Elevational Patterns of Generic Diversity in the Tenebrionid Beetles (Coleoptera Tenebrionidae) of Latium (Central Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peters, M.; Hemp, A.; Appelhans, T.; Behler, C.; Classen, A.; Detsch, F.; Ensslin, A.; Ferger, S.W.; Frederiksen, S.B.; Gebert, F.; et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 2016, 7, 13736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattorini, S.; Di Biase, L.; Chiarucci, A. Recognizing and interpreting vegetational belts: New wine in the old bottles of a von Humboldt’s legacy. J. Biogeogr. 2019, 46, 1643–1651. [Google Scholar] [CrossRef]
- Callaway, R.M.; Brooker, R.W.; Choler, P.; Kikvidze, Z.; Lortie, C.J.; Michalet, R.; Paolini, L.; Pugnaire, F.I.; Newingham, B.; Aschehoug, E.T.; et al. Positive interactions among alpine plants increase with stress. Nature 2002, 417, 844–848. [Google Scholar] [CrossRef] [PubMed]
- Kikvidze, Z.; Pugnaire, F.I.; Brooker, R.W.; Choler, P.; Lortie, C.J.; Michalet, R.; Callaway, R.M. Linking patterns and processes in alpine plant communities: A global study. Ecology 2005, 86, 1395–1400. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. The use of “altitude” in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Körner, C. Alpine Treelines – Functional Ecology of the Global High Elevation Tree Limits, 1st ed.; Springer: Basel, Switzerland, 2012; p. 220. [Google Scholar]
- Le Roux, P.C.; McGeoch, M.A. Interaction intensity and importance along two stress gradients: Adding shape to the stress–gradient hypothesis. Oecologia 2010, 162, 733–745. [Google Scholar] [CrossRef] [PubMed]
- Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, 2nd ed.; Springer-Verlag: Heidelberg, Germany, 1999; p. 349. [Google Scholar]
- McCain, C.M.; Grytnes, J.A. Elevational gradients in species richness. In Encyclopedia of LifeSciences (ELS); John Wiley & Sons: Chichester, UK, 2010; pp. 1–10. [Google Scholar]
- Hoiss, B.; Krauss, J.; Potts, S.G.; Roberts, S.; Steffan–Dewenter, I. Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proc. R. Soc. Lond. 2012, 279, 4447–4456. [Google Scholar] [CrossRef] [Green Version]
- Sanders, N.J. Elevational gradients in ant species richness: Area, geometry, and Rapoport’s rule. Ecography 2002, 25, 25–32. [Google Scholar] [CrossRef]
- Fattorini, S. Disentangling the effects of available area, mid-domain constraints, and species environmental tolerance on the altitudinal distribution of tenebrionid beetles in a Mediterranean area. Biodivers. Conserv. 2014, 23, 2545–2560. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, J.; Tan, S.; Cadotte, M.W.; Xu, K.; Gao, L.; Li, D. Trait variation and functional diversity maintenance of understory herbaceous species coexisting along an elevational gradient in Yulong Mountain, Southwest China. Plant Divers. 2016, 38, 303–311. [Google Scholar] [CrossRef]
- Sanders, N.J.; Rahbek, C. The patterns and causes of elevational diversity gradients. Ecography 2012, 35, 1–3. [Google Scholar] [CrossRef]
- Camacho, L.; Avilés, L. Decreasing predator density and activity explain declining predation of insect prey along elevational gradients. Am. Nat. 2019, 194, 334–343. [Google Scholar] [CrossRef]
- Lazarina, M.; Charalampopoulos, A.; Psaralexi, M.; Krigas, N.; Michailidou, D.E.; Kallimanis, A.S.; Sgardelis, S.P. Diversity patterns of different life forms of plants along an elevational gradient in Crete, Greece. Diversity 2019, 11, 200. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.B. Intra-generic competition as illustrated by Moreau’s records of east african bird communities. J. Anim. Ecol. 1951, 20, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Ricklefs, R.E.; Cox, G.W. Morphological similarity and ecological overlap among passerine birds on St. Kitts, British West Indies. Oikos 1977, 29, 60–66. [Google Scholar] [CrossRef]
