Predators as Agents of Selection and Diversification
Abstract
:1. Introduction
2. What is a Predator?
3. How Predators Affect Prey Evolution
3.1. Direct Effects
3.1.1. Effects of Predation on Prey Morphological Traits
3.1.2. Effects of Predation on Prey Behavior
3.1.3. Effects of Predation on Life History Traits
3.2. Indirect Effects
4. Why a Special Issue on This Topic?
5. Current Challenges and Future Direction
Author Contributions
Funding
Conflicts of Interest
References
- Abrams, P.A. The evolution of predator-prey interactions: Theory and evidence. Annu. Rev. Ecol. Syst. 2000, 31, 79–105. [Google Scholar] [CrossRef]
- Bengtson, S. Origins and early evolution of predation. Paléontol. Soc. Pap. 2002, 8, 289–318. [Google Scholar] [CrossRef]
- Anderson, J.S.; Hans-Dieter, S. Major Transitions in Vertebrate Evolution; Indiana University Press: Bloomington, IN, USA, 2007. [Google Scholar]
- Jeschke, J.; Laforsch, C.; Tollrian, R. Animal prey defenses. In Encyclopedia of Ecology; Elsevier BV: Amsterdam, The Netherlands, 2008; pp. 189–194. [Google Scholar]
- Ruxton, G.D.; Allen, W.L.; Sherratt, T.N.; Speed, M.P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Stevens, M.; Merilaita, S. Defining disruptive coloration and distinguishing its functions. Philos. Trans. R. Soc. B: Biol. Sci. 2008, 364, 481–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, J.W.E.; Stankowich, T.; Reimers, E.; Møller, A.P.; Fleming, P.A.; Bateman, P.W.; Domenici, P.; Ruxton, G.D.; Martín, J.; López, P.; et al. Escaping from Predators; Cambridge University Press (CUP): Cambridge, MA, USA, 2015. [Google Scholar]
- Caro, T. Antipredator Defenses in Birds and Mammals; Chicago University Press: Chicago, IL, USA, 2005. [Google Scholar]
- Brodie, E.D., III; Brodie, E.D., Jr. Predator-prey arms races: Asymmetrical selection on predators and prey may be reduced when prey are dangerous. Bioscience 1999, 49, 557–568. [Google Scholar] [CrossRef]
- Palkovacs, E.P.; Post, D.M. Eco-evolutionary interactions between predators and prey: Can predator-induced changes to prey communities feed back to shape predator foraging traits? Evol. Ecol. Res. 2008, 10, 699–720. [Google Scholar]
- Johnson, J.B.; Zúñiga-Vega, J.J. Differential mortality drives life-history evolution and population dynamics in the fishBrachyrhaphis rhabdophora. Ecology 2009, 90, 2243–2252. [Google Scholar] [CrossRef] [Green Version]
- Ingley, S.J.; Billman, E.J.; Belk, M.C.; Johnson, J.B. Morphological divergence driven by predation environment within and between species of Brachyrhaphis fishes. PLoS ONE 2014, 9, e90274. [Google Scholar] [CrossRef] [Green Version]
- Kuchta, S.R.; Svensson, E.I. Predator-mediated natural selection on the wings of the damselfly Calopteryx spendens: Differences in selection among trait types. Am. Nat. 2014, 184, 91–109. [Google Scholar] [CrossRef] [Green Version]
- Preisser, E.L.; Bolnick, D.I.; Benard, M.F. Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 2005, 86, 501–509. [Google Scholar] [CrossRef] [Green Version]
- Walsh, M.R. The evolutionary consequences of indirect effects. Trends Ecol. Evol. 2013, 28, 23–29. [Google Scholar] [CrossRef]
- Preisser, E.L.; Bolnick, D.I. When predators don’t eat their prey: Nonconsumptive predator effects on prey dynamics. Ecology 2008, 89, 2414–2415. [Google Scholar] [CrossRef] [Green Version]
