyl)ketenes: Reactive Bidentate Oxa/Aza-Dienes for Organic Synthesis. Symmetry 2021, 13, 1509. [Google Scholar] [CrossRef]
- Konovalova, V.V.; Shklyaev, Y.V.; Maslivets, A.N. Reaction of 3-aroylpyrrolo[1,2-a]quinoxaline-1,2,4(5H)-triones with quinaldine and substituted quinoxalines. Rus. J. Org. Chem. 2015, 51, 680–685. [Google Scholar] [CrossRef]
- Khramtsova, E.E.; Lystsova, E.A.; Dmitriev, M.V.; Maslivets, A.N.; Jasiński, R. Reaction of Aroylpyrrolobenzothiazinetriones with Electron-Rich Dienophiles. ChemistrySelect 2021, 6, 6295–6301. [Google Scholar] [CrossRef]
- Lystsova, E.A.; Dmitriev, M.V.; Maslivets, A.N.; Khramtsova, E.E. Nucleophile-induced ring contraction in pyrrolo[2,1-c][1,4]benzothiazines: Access to pyrrolo[2,1-b][1,3]benzothiazoles. Beilstein J. Org. Chem. 2023, 19, 646–657. [Google Scholar] [CrossRef] [PubMed]
- Lystsova, E.A.; Novikov, A.S.; Dmitriev, M.V.; Maslivets, A.N.; Khramtsova, E.E. Approach to Pyrido[2,1-b][1,3]benzothiazol-1-ones via In Situ Generation of Acyl(1,3-benzothiazol-2-yl)ketenes by Thermolysis of Pyrrolo[2,1-c][1,4]benzothiazine-1,2,4-triones. Molecules 2023, 28, 5495. [Google Scholar] [CrossRef]
- Beyer, C.; Claisen, L. Ueber die Einführung von Säureradicalen in Ketone. Ber. Dtsch. Chem. Ges. 1887, 20, 2178–2188. [Google Scholar] [CrossRef]
- Stepanova, E.E.; Dmitriev, M.V.; Maslivets, A.N. Synthesis of 1,4-benzothiazinones from acylpyruvic acids or furan-2,3-diones and o-aminothiophenol. Beilstein J. Org. Chem. 2020, 16, 2322–2331. [Google Scholar] [CrossRef]
- CrysAlisPro, Version 1.171.37.33 (Release 27-03-2014 CrysAlis171.NET); Agilent Technologies: Santa Clara, CA, USA, 2014.
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lystsova, E.A.; Khramtsova, E.E. 3-Benzoyl-2-hydroxy-3a-[(3-methylquinoxalin-2-yl)methyl]-1H-pyrrolo[2,1-c][1,4]benzothiazine-1,4(3aH)-dione. Molbank 2023, 2023, M1749. https://doi.org/10.3390/M1749
Lystsova EA, Khramtsova EE. 3-Benzoyl-2-hydroxy-3a-[(3-methylquinoxalin-2-yl)methyl]-1H-pyrrolo[2,1-c][1,4]benzothiazine-1,4(3aH)-dione. Molbank. 2023; 2023(4):M1749. https://doi.org/10.3390/M1749
Chicago/Turabian StyleLystsova, Ekaterina A., and Ekaterina E. Khramtsova. 2023. "3-Benzoyl-2-hydroxy-3a-[(3-methylquinoxalin-2-yl)methyl]-1H-pyrrolo[2,1-c][1,4]benzothiazine-1,4(3aH)-dione" Molbank 2023, no. 4: M1749. https://doi.org/10.3390/M1749
APA StyleLystsova, E. A., & Khramtsova, E. E. (2023). 3-Benzoyl-2-hydroxy-3a-[(3-methylquinoxalin-2-yl)methyl]-1H-pyrrolo[2,1-c][1,4]benzothiazine-1,4(3aH)-dione. Molbank, 2023(4), M1749. https://doi.org/10.3390/M1749