- Douglas, M.E.; Matthews, W.J. Does morphology predict ecology? Hypothesis testing within a freshwater stream fish assemblage. Oikos 1992, 65, 213–224. [Google Scholar] [CrossRef]
- Melville, J.; Harmon, L.J.; Losos, J.B. Intercontinental community convergence of ecology and morphology in desert lizards. Proc. R. Soc. Lond. 2005, 273, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Valiente-Banuet, A.; Verdú, M. Temporal shifts from facilitation to competition occur between closely related taxa. J. Ecol. 2008, 96, 489–494. [Google Scholar] [CrossRef]
- Elton, C.S. Competition and the structure of ecological communities. J. Anim. Ecol. 1946, 15, 54–68. [Google Scholar] [CrossRef] [Green Version]
- Simberloff, S. The taxonomic diversity of island biotas. Evolution 1970, 24, 23–47. [Google Scholar] [CrossRef] [Green Version]
- Diamond, J.L. Niche shifts and the rediscovery of interspecific competition. Am. Sci. 1978, 66, 322–331. [Google Scholar]
- Connor, E.F.; Simberloff, S. Interspecific competition and species co-occurrence patterns on islands: Null models and the evaluation of evidence. Oikos 1983, 41, 455–465. [Google Scholar] [CrossRef]
- Weiher, E.; Keddy, P. Ecological Assembly Rules: Perspectives, Advances, Retreats; Cambridge University Press: Cambridge, UK, 1999; p. 430. [Google Scholar]
- Gotelli, N.J. Null model analysis of species co-occurrence patterns. Ecology 2000, 81, 2606–2621. [Google Scholar] [CrossRef]
- Gotelli, N.J.; McCabe, D.J. Species co-occurrence: A meta-analysis of J.M. Diamond’s assembly rules model. Ecology 2002, 83, 2091–2096. [Google Scholar] [CrossRef]
- Sanderson, J.G.; Pimm, S.L. Patterns in Nature. The Analysis of Species Co-occurrences; University of Chicago Press: Chicago, IL, USA, 2015; p. 206. [Google Scholar]
- Ulrich, W.; Jabot, F.; Gotelli, N.J. Competitive interactions change the pattern of species co-occurrences under neutral dispersal. Oikos 2017, 126, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.S. Pattern and process in competition. Adv. Ecol. Res. 1967, 4, 1–74. [Google Scholar]
- Jenssen, T.A. Shift in the structural habitat of Anolis opalinus due to congeneric competition. Ecology 1973, 54, 863–869. [Google Scholar] [CrossRef]
- McCluskey, E.S. Generic diversity in phase of rhythm in Formicine ants. Psyche 1973, 80, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Den Boer, P.J. Exclusion or coexistence and the taxonomic or ecological relationship between species. Neth. J. Zool 1980, 30, 278–306. [Google Scholar] [CrossRef]
- Moulton, M.P.; Pimm, S.L. The extent of competition in shaping an introduced avifauna. In Community Ecology; Diamond, J., Case, T.J., Eds.; Harper & Row: New York, NY, USA, 1986; pp. 80–97. [Google Scholar]
- Kaplan, I.; Denno, R.F. Interspecific interactions in phytophagous insects revisited: A quantitative assessment of competition theory. Ecol. Lett. 2007, 10, 977–994. [Google Scholar] [CrossRef]
- Burns, J.H.; Strauss, S.Y. More closely related species are more ecologically similar in an experimental test. Proc. Natl. Acad. Sci.USA 2011, 108, 5302–5307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keddy, P.A. Competition, 2nd ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; p. 552. [Google Scholar]
- de los Santos, A. Generic diversity patterns in the Tenebrionid beetle communities (Col. Tenebrionidae). Ecologia Mediterranea 1994, 20, 125–136. [Google Scholar]
- Gómez-González, L.A.; de los Santos, A.; Alonso, C. Carabid generic diversity and inter-island similarity in the Macaronesian Region. In Natural History and Applied Ecology of Carabid Beetles; Brandmayr, P., Lövei, G.L., Brandmayr, T., Zetto Casale, A., Vigna Taglianti, A., Eds.; Pensoft: Sofia, Bulgaria, 2000; pp. 53–60. [Google Scholar]
