Germinable Soil Seed Bank in Biancana Badlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Vegetation and Seed Bank Sampling
2.3. Data Analysis
3. Results
3.1. Species Richness in Standing Vegetation
3.2. Species Richness and Density in Germinable Soil Seed Bank
3.3. Relationship between the Standing Vegetation and Germinable Seed Bank and the Spatial Pattern of the Community Composition
4. Discussion
4.1. Germinable Soil Seed Bank Composition and Density
4.2. Spatial Pattern of Communities and Relationships between the Standing Vegetation and Seed Bank
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harper, J.L. Population Biology of Plants; Academic Press: London, UK, 1977. [Google Scholar]
- Hodgson, J.G.; Grime, J.P. The role of dispersal mechanism, regenerative strategies and seedbanks in the vegetation dynamics of the British landscape. In Seed, the Ecology of Regeneration in Plant Communities; Fenner, M., Ed.; CAB International: Wallingford, UK, 1992; pp. 65–81. [Google Scholar]
- Pakeman, R.J.; Hay, E. Heathland seedbanks under bracken Pteridium aquilinum (L.) Kuhn and their importance for re-vegetation after bracken control. J. Environ. Manag. 1996, 47, 329–339. [Google Scholar] [CrossRef]
- Kalamees, R.; Zobel, M. Soil seed bank composition in different successional stages of a species-rich wooded meadow in Laelatu, western Estonia. Acta Oecol. 1998, 19, 175–180. [Google Scholar] [CrossRef]
- Bakker, J.P.; Poschlod, P.; Strykstra, R.J.; Bekker, R.M.; Thompson, K. Seed banks and seed dispersal: Important topics in restoration ecology. Acta Bot. Neerl. 1996, 45, 461–490. [Google Scholar] [CrossRef]
- Bekker, R.M.; Verweij, G.L.; Smith, R.E.N.; Reine, R.; Bakker, J.P.; Schneider, S. Soil seed bank in European grasslands: Does land use affect regeneration perspectives? J. Appl. Ecol. 1997, 34, 1293–1310. [Google Scholar] [CrossRef]
- Strykstra, R.J.; Bekker, R.M.; Bakker, J.P. Assessment of dispersule availability: Its practical use in restoration management. Acta. Bot. Neerl. 1998, 47, 57–70. [Google Scholar]
- Maccherini, S.; De Dominicis, V. Germinable soil seed-bank of former grassland converted to coniferous plantation. Ecol. Res. 2003, 18, 739–751. [Google Scholar] [CrossRef]
- Hirst, R.A.; Pywell, R.F.; Marrs, R.H.; Putwain, P.D. The resilience of calcareous and mesotrophic grasslands following disturbance. J. Appl. Ecol. 2005, 42, 498–506. [Google Scholar] [CrossRef]
- Bossuyt, B.; Honnay, O. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. J. Veg. Sci. 2008, 19, 875–884. [Google Scholar] [CrossRef]
- Török, P.; Helm, A.; Kiehl, K.; Buisson, E.; Valkó, O. Beyond the species pool: Modification of species dispersal, establishment, and assembly by habitat restoration. Restor. Ecol. 2018, 26, S65–S72. [Google Scholar] [CrossRef]
- Caballero, I.; Olano, J.M.; Loidi, J.; Escudero, A. Seed bank structure along a semi-arid gypsum gradient in Central Spain. J. Arid Environ. 2003, 55, 287–299. [Google Scholar] [CrossRef]
- Leck, M.A.; Parker, K.P.; Simpson, R.L. The Ecology of Soil Seed Banks; Academic Press: San Diego, CA, USA, 1989. [Google Scholar]
- Albrecht, H.; Pilgram, M. The weed seed bank of soil in a landscape segment in southern Bavaria. Plant Ecol. 1997, 131, 31–43. [Google Scholar] [CrossRef]
- Rydgren, K.; Hestmark, G. The soil propagule bank in a boreal old-growth spruce forest: Changes with depth and relationship to aboveground vegetation. Can. J. Bot. 1997, 75, 121–128. [Google Scholar] [CrossRef]
- Olano, J.M.; Caballero, I.; Laskurain, N.A.; Loidi, J.; Escudero, A. Seed bank spatial pattern in a temperate secondary forest. J. Veg. Sci. 2002, 13, 775–784. [Google Scholar] [CrossRef]
- Chambers, J.C. Seed movements and seedling fates in disturbed sagebrush steppe ecosystems: Implications for restoration. Ecol. Appl. 2000, 10, 1400–1413. [Google Scholar] [CrossRef]
- Matus, G.; Tothmeresz, B.; Papp, M. Restoration prospects of abandoned species-rich sandy grassland in Hungary. Appl. Veg. Sci. 2003, 6, 169–178. [Google Scholar] [CrossRef]
- Gallart, F.; Marignani, M.; Pérez-Gallego, N.; Santi, E.; Maccherini, S. Thirty years of studies on badlands, from physical to vegetational approaches: A succinct review. Catena 2013, 106, 4–11. [Google Scholar] [CrossRef]
- García-Fayos, P.; Recatalà, R.M. La reserva de semillas en una cuenca de “badlands” (Petrer, Alicante) Pirineos. Rev. Ecol. Mont. 1992, 140, 29–36. [Google Scholar] [CrossRef]
- García-Fayos, P.; Recatalá, T.; Cerdá, A.; Calvo, A. Seed population dynamics on badland slopes in southeastern Spain. J. Veg. Sci. 1995, 6, 691–696. [Google Scholar] [CrossRef]
- Cerdá, A.; García-Fayos, P. The influence of slope angle on sediment, water and seed losses on badland landscapes. Geomorphology 1997, 18, 77–90. [Google Scholar]
- Guardia, R.; Gallart, F.; Ninot, J.M. Soil seed bank and seedling dynamics in badlands of the Upper Llobregat basin (Pyrenees). Catena 2000, 40, 189–202. [Google Scholar] [CrossRef]
- Branconi, S.; De Dominicis, V.; Boscagli, A.; Boldi, L. La vegetazione dei terreni argillosi pliocenici della toscana meridionale. I. Vegetazione pioniera ad Artemisia cretacea. Atti. Soc. Tosc. Sci. Nat. Mem. Ser. B 1979, 86, 163–183. [Google Scholar]
- Chiarucci, A.; Bonini, I.; Maccherini, S.; De Dominicis, V. Influence of colonizing Spartium junceum scrub on Bromus erectus grassland in a biancana badland of the Orcia valley, Tuscany. Arch. Geobot. 1995, 1, 127–134. [Google Scholar]
- Chiarucci, A.; De Dominicis, V.; Ristori, J.; Calzolari, C. Biancana badland vegetation in relation to morphology and soil in Orcia valley, central Italy. Phytocoenologia 1995, 25, 69–87. [Google Scholar] [CrossRef]
- Maccherini, S.; Chiarucci, A.; Torri, D.; Ristori, J.; De Dominicis, V. Influence of salt content of pliocene clay soil on the emergence of six grasses. Isr. J. Plant Sci. 1996, 44, 29–36. [Google Scholar] [CrossRef]
- Maccherini, S.; Chiarucci, A.; De Dominicis, V. Relationship between vegetation and morphology in the Radicofani calanchi (southern Tuscany). Atti. Museo Storia Natur. Maremma 1998, 17, 91–108. [Google Scholar]
- Marignani, M.; Del Vico, E.; Maccherini, S. Spatial scale and sampling size affect the concordance between remotely sensed information and plant community discrimination in restoration monitoring. Biodivers. Conserv. 2007, 16, 3851–3861. [Google Scholar] [CrossRef]
- Maccherini, S.; Marignani, M.; Gioria, M.; Renzi, M.; Rocchini, D.; Santi, E.; Torri, D.; Tundo, J.; Honnay, O. Determinants of plant community composition of remnant biancane badlands: A hierarchical approach to quantify species–environment relationships. Appl. Veg. Sci. 2011, 14, 378–387. [Google Scholar] [CrossRef]
- Torri, D.; Santi, E.; Marignani, M.; Rossi, M.; Borselli, L.; Maccherini, S. The recurring cycles of biancana badlands: Erosion, vegetation and human impact. Catena 2013, 106, 22–30. [Google Scholar] [CrossRef]
- European Commission. European Community Directive 92/43/EEC; European Comission: Brussels, Belgium, 1992. [Google Scholar]
- Maccherini, S.; Chiarucci, A.; De Dominicis, V. Structure and species diversity of Bromus erectus grasslands of biancana badlands. Belg. J. Bot. 2000, 133, 3–14. [Google Scholar] [CrossRef]
- Marignani, M.; Rocchini, D.; Torri, D.; Chiarucci, A.; Maccherini, S. Planning restoration in a cultural landscape in Italy using an object-based approach and historical analysis. Landsc. Urban Plann. 2008, 84, 28–37. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Moore, P.D.; Chapman, S.B. Methods in Plant Ecology; Blackwell Scientific Publications: Oxford, UK, 1986. [Google Scholar]
- Csontos, P. Seed banks: Ecological definitions and sampling considerations. Comm. Ecol. 2007, 8, 75–85. [Google Scholar] [CrossRef]
- Gross, K.L. A comparison of methods for estimating seed numbers in the soil. J. Ecol. 1990, 78, 1079–1093. [Google Scholar] [CrossRef]
- Pignatti, S. Flora d’Italia; Edagricole Bologna: Bologna, Italy, 1982; Volume 1–3. [Google Scholar]
- Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography; Clarendon: Oxford, UK, 1934; p. 632. [Google Scholar]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Anderson, M.J.; Ter Braak, C.J.F. Permutation tests for multi-factorial analysis of variance. J. Stat. Comp. Simul. 2003, 73, 85–113. [Google Scholar] [CrossRef]
- Walters, K.; Coen, L.D. A comparison of statistical approaches to analyzing community convergence between natural and constructed oyster reefs. J. Exp. Mar. Biol. Ecol. 2006, 330, 81–95. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER v6: Users Manual/Tutorial PRIMER-E; Plymouth Marine Laboratory: Plymouth, UK, 2006. [Google Scholar]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods, PRIMER-E; Plymouth Marine Laboratory: Plymouth, UK, 2008. [Google Scholar]
- Kent, M. Vegetation Description and Data Analysis: A Practical Approach; Wiley-Blackwell: Oxford, UK, 2012. [Google Scholar]
- Van den Wollenberg, A.L. Redundancy analysis: An alternative for canonical correlation analysis. Psychometrika 1977, 42, 207–219. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and User’s Guide to CANOCO for Windows: Software for Canonical Community Ordination. [4.5]; Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
- Kemp, P.R. Seed Banks and vegetation processes in deserts. In Ecology of Soil Seed Banks; Leck, M.A., Parker, V.T., Simpson, R.L., Eds.; Academic Press: San Diego, CA, USA, 1989; pp. 257–281. [Google Scholar]
- Czarnecka, J. Spatial and temporal variability of seed bank resulting from overgrowing of xerothermic grassland. Acta Soc. Bot. Pol. 2008, 77, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Davies, A.; Waite, S. The persistence of calcareous grassland species in the soil seed bank under developing and established scrub. Plant Ecol. 1998, 136, 27–39. [Google Scholar] [CrossRef]
- Bossuyt, B.; Butaye, J.; Honnay, O. Seed bank composition of open and overgrown calcareous grassland soils—A case study from Southern Belgium. J. Environ. Manag. 2006, 79, 364–371. [Google Scholar] [CrossRef]
- Milberg, P. Soil seed bank after eighteen years of succession from grassland to forest. Oikos 1995, 72, 3–13. [Google Scholar] [CrossRef]
- Kalamees, R.; Zobel, M. The seed bank in an Estonian calcareous grassland: Comparison of different successional stages. Folia Geobot. Phytotaxon. 1997, 32, 1–14. [Google Scholar] [CrossRef]
- Chabrerie, O.; Alard, D.; Touzard, B. Calcareous grass soil seeds diversity in vegetation and reservoirs in north–western France. Can. J. Bot. 2002, 80, 827–840. [Google Scholar] [CrossRef]
- Bisteau, E.; Mahy, G. Vegetation and seed bank in a calcareous grassland restored from a Pinus forest. Appl. Veg. Sci. 2005, 8, 167–174. [Google Scholar] [CrossRef]
- Bakker, J.P. Nature Management by Grazing and Cutting; Kluwer: Dordrecth, The Netherlands, 1989. [Google Scholar]
- Thompson, K.; Grime, J.P. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 1979, 67, 893–921. [Google Scholar] [CrossRef] [Green Version]
- Rice, K.J. Impacts of seed banks on grassland community structure and pollution dynamics. In Ecology of Seed Banks; Academic Press: San Diego, CA, USA, 1989; pp. 211–230. [Google Scholar]
- Török, P.; Matus, G.; Papp, M.; Tóthmérész, B. Seed bank and vegetation development of sandy grasslands after goose breeding. Folia Geobot. 2009, 44, 31–46. [Google Scholar] [CrossRef]
- Chambers, J.C.; Macmahon, J.A. A day in the life of a seed: Movements and fates of seeds and their implications for natural and managed systems. Annu. Rev. Ecol. Syst. 1994, 25, 263–292. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Petrlic, K.; Verachtert, E.; Bochet, E.; Poesen, J. Effects of slope angle and aspect on plant cover and species richness in a humid Mediterranean badland. Earth Surf. Process. Landf. 2014, 39, 1705–1716. [Google Scholar] [CrossRef]
- García-Fayos, P.; Cerdà, A. Seed losses by surface wash in degraded Mediterranean environments. Catena 1997, 29, 73–83. [Google Scholar] [CrossRef]
- Han, L.; Jiao, J.; Jia, Y.; Wang, N.; Lei, D.; Li, L. Seed removal on loess slopes in relation to runoff and sediment yield. Catena 2011, 85, 12–21. [Google Scholar] [CrossRef]
- Jiao, J.; Han, L.; Jia, Y.; Wang, N.; Lei, D.; Li, L. Can seed removal through soil erosion explain the scarcity of vegetation in the Chinese Loess Plateau? Geomorphology 2011, 132, 35–40. [Google Scholar] [CrossRef]
- Wang, D.; Jiao, J.; Lei, D.; Wang, N.; Du, H.; Jia, Y. Effects of seed morphology on seed removal and plant distribution in the Chinese hill–gully Loess Plateau region. Catena 2013, 104, 144–152. [Google Scholar] [CrossRef]
- Hanlon, T.J.; Williams, C.E.; Moriarity, W.J. Species composition of soil seed banks of Allegheny Plateau riparian forests. J. Torrey Bot. Soc. 1998, 125, 199–215. [Google Scholar] [CrossRef]
Bare Ground (n = 6) | Sparsely Vegetated (n = 6) | Grassland (n = 6) | Overgrown Grassland (n = 4) | Total Number of Seedlings | Habitat Affiliation | Biological Form | |
---|---|---|---|---|---|---|---|
Species | |||||||
Parapholis incurva (L.) Hubbard | 3 | 16 | 15 | 17 | 51 | saline soil | T |
Anagallis arvensis L. | 2 | 12 | 5 | 19 | garrigue, waste | T | |
Avena fatua L. | 2 | 6 | 3 | 11 | pasture, arable | T | |
Artemisia cretacea (Fiori) Pignatti | 1 | 1 | 8 | 10 | pliocene clay | Ch | |
Parapholis strigosa (Dumort) Hubbard | 2 | 6 | 1 | 9 | subsaline soil | T | |
Daucus carota L. | 7 | 2 | 9 | waste, dry pasture | Hb/T | ||
Hippocrepis unisiliquosa L. | 2 | 3 | 3 | 8 | waste scrubland | T | |
Sherardia arvensis L. | 5 | 2 | 7 | garrigue, waste | T | ||
Xeranthemum cylindraceum S. et S. | 6 | 6 | dry pasture, waste | T | |||
Coronilla scorpioides (L.) Koch | 1 | 3 | 2 | 6 | waste, pasture | T | |
Hedysarum coronarium L. | 3 | 3 | 6 | clay soil | H | ||
Hypochaeris achyrophorus L. | 5 | 1 | 6 | waste, dry pasture | T | ||
Carex flacca Schreber | 5 | 5 | pasture | G | |||
Veronica persica Poiret | 3 | 1 | 4 | arable | T | ||
Melilotus sulcata Desf. | 2 | 1 | 3 | arable, dry waste | T | ||
Convolvulus arvensis L. | 3 | 3 | arable, waste | G | |||
Trifolium campestre Schreber | 2 | 2 | dry waste | T | |||
Pallenis spinosa (L.) Cass. | 1 | 1 | 2 | waste dry pasture | T/Hb | ||
Cynodon dactylon (L.) Pers. | 2 | 2 | waste | G/H | |||
Scabiosa columbaria L. | 2 | 2 | pasture | H | |||
Stellaria media (L.) Vill. | 2 | 2 | human habitat | T | |||
Catapodium rigidum (L.) Hubbard | 1 | 1 | waste, dry pasture | T | |||
Centaurium erythraea Rafn | 1 | 1 | muds, scrubland | Hb /T | |||
Linum strictum L. | 1 | 1 | scrubland, garrigue | T | |||
Rapistrum rugosum (L.) All. | 1 | 1 | human habitat, dry waste | T | |||
Trifolium scabrum L. | 1 | 1 | waste | T | |||
Leucanthemum vulgare Lam. | 1 | 1 | human habitat pasture, scrubland | H | |||
Torilis sp. | 1 | 1 | waste, human habitat | T | |||
Trifolium echinatum Bieb. | 1 | 1 | waste | T | |||
Valerianella eriocarpa Desv. | 1 | 1 | arable | T | |||
Vicia villosa Roth | 1 | 1 | arable, dry waste | T | |||
Bare ground (n = 6) | Sparsely vegetated (n = 6) | Grassland (n = 6) | Overgrown grassland (n = 4) | Total | |||
Number of seedlings m−2 | 41.18 | 275.22 | 676.26 | 660.53 | 329.5 | ||
Total number of seedlings | 6 | 35 | 86 | 56 | 183 | ||
Total number of species in germinable seed bank | 3 | 10 | 20 | 20 | 31 | ||
Total number of species in growing vegetation | 29 | 81 | 98 | 68 | 117 |
Vegetation | Seed Bank | |||||||
---|---|---|---|---|---|---|---|---|
Source of Variation | df | Number of Species | df | Number of Seedlings | Number of Species | |||
MS | F | MS | F | MS | F | |||
Land use class | 3 | 601.15 | 34.65 ** | 3 | 234.87 | 5.1 * | 57.3 | 8.6 ** |
Residual | 128 | 17.35 | 18 | 46.01 | 6.67 | |||
Total | 131 | 21 |
Vegetation | Seed Bank | ||
---|---|---|---|
Number of Species | Number of Seedlings | Number of Species | |
Land use class | t | t | t |
Bare soil vs. sparsely vegetated | 7.87 ** | 1.988 | 2.035 |
Bare soil vs. grassland | 10.94 ** | 4.379 ** | 6.348 ** |
Bare soil vs. overgrown grassland | 5.72 ** | 3.262 * | 4.246 * |
Sparsely vegetated vs. grassland | 2.2 * | 1.882 | 2.418 |
Sparsely vegetated vs. overgrown grassland | 0.69 | 2.178 | 3.213 * |
Grassland vs. overgrown grassland | 2.56 * | 0.521 | 0.342 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maccherini, S.; Santi, E.; Torri, D. Germinable Soil Seed Bank in Biancana Badlands. Diversity 2019, 11, 223. https://doi.org/10.3390/d11120223
Maccherini S, Santi E, Torri D. Germinable Soil Seed Bank in Biancana Badlands. Diversity. 2019; 11(12):223. https://doi.org/10.3390/d11120223
Chicago/Turabian StyleMaccherini, Simona, Elisa Santi, and Dino Torri. 2019. "Germinable Soil Seed Bank in Biancana Badlands" Diversity 11, no. 12: 223. https://doi.org/10.3390/d11120223
APA StyleMaccherini, S., Santi, E., & Torri, D. (2019). Germinable Soil Seed Bank in Biancana Badlands. Diversity, 11(12), 223. https://doi.org/10.3390/d11120223