Phylogenetically Diverse Fusarium Species Associated with Sorghum (Sorghum Bicolor L. Moench) and Finger Millet (Eleusine Coracana L. Garten) Grains from Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolate Collection
2.2. Isolation, Identification, and Storage of the Isolates
2.3. Grain Contamination by Fusarium Species
2.4. Molecular Characterization
2.4.1. DNA Extraction
2.4.2. DNA Sequencing and Species Identification
2.4.3. Phylogenetic Analysis
3. Results and Discussion
3.1. Grain Contamination by Fusarium Species
3.2. Morphological Identification
3.3. Phylogenetic Inference
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Antonia, S. The Occurrence and Biology of Some Fusarium spp., on Wheat in Slovakia; Institute of Experimental Phytopathology and Entomology, Slovak Academy of Sciences: Ivanka pri Dunaji, Slovakia, 1995; 119p. [Google Scholar]
- Brandfass, C.; Karlovsky, P. Upscaled CTAB-Based DNA Extraction and Real-Time PCR Assays for Fusarium culmorum and F. graminearum DNA in Plant Material with Reduced Sampling Error. Int. J. Mol. Sci. 2008, 9, 2306–2321. [Google Scholar] [CrossRef] [PubMed]
- Parry, D.W.; Jenkinson, P.; Mc Leod, L. Fusarium ear blight (scab) in small grain cereals—A review. Plant Pathol. 1995, 44, 207–238. [Google Scholar] [CrossRef]
- Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim. Feed Sci. Technol. 2012, 173, 134–158. [Google Scholar] [CrossRef]
- Pestka, J.J.; Smolinski, A.T. Deoxynivalenol: Toxicology and potential effects on humans. J. Toxcol. Environ. Health Part B 2005, 8, 39–69. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Groopman, J.D.; Pestka, J.J. Public health impacts of foodborne mycotoxins. Ann. Rev. Food Sci. Technol. 2014, 5, 351–372. [Google Scholar] [CrossRef] [PubMed]
- Backhouse, D.; Burgess, L.W.; Summerell, B.A. Biogeography of Fusarium. In Fusarium; Summerell, B.A., Leslie, J.F., Backhouse, D., Bryden, W., Burgess, L.W., Eds.; The American Phytopathology Society: St. Paul, MN, USA, 2001; pp. 122–137. [Google Scholar]
- Summerell, B.A.; Laurence, M.H.; Liew, E.C.Y.; Leslie, J.F. Biogeography and phylogeography of Fusarium: A review. Fungal Divers. 2010, 44, 1–11. [Google Scholar] [CrossRef]
- Geiser, D.M.; del Mar Jiménez-Gasco, M.; Kang, S.; Makalowska, I.; Veeraraghavan, N.; Ward, T.J.; Zhang, N.; Kuldau, G.A.; O’donnell, K. FUSARIUM-ID v. 1.0: A DNA Sequence Database for Identifying Fusarium. Eur. J. Plant Pathol. 2004, 110, 473–479. [Google Scholar] [CrossRef]
- Stukenbrock, E.H.; McDonald, B.A. Population genetics for fungal and oomycete effectors involved in gene-for-gene interactions. Mol. Plant-Microbe Interact. 2009, 22, 371–380. [Google Scholar] [CrossRef]
- Laurence, M.H.; Walsh, J.L.; Shuttleworth, L.A.; Robinson, D.M.; Johansen, R.M.; Petrovic, T.; Vu, T.T.H.; Burgess, L.W.; Summerell, B.A.; Liew, E.C.Y. Six novel species of Fusarium from natural ecosystems in Australia. Fungal Div. 2016, 77, 349–366. [Google Scholar] [CrossRef]
- Leavitt, S.D.; Esslinger, T.L.; Spribille, T.; Divakar, P.K.; Thorsten, L.H. Multilocus phylogeny of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota): Insights on diversity, distributions, and a comparison of species tree and concatenated topologies. Mol. Phylogenet. Evol. 2013, 66, 138–152. [Google Scholar] [CrossRef]
- McDonald, M.C.; Razavi, M.; Friesen, T.L.; Brunner, P.C.; McDonald, B.A. Phylogenetic and population genetic analyses of Phaeosphaeria nodorum and its close relatives indicate cryptic species and an origin in the fertile crescent. Fungal Genet. Biol. 2012, 49, 882–895. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Ward, T.J.; Geiser, G.M.; Corby, K.H.; Aoki, T. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet. Biol. 2004, 41, 600–623. [Google Scholar] [CrossRef] [PubMed]
- Wollenweber, H.W.; Reinking, O.A. Die Fusarien, ihre Beschreibung, Schadwirkung und Bekämpfung; Paul Parey: Berlin, Germany, 1935. [Google Scholar]
- Leslie, J.F.; Zeller, K.A.; Lamprecht, S.C.; Rheeder, J.P.; Marasas, W.F.O. Toxicity, pathogenicity, and genetic differentiation of five species of Fusarium from sorghum and millet. Phytopathology 2005, 95, 275–283. [Google Scholar] [CrossRef] [PubMed]
- CSA-Central Statistical Agency. Agricultural Sampling Survey. Report on Area and Production of Crops; 2016. Available online: http://www.csa.gov.et (accessed on 26 February 2017).
- Ayalew, A.; Fehrmann, H.; Lepschy, J.; Beck, R.; Abate, D. Natural occurrence of mycotoxins in staple cereals from Ethiopia. Mycopathologia 2006, 162, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Chala, A.; Taye, W.; Ayalew, A.; Krska, R.; Sulyok, M.; Logrieco, A. Multimycotoxin analysis of sorghum (Sorghum bicolor L. Moench) and finger millet (Eleusine coracana L. Garten) from Ethiopia. Food Control 2014, 45, 29–35. [Google Scholar] [CrossRef]
- Dejene, M. Grain Storage Methods and Their Effects on Sorghum Grain Quality in Hararghe, Ethiopia. Ph.D. Thesis, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden, 2004. [Google Scholar]
- Taye, W.; Ayalew, A.; Chala, A.; Dejene, M. Aflatoxin B1 and total fumonisin contamination and their producing fungi in fresh and stored sorghum grain in East Hararghe, Ethiopia. Food Addit. Contam. Part B 2016, 9, 237–245. [Google Scholar] [CrossRef]
- Taye, W.; Ayalew, A.; Dejene, M.; Chala, A. Fungal invasion and mycotoxin contamination of stored sorghum grain as influenced by threshing methods. Int. J. Pest Manag. 2018, 64, 66–76. [Google Scholar] [CrossRef]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell: Ames, IA, USA, 2006. [Google Scholar]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- NCBI-National Center for Biotechnology Information. Available online: http://www.ncbi.nlm.nih.gov/blast/index.shtml (accessed on 26 February 2017).
- Tooley, P.W.; Goley, E.D.; Carras, M.M.; Frederick, R.D.; Weber, E.L. Characterization of Cleviceps species pathogenic on sorghum by sequence analysis of the β-tubulin gene intron 3 region and EF-1α gene intron 4. Mycologia 2001, 93, 541–551. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Yonezawa, T.; Lee, K.; Kumagai, S.; Sugita-Konishi, Y.; Goto, K.; Hara-Kudo, Y. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC Evol. Biol. 2011, 11, 322. [Google Scholar] [CrossRef] [PubMed]
- Atehnkeng, J.; Ojiambo, P.; Donner, M.; Ikotun, T.; Sikora, R.; Cotty, P.; Bandyopadhyay, R. Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria. Int. J. Food Microbiol. 2008, 122, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Logrieco, A.; Rizzo, A.; Ferracane, R.; Ritieni, A. Occurrence of Beauvericin and Enniatins in Wheat Affected by Fusarium avenaceum Head Blight. Appl. Environ. Microbiol. 2002, 68, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, R.; Kumar, M.; Leslie, J.F. Relative severity of aflatoxin contamination of cereal crops in West Africa. Food Addit. Contam. 2007, 24, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.P.; Jurjevic, J.; Hanna, W.W.; Wilson, D.M.; Potter, T.L.; Coy, A.E. Host-specific variation in infection by toxigenic fungi and contamination by mycotoxins in pearl millet and corn. Mycopathologia 2006, 161, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Browning, M.; Rowley, L.V.; Zang, P.; Chandlee, J.M.; Jackson, N. Morphological, pathogenic and genetic comparisons of Colletotrichum graminicola isolates from Poaceae. Plant Dis. 1999, 83, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Crouch, J.A.; Clarke, B.B.; Hillman, B.I. Unraveling evolutionary relationships among divergent lineages of Colletotrichum causing anthracnose disease in turfgrass and corn. Phytopathology 2006, 96, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Vargas, L.I.; Lugo-Noel, Y.; McGovern, R.J.; Seijo, T.; Davis, M.J. Occurrence and distribution of Colletotrichum spp. on mango (Mangifera indica L.) in Puerto Rico and Florida, USA. Plant Pathol. J. 2006, 5, 191–198. [Google Scholar]
- Marasas, W.F.O.; Rheeder, J.P.; Lamprecht, S.C.; Zeller, K.A.; Leslie, J.F. Fusarium andiyazi sp. nov., a new species from sorghum. Mycologia 2001, 93, 1203–1210. [Google Scholar] [CrossRef]
- Al-Hatmi, A.M.S.; Mirabolfathy, M.; Hagen, F.; Normand, A.C.; Stielow, J.B.; Karami-Osbo, R.; van Diepeningen, A.D.; Meis, J.F.; de Hoog, G.S. DNA barcoding, MALDI-TOF, and AFLP data support Fusarium ficicrescens as a distinct species within the Fusarium fujikuroi species complex. Fungal Biol. 2016, 120, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Tsehaye, H.; Brurberg, M.B.; Sundheim, L.; Assefa, D.; Tronsmo, A.; Tronsmo, A.M. Natural occurrence of Fusarium species and fumonisin on maize grains in Ethiopia. Eur. J. Plant Pathol. 2017, 147, 141–155. [Google Scholar] [CrossRef]
- Nirenberg, H.I.; O’Donnell, K. New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 1998, 90, 434–458. [Google Scholar] [CrossRef]
- Abdel-Hafez, S.I.I.; Ismail, M.A.; Hussein, N.A.; Abdel-Hameed, N.A. Fusarium species and other fungi associated with some seeds and grains in Egypt, with 2 newly recorded Fusarium species. J. Biol. Earth Sci. 2014, 4, 120–129. [Google Scholar]
- Nirenberg, H.I.; O’Donnell, K.; Kroschel, J.; Andrianaivo, A.P.; Frank, J.M.; Mubatanhema, W. Two new species of Fusarium: Fusarium brevincatenulatum from the noxious weed Striga asiatica in Madagascar and Fusarium pseudoanthophilum from Zea mays in Zimbabwe. Mycologia 1998, 90, 459–464. [Google Scholar] [CrossRef]
- Amata, R.L.; Burgess, L.W.; Summerell, B.A.; Bullock, S.; Liew, E.C.Y.; Smith-White, J.L. An emended description of Fusarium brevicatenulatum and F. pseudoanthophilum based on isolates recovered from millet in Kenya. Fungal Div. 2010, 43, 11–25. [Google Scholar] [CrossRef]
- Marley, P.; Marasas, W.F.O.; Hester, V. Occurrence of Fusarium andiyazi associated with sorghum in Nigeria. Arch. Phytopathol. Plant Prot. 2004, 37, 177–181. [Google Scholar] [CrossRef]
- Klittich, C.J.R.; Leslie, J.F.; Nelson, P.E.; Marasas, W.F.O. Fusarium thapsinum (Gibberella thapsina): A new species in section Liseola from sorghum. Mycologia 1997, 89, 643–652. [Google Scholar] [CrossRef]
- Frederiksen, R.A.; Odvody, G.N. Compendium of Sorghum Diseases, 2nd ed.; APS Press: St. Paul, MN, USA, 2000. [Google Scholar]
- Jardine, D.J.; Leslie, J.F. Aggressiveness of Gibberella fujikuroi (Fusarium moniliforme) isolates to grain sorghum under greenhouse conditions. Plant Dis. 1992, 76, 897–900. [Google Scholar] [CrossRef]
- Castellá, G.; Cabañes, F.G. Phylogenetic diversity of Fusarium incarnatum-equiseti species complex isolated from Spanish wheat. Antonie Van Leeuwenhoek 2014, 106, 309–317. [Google Scholar] [CrossRef]
- Chala, A. Genetic diversity among Fusarium species associated with sorghum stalk rot in Southern Ethiopia. Afr. J. Biotechnol. 2019, 18, 289–295. [Google Scholar]
- Leslie, J.F.; Zeller, K.A.; Summerell, B.A. Icebergs and species in populations of Fusarium. Physiol. Mol. Plant Pathol. 2001, 59, 107–117. [Google Scholar] [CrossRef]
- O’Donnell, K.; Nirenberg, H.I.; Aoki, T.; Cigelnik, E. A multigene phylogeny of the Gibberella fujikuroi species complex: Detection of additional phylogenetically distinct species. Mycoscience 2000, 41, 61–78. [Google Scholar] [CrossRef]
- Leslie, J.F.; Zeller, K.; Wohler, M.; Summerell, B.A. Interfertility of two mating populations in the Gibberella fujikuroi species complex. Eur. J. Plant Pathol. 2004, 110, 611–618. [Google Scholar] [CrossRef]
Geographic Location | No. of Samples Collected | Altitude (m) | Latitude | Longitude | |
---|---|---|---|---|---|
Sorghum | Finger Millet | ||||
South | 16 | 5 | 1297–1590 | 5°19′–5°42′ | 37°22′–37°27′ |
Central | 6 | 9 | 1846–1915 | 7°18′–7°24′ | 38°38′–38°40′ |
Northwest | 20 | 20 | 1054–1465 | 11°04′–11°19′ | 36°20′–36°25′ |
Total | 42 | 34 |
Primer | Gene | Sequences | Reference |
---|---|---|---|
EF-728F | EF-1α | 5′-CATCGAGAAGTTCGAGAAGG-3′ | 24 |
EF-986R | EF-1α | 5′-TACTTGAAGGAACCCTTACC-3′ | 24 |
BT3 | ß-tubulin | 5′-CGTCTAGAGGTACCCATACCGGCA-3′ | 25 |
BT5 | ß-tubulin | 5′-GCTCTAGACTGCTTTCTGGCAGACC-3′ | 25 |
Isolate | Host | Gene Bank Accession Number | Isolate | Host | Gene Bank Accession Number | ||
---|---|---|---|---|---|---|---|
EF-1α | ß-tubulin | EF-1α | ß-tubulin | ||||
2 | F. millet | MH765585 | MH748458 | 63 | Sorghum | MH765627 | NA |
6 | F. millet | MH765586 | MH748461 | 64 | Sorghum | MH765628 | MH748496 |
9 | F. millet | MH765587 | MH748463 | 65 | F. millet | MH765629 | MH748497 |
10 | Sorghum | MH765588 | MH748464 | 68 | Sorghum | MH784424 | MH748500 |
12 | Sorghum | MH765589 | NA | 69 | Sorghum | MH784425 | MH748501 |
13 | Sorghum | MH765590 | NA | 70 | Sorghum | MH784426 | MH748502 |
15 | F. millet | MH765592 | NA | 71 | Sorghum | MH784427 | MH748503 |
16 | Sorghum | MH765593 | NA | 72 | Sorghum | MH784428 | MH748504 |
17 | Sorghum | MH765594 | NA | 73 | Sorghum | MH784429 | MH748505 |
18 | F. millet | MH765595 | MH748465 | 74 | Sorghum | MH784430 | MH748506 |
19 | F. millet | MH765596 | MH748466 | 76 | Sorghum | MH784431 | MH748507 |
20 | Sorghum | MH765597 | MH748467 | 77 | Sorghum | MH784432 | MH748508 |
21 | F. millet | MH765598 | MH748468 | 78 | Sorghum | MH784433 | MH748509 |
25 | Sorghum | MH765600 | MH748469 | 83 | Sorghum | MH784434 | MH748514 |
26 | F. millet | MH765601 | MH748470 | 87 | F. millet | MH784435 | MH748517 |
27 | F. millet | MH765602 | MH748471 | 90 | Sorghum | MH784436 | MH748518 |
29 | F. millet | MH765603 | MH748472 | 91 | Sorghum | MH765634 | NA |
30 | Sorghum | MH784416 | MH748473 | 92 | Sorghum | MH765635 | NA |
31 | Sorghum | MH784417 | MH748474 | 95 | Sorghum | MH765636 | MH748520 |
33 | F. millet | MH765605 | MH748475 | 96 | Sorghum | MH784437 | MH748521 |
34 | F. millet | MH765606 | MH748476 | ||||
35 | F. millet | MH784418 | MH748477 | ||||
36 | F. millet | MH765607 | MH748478 | ||||
37 | F. millet | MH765608 | MH748479 | ||||
38 | Sorghum | MH765609 | MH748480 | ||||
39 | Sorghum | MH765610 | NA | ||||
40 | F. millet | MH765611 | NA | ||||
41 | Sorghum | MH765612 | MH748481 | ||||
42 | Sorghum | MH765613 | MH748482 | ||||
43 | F. millet | MH765614 | MH748483 | ||||
44 | F. millet | MH765615 | MH748484 | ||||
45 | F. millet | MH765616 | MH748485 | ||||
46 | Sorghum | MH765617 | NA | ||||
47 | Sorghum | MH784419 | MH748486 | ||||
48 | F. millet | MH765618 | MH748487 | ||||
49 | Sorghum | MH784420 | MH748488 | ||||
51 | Sorghum | MH784421 | MH748490 | ||||
52 | Sorghum | MH765619 | MH748491 | ||||
53 | Sorghum | MH765620 | MH748492 | ||||
54 | Sorghum | MH784422 | MH748493 | ||||
55 | Sorghum | MH784423 | MH748494 | ||||
56 | Sorghum | MH765621 | NA | ||||
57 | Sorghum | MH765622 | NA | ||||
58 | Sorghum | MH765623 | NA | ||||
60 | Sorghum | MH765624 | NA | ||||
61 | Sorghum | MH765625 | NA | ||||
62 | Sorghum | MH765626 | NA |
Region | CFU/g Seed of Positive Samples | |||||
---|---|---|---|---|---|---|
Sorghum | Finger millet | |||||
Range | Mean | Median | Range | Mean | Median | |
South | 250–753 | 528.4 | 524.5 | 100–442 | 285 | 312 |
Central | 241–558 | 352.7 | 306 | 230–500 | 370 | 375 |
Northwest | 612–1085 | 843.4 | 865 | 200–780 | 473.3 | 450 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chala, A.; Degefu, T.; Brurberg, M.B. Phylogenetically Diverse Fusarium Species Associated with Sorghum (Sorghum Bicolor L. Moench) and Finger Millet (Eleusine Coracana L. Garten) Grains from Ethiopia. Diversity 2019, 11, 93. https://doi.org/10.3390/d11060093
Chala A, Degefu T, Brurberg MB. Phylogenetically Diverse Fusarium Species Associated with Sorghum (Sorghum Bicolor L. Moench) and Finger Millet (Eleusine Coracana L. Garten) Grains from Ethiopia. Diversity. 2019; 11(6):93. https://doi.org/10.3390/d11060093
Chicago/Turabian StyleChala, Alemayehu, Tulu Degefu, and May Bente Brurberg. 2019. "Phylogenetically Diverse Fusarium Species Associated with Sorghum (Sorghum Bicolor L. Moench) and Finger Millet (Eleusine Coracana L. Garten) Grains from Ethiopia" Diversity 11, no. 6: 93. https://doi.org/10.3390/d11060093
APA StyleChala, A., Degefu, T., & Brurberg, M. B. (2019). Phylogenetically Diverse Fusarium Species Associated with Sorghum (Sorghum Bicolor L. Moench) and Finger Millet (Eleusine Coracana L. Garten) Grains from Ethiopia. Diversity, 11(6), 93. https://doi.org/10.3390/d11060093