- Lawrence, J.F.; Spilman, T.J. Tenebrionidae. In Immature Insects; Stehr, F.W., Ed.; Kendall Hunt Publishing: Dubuque, ID, USA, 1991; Volume 2, pp. 520–524. [Google Scholar]
- Cavieres, L.A.; Arroyo, M.T.K.; Molina-Montenegro, M.; Torres, C.; Peñaloza, A. Nurse effect of Bolax gummifera (Apiaceae) cushion plants in the alpine vegetation of the Chilean Patagonian Andes. J. Veg. Sci. 2002, 13, 547–554. [Google Scholar] [CrossRef]
- Kikvidze, Z.; Michalet, R.; Brooker, R.W.; Cavieres, L.A.; Lortie, C.J.; Pugnaire, F.I.; Callaway, R.M. Climatic drivers of plant–plant interactions and diversity in alpine communities. Alp. Bot. 2011, 121, 63–70. [Google Scholar] [CrossRef]
- Antonsson, A.; Björk, R.G.; Molau, U. Nurse plant effect of the cushion plant Silene acaulis (L.) Jacq. in an alpine environment in the subarctic Scandes, Sweden. Plant Ecol. Divers. 2009, 2, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol. 2000, 15, 513–514. [Google Scholar] [CrossRef]
- Li, X.J.; Li, X.; Zhang, X.; Wu, J.; Shen, Z.; Zhang, Y.; Xu, X.; Fan, T.; Zhao, Y.; Yan, W. Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environ. Earth Sci. 2011, 64, 1911–1919. [Google Scholar] [CrossRef]
- Salvati, L.; Perini, L.; Bajocco, S.; Sabbi, A. Climate aridity and land use change: A regional-scale analysis. Geogr. Res. 2012, 50, 193–203. [Google Scholar] [CrossRef]
- Fattorini, S. Regional insect inventories require long time, extensive spatial sampling and good will. PLoS ONE 2013, 8, e62118. [Google Scholar] [CrossRef] [Green Version]
- Fattorini, S.; Salvati, L. Tenebrionid beetles as proxy indicators of climate aridity in a Mediterranean area. Ecol. Indic. 2014, 38, 256–261. [Google Scholar] [CrossRef]
- Ruffo, S.; Stoch, F. Checklist and Distribution of the Italian Fauna; Museo di Storia Naturale di Verona: Verona, Italy, 2006; p. 304. [Google Scholar]
- Trichas, A. The genus Dendarus Latreille, 1829 (Coleoptera, Tenebrionidae: Dendarini) in Greece (A systematic account of the genus with description of a new species and four new systematic combinations). In Advances in Arachnology and Developmental Biology; Makarov, S.E., Dimitrijević, R.N., Eds.; SASA, Belgrade and UNESCO MAB Serbia: Belgrade, Serbia, 2008; pp. 417–462. [Google Scholar]
- Ferrer, J. Contribución al conocimiento de los Asinini iberobaleares. Segunda nota. Las Alphasida (Glabrasida) del grupo Tricostatae Escalera 1922 (Coleoptera, Tenebrionidae, Pimeliinae). Boln. SEA 2008, 43, 61–73. [Google Scholar]
- Condamine, F.L.; Soldati, L.; Rasplus, J.Y.; Kergoat, G.J. New insights on systematics and phylogenetics of Mediterranean Blaps species (Coleoptera: Tenebrionidae: Blaptini), assessed through morphology and dense taxon sampling. Syst. Entomol. 2011, 36, 340–361. [Google Scholar] [CrossRef]
- Ferrer, J. Contribución al conocimiento del Género Phylan Dejean, 1821, y descripción de una specie nueva del género Heliopates Dejean, 1834 (Coleoptera, Tenebrionidae, Pedinini). Boln. SEA 2011, 49, 75–82. [Google Scholar]
- Pons, J.; Bruvo, B.; Petitpierre, E.; Plohl, M.; Ugarkovic, D.; Juan, C. Complex structural features of satellite DNA sequences in the genus Pimelia (Coleoptera: Tenebrionidae): Random differential amplification from a common ‘satellite DNA library’. Heredity 2004, 9, 418–427. [Google Scholar] [CrossRef] [Green Version]
- Soldati, F.; Soldati, L. Species delimitation using morphological and molecular tools in the Asida (Polasida) jurinei Solier, 1836 species complex. Preliminary results. (Coleoptera: Tenebrionidae: Tentyrinae). Cahiers Scientifiques Muséum Lyon 2006, 10, 111–116. [Google Scholar]