- Raffel, T.R.; Martin, L.B.; Rohr, J.R. Parasites as predators: Unifying natural enemy ecology. Trends Ecol. Evol. 2008, 23, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Iaz, S.D.; Lavorel, S.; Intyre, S.U.E.M.C.; A Lczuk, V.L.F.; Casanoves, F.; Milchunas, D.G.; Skarpe, C.; Rusch, G.; Sternberg, M.; Noy-Meir, I.; et al. Plant trait responses to grazing? A global synthesis. Glob. Chang. Biol. 2007, 13, 313–341. [Google Scholar] [CrossRef]
- Sih, A.; Englund, G.; Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 1998, 13, 350–355. [Google Scholar] [CrossRef]
- Relyea, R.A. How prey respond to combined predators: A review and an empirical test. Ecology 2003, 84, 1827–1839. [Google Scholar] [CrossRef]
- Schmitz, O.J. Predator diversity and trophic interactions. Ecology 2007, 88, 2415–2426. [Google Scholar] [CrossRef]
- Sih, A. Predator and prey lifestyles: An evolutionary and ecological overview. In Predation: Direct and Indirect Impacts on Aquatic Communities; Kerfoot, W.C., Sih, A., Eds.; University Press of New England: Hanover, NH, USA, 1987; pp. 203–224. [Google Scholar]
- Lima, S.L.; Dill, L.M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 1990, 68, 619–640. [Google Scholar] [CrossRef]
- Ritchie, E.G.; Johnson, C.N. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 2009, 12, 982–998. [Google Scholar] [CrossRef]
- Ferrari, M.C.O.; Wisenden, B.D.; Chivers, D.P. Chemical ecology of predator-prey interactions in aquatic ecosystems: A review and prospectus. Can. J. Zool. 2010, 88, 698–724. [Google Scholar] [CrossRef]
- Stankowich, T.; Blumstein, D.T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. B: Boil. Sci. 2005, 272, 2627–2634. [Google Scholar] [CrossRef] [Green Version]
- Scharf, F.S.; Juanes, F.; Rountree, R.A. Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar. Ecol. Prog. Ser. 2000, 208, 229–248. [Google Scholar] [CrossRef]
- Kalmijn, A.J. The electric sense of sharks and rays. J. Exp. Biol. 1971, 55, 371–383. [Google Scholar] [PubMed]
- Thomas, J.A.; Moss, C.F.; Vater, M. Echolocation in Bats and Dolphins; University of Chicago Press: Chicago, IL, USA, 2004. [Google Scholar]
- Jones, G.; Teeling, E.C. The evolution of echolocation in bats. Trends Ecol. Evol. 2006, 21, 149–156. [Google Scholar] [CrossRef]
- Newman, E.A.; Hartline, P.H. The infrared “vision” of snakes. Sci. Am. 1982, 246, 116–127. [Google Scholar] [CrossRef]
- Cuthill, I.C.; Partridge, J.C.; Bennett, A.T.; Church, S.C.; Hart, N.S.; Hunt, S. Ultraviolet vision in birds. In Advances in the Study of Behavior; Elsevier BV: Amsterdam, The Netherlands, 2000; Volume 29, pp. 159–214. [Google Scholar]
- Ortolani, A. Spots, stripes, tail tips and dark eyes: Predicting the function of carnivore color patterns using the comparative method. Biol. J. Linn. Soc. 1999, 67, 433–476. [Google Scholar] [CrossRef]
- Tso, I.M.; Ku, T.H.; Tai, P.L.; Kuo, C.H.; Yang, E.C. Color-associated foraging success and population genetic structure in a sit-and-wait predator Nephilia maculata (Araneae: Tetragnathidae). Anim. Behav. 2002, 63, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Tso, I.-M.; Liao, C.-P.; Huang, R.-P.; Yang, E.-C. Function of being colorful in web spiders: Attracting prey or camouflaging oneself? Behav. Ecol. 2006, 17, 606–613. [Google Scholar] [CrossRef]
- Tso, I.-M.; Huang, J.-P.; Liao, C.-P. Nocturnal hunting of a brightly coloured sit-and-wait predator. Anim. Behav. 2007, 74, 787–793. [Google Scholar] [CrossRef]
- Fan, C.-M.; Yang, E.-C.; Tso, I.-M. Hunting efficiency and predation risk shapes the color-associated foraging traits of a predator. Behav. Ecol. 2009, 20, 808–816. [Google Scholar] [CrossRef]
- Mukherjee, S.; Heithaus, M.R. Dangerous prey and daring predators: A review. Biol. Rev. 2013, 88, 550–563. [Google Scholar] [CrossRef]
- Alves, M.T.; Hilker, F.M. Hunting cooperation and Allee effects in predators. J. Theor. Biol. 2017, 419, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Schultz, S.T.; Kruschel, C. Frequency and success of ambush and chase predation in fish assemblages associated with seagrass and bare sediment in an Adriatic lagoon. Hydrobiologia 2010, 649, 25–37. [Google Scholar] [CrossRef]
- Berryman, A.A. The origins and evolution of predator-prey theory. Ecology 1992, 73, 1530–1535. [Google Scholar] [CrossRef] [Green Version]
- Stevens, M.; Merilaita, S. Animal camouflage: Current issues and new perspectives. Philos. Trans. R. Soc. B: Biol. Sci. 2008, 364, 423–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van, V.; Van Valen, L. A new evolutionary law. Evol. Theory 1973, 1, 1–30. [Google Scholar]
- Liow, L.H.; Van Valen, L.; Stenseth, N.C. Red queen: From populations to taxa and communities. Trends Ecol. Evol. 2011, 26, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Michod, R.E. Evolution of life histories in response to age-specific mortality factors. Am. Nat. 1979, 113, 531–550. [Google Scholar] [CrossRef]
- Law, R. Optimal life histories under age-specific predation. Am. Nat. 1979, 114, 399–417. [Google Scholar] [CrossRef]
- Johnson, J.B.; Belk, M.C. Predation environment predicts divergent life-history phenotypes among populations of the livebearing fish Brachyrhaphis rhabdophora. Oecologia 2001, 126, 142–149. [Google Scholar] [CrossRef]
- Ingley, S.J.; Johnson, J.B. Divergent natural selection promotes immigrant inviability at early and late stages of evolutionary divergence. Evolution 2016, 70, 600–616. [Google Scholar] [CrossRef]
- Krebs, C.J.; Boutin, S.; Boonstra, R.; Sinclair, A.R.E.; Smith, J.N.M.; Dale, M.R.T.; Martin, K.; Turkington, R. Impact of food and predation on the snowshoe hare cycle. Science 1995, 269, 1112–1115. [Google Scholar] [CrossRef] [Green Version]
- Polis, G.A.; Myers, C.A.; Holt, R.D. The ecology and evolution of intraguild predation - potential competitors that eat each other. Annu. Rev. Ecol. Syst. 1989, 20, 297–330. [Google Scholar] [CrossRef]
- Dunn, R.P.; Hovel, K.A. Predator type influences the frequency of functional responses to prey in marine habitats. Biol. Lett. 2020, 16, 20190758. [Google Scholar] [CrossRef]
- Cresswell, W. Non-lethal effects of predation in birds. Ibis 2008, 150, 3–17. [Google Scholar] [CrossRef]
- Blumstein, D.T. The multipredator hypothesis and the evolutionary persistence of antipredator behavior. Ethology 2006, 112, 209–217. [Google Scholar] [CrossRef]
- Langerhans, R.B.; Gifford, M.E.; Joseph, E.O. Ecological speciation in Gambusia fishes. Evolution 2007, 61, 2056–2074. [Google Scholar] [CrossRef] [PubMed]
- Pringle, R.M.; Kartzinel, T.R.; Palmer, T.M.; Thurman, T.J.; Fox-Dobbs, K.; Xu, C.C.Y.; Hutchinson, M.C.; Coverdale, T.C.; Daskin, J.H.; Evangelista, D.A.; et al. Predator-induced collapse of niche structure and species coexistence. Nat. Cell Biol. 2019, 570, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Wisenden, B.D. Effect of predation on shaping parental brood defense and larval ontogeny of convict cichlids leading to population divergence. Diversity 2020, 12, 136. [Google Scholar] [CrossRef] [Green Version]
- Belk, M.C.; Ingley, S.J.; Johnson, J. Life history divergence in livebearing fishes in response to predation: Is there a microevolution to macroevolution barrier? Diversity 2020, 12, 179. [Google Scholar] [CrossRef]
- Lichti, N.; Dalgleish, H.; Steele, M.A. Interactions among Shade, Caching Behavior, and Predation Risk May Drive Seed Trait Evolution in Scatter-Hoarded Plants. Diversity 2020, 12, 416. [Google Scholar]
- Moreno-Rueda, G.; González-Granda, L.G.; Reguera, S.; Zamora-Camacho, F.J.; Melero, E. Crypsis decreases with elevation in a lizard. Diversity 2019, 11, 236. [Google Scholar] [CrossRef] [Green Version]
- Kruschel, C.; Schultz, S.T. Aggressive predation drives assembly of Adriatic fish communities. Diversity 2020, 12, 130. [Google Scholar] [CrossRef] [Green Version]
- Diel, P.; Kiene, M.; Martin-Creuzburg, D.; Laforsch, C. Knowing the enemy: Inducible defenses in freshwater zooplankton. Diversity 2020, 12, 147. [Google Scholar] [CrossRef] [Green Version]
- Toscano, B.J.; Lichtenstein, J.L.L.; Costa-Pereira, R. Intraspecific behavioral variation mediates insect prey survival via direct and indirect effects. Diversity 2020, 12, 152. [Google Scholar] [CrossRef]
- McCoy, M.W.; Stier, A.; Osenberg, C.W. Emergent effects of multiple predators on prey survival: The importance of depletion and the functional response. Ecol. Lett. 2012, 15, 1449–1456. [Google Scholar] [CrossRef]
- DePalma, R.A.; Burnham, D.A.; Martin, L.D.; Rothschild, B.M.; Larson, P.L. Physical evidence of predatory behavior in Tyrannosaurus rex. Proc. Natl. Acad. Sci. USA 2013, 110, 12560–12564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripple, W.J.; A Estes, J.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P.; et al. Status and ecological effects of the world’s largest carnivores. Science 2014, 343, 1241484. [Google Scholar] [CrossRef] [Green Version]
- Drumheller, S.K.; McHugh, J.B.; Kane, M.; Riedel, A.; D’Amore, D.C. High frequencies of theropod bite marks provide evidence for feeding, scavenging, and possible cannibalism in a stressed Late Jurassic ecosystem. PLoS ONE 2020, 15, e0233115. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, J.B.; Belk, M.C. Predators as Agents of Selection and Diversification. Diversity 2020, 12, 415. https://doi.org/10.3390/d12110415
Johnson JB, Belk MC. Predators as Agents of Selection and Diversification. Diversity. 2020; 12(11):415. https://doi.org/10.3390/d12110415
Chicago/Turabian StyleJohnson, Jerald B., and Mark C. Belk. 2020. "Predators as Agents of Selection and Diversification" Diversity 12, no. 11: 415. https://doi.org/10.3390/d12110415
APA StyleJohnson, J. B., & Belk, M. C. (2020). Predators as Agents of Selection and Diversification. Diversity, 12(11), 415. https://doi.org/10.3390/d12110415