- Stroscio, S.; Baviera, C.; Frati, F.; Lo Paro, G.; Nardi, F. Deep genetic divergence in the darkling beetle Pimelia rugulosa (Coleoptera, Tenebrionidae) reflects Plio-Pleistocenic paleogeographic history of Sicily. J Zool. Syst. Evol. Res. 2011, 49, 196–203. [Google Scholar] [CrossRef]
- Aliquò, V.; Rastelli, M.; Rastelli, S.; Soldati, F. Coleotteri Tenebrionidi d’Italia; CD-ROM Museo Civico di Storia Naturale di Carmagnola: Carmagnola, Italy, 2006. [Google Scholar]
- Löbl, I.; Smetana, A. Catalogue of Palaearctic Coleoptera. Vol. 5. Tenebrionoidea; Apollo Books: Stenstrup, UK, 2008; p. 670. [Google Scholar]
- Grytnes, J.A.; Vetaas, O.R. Species richness and altitude: A comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat. 2002, 159, 294–304. [Google Scholar] [CrossRef]
- Mena, J.L.; Vázquez-Domínguez, E. Species turnover on elevational gradients in small rodents. Glob. Ecol. Biogeogr. 2005, 14, 539–547. [Google Scholar] [CrossRef]
- Rowe, R. Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. Ecography 2009, 32, 411–422. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 63, 688. [Google Scholar] [CrossRef]
- Fontanilla, A.M.; Nakamura, A.; Xu, Z.; Cao, M.; Kitching, R.L.; Tang, Y.; Burwell, C.J. Taxonomic and Functional Ant Diversity Along tropical, Subtropical, and Subalpine Elevational Transects in Southwest China. Insects 2019, 10, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCain, C.M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 2010, 19, 541–553. [Google Scholar] [CrossRef]
- McCain, C.M. Area and mammalian elevational diversity. Ecology 2007, 88, 76–86. [Google Scholar] [CrossRef]
- Preston, F.W. The canonical distribution of commonness and rarity. Part I. Ecology 1962, 43, 185–215. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Stevens, G.C. The elevational gradient in altitudinal range: An extension of Rapoport’s latitudinal rule to altitude. Am. Nat. 1992, 140, 893–911. [Google Scholar] [CrossRef]
- Kaspari, M.; O’Donnell, S.; Kercher, J.R. Energy, density, and constraints to species richness: Ant assemblages along a productivity gradient. Am. Nat. 2000, 155, 280–293. [Google Scholar] [CrossRef]
- Lomolino, M.V.; Riddle, B.R.; Whittaker, R.J.; Brown, J.H. Biogeography, 4th ed.; Sinauer Associates: Sunderland, MA, USA, 2010; p. 878. [Google Scholar]
- Rahbek, C. The elevational gradient of species richness: A uniform pattern? Ecography 1995, 18, 200–205. [Google Scholar] [CrossRef]
- Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 2005, 8, 224–239. [Google Scholar] [CrossRef]
- Amori, G.; Boitani, L.; Milana, G.; Maiorano, L.; Luiselli, L. Endemism and diversity in European montane mammals: Macro-ecological patterns. Biol. J. Linn. Soc. 2019, 128, 225–237. [Google Scholar] [CrossRef]
- Prugh, L.R.; Hodges, K.E.; Sinclair, R.E.; Brashares, J.S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl. Acad. Sci. USA 2008, 105, 20770–20775. [Google Scholar] [CrossRef] [Green Version]
- Fattorini, S. Insect rarity, extinction and conservation in urban Rome (Italy): A 120-year-long study of tenebrionid beetles. Insect Conserv. Divers. 2011, 4, 307–315. [Google Scholar] [CrossRef]
- Fattorini, S. Insect extinction by urbanization: A long term study in Rome. Biol. Conserv. 2011, 144, 370–375. [Google Scholar] [CrossRef]
- Fattorini, S. Urban biodiversity hotspots are not related to the structure of green spaces: A case study of tenebrionid beetles from Rome, Italy. Urban Ecosyst. 2014, 17, 1033–1045. [Google Scholar] [CrossRef]
- Fattorini, S.; Galassi, D.M.P. Role of urban green spaces for saproxylic beetle conservation: A case study of tenebrionids in Rome, Italy. J. Insect. Conserv. 2016, 20, 737–745. [Google Scholar] [CrossRef]
- Petchey, O.L.; Evans, K.L.; Fishburn, I.S.; Gaston, K.J. Low functional diversity and no redundancy in British avian assemblages. J. Anim. Ecol. 2007, 76, 977–985. [Google Scholar] [CrossRef]
- Villéger, S.; Miranda, J.R.; Hernández, D.F.; Mouillot, D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol. Appl. 2010, 20, 1512–1522. [Google Scholar] [CrossRef]
- Mason, N.W.; de Bello, F.; Doležal, J.; Lepš, J. Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. J. Ecol. 2011, 99, 788–796. [Google Scholar] [CrossRef]
- Funk, J.L.; Larson, J.E.; Ames, G.M.; Butterfield, B.J.; Cavender-Bares, J.; Firn, J.; Laughlin, D.C.; Sutton-Grier, A.E.; Williams, L.; Wright, J. Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biol. Rev. 2017, 92, 1156–1173. [Google Scholar] [CrossRef]
- Emerson, B.C.; Gillespie, R.G. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 2008, 23, 619–630. [Google Scholar] [CrossRef]
- Kraft, N.J.B.; Adler, P.B.; Godoy, O.; James, E.C.; Fuller, S.; Levine, J.M. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 2015, 29, 592–599. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Tucker, C.M. Should environmental filtering be abandoned? Trends Trends. Ecol. Evol. 2017, 32, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Price, P.W.; Denno, R.F.; Eubanks, M.D.; Finke, D.L.; Kaplan, I. Insect Ecology: Behavior, Populations and Communities; Cambridge University Press: Cambridge, UK, 2011; p. 82. [Google Scholar]
- Shorrocks, B.; Rosewell, J.; Edwards, K.; Atkinson, W. Interspecific competition is not a major organizing force in many insect communities. Nature 1984, 310, 310–312. [Google Scholar] [CrossRef]
- Wise, D.H. A Removal Experiment with Darkling Beetles: Lack of evidence for interspecific competition. Ecology 1981, 62, 727–738. [Google Scholar] [CrossRef]
- Carpaneto, G.M.; Fattorini, S. Spatial and seasonal organisation of a darkling beetle (Coleoptera: Tenebrionidae) community inhabiting a Mediterranean coastal dune system. Ital. J. Zool. 2001, 68, 207–214. [Google Scholar] [CrossRef]
- Fattorini, S.; Bergamaschi, D.; Mantoni, C.; Acosta, A.T.R.; Di Giulio, A. Niche partitioning in tenebrionid species (Coleoptera: Tenebrionidae) inhabiting Mediterranean coastal dunes. Eur. J. Entomol. 2016, 113, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Nabozhenko, M.V.; Keskin, B.; Nabozhenko, S.V. Life forms and strategies of lichen-feeding darkling beetles (Coleoptera, Tenebrionidae: Helopini). Entomol. Rev. 2017, 97, 735–746. [Google Scholar] [CrossRef]
- Niemelä, J. Interspecific competition in ground-beetle assemblages (Carabidae): What have we learned? Oikos 1993, 66, 325–335. [Google Scholar] [CrossRef]
- Fattorini, S. Ecology and conservation of tenebrionid beetles in Mediterranean coastal areas. In Insect Ecology and Conservation; Fattorini, S., Ed.; Research Signpost: Trivandrum, Kerala, 2008; pp. 165–297. [Google Scholar]
- Brin, A.; Bouget, C. Biotic interactions between saproxylic insect species. In Saproxylic Insects: Diversity, Ecology and Conservation (Zoological Monographs 1); Ulyshen, M.D., Ed.; Springer: Cham, Switzerlnad, 2018; pp. 471–514. [Google Scholar]
- Giacomini, V.; Fenaroli, L. Conosci l’Italia. La flora; Touring Club Italiano: Milano, Italy, 1958; p. 276. [Google Scholar]
- Blasi, C.; Stanisci, A.; Filesi, L.; Milanese, A.; Perinelli, E.; Riggio, L. Syndinamics of lowland Quercus frainetto & Q. cerris forests in Lazio (central Italy). Fitosociologia 2002, 39, 23–43. [Google Scholar]
- Piovesan, G.; Biondi, F.; Bernabei, M.; di Filippo, A.; Schirone, B. Spatial and altitudinal bioclimatic zones of the Italian Peninsula identified from a beech (Fagus sylvatica L.) tree-ring network. Acta Oecol. 2005, 27, 197–210. [Google Scholar] [CrossRef]
- Kaminski, M.J.; Iwan, D. Revision of the Subtribe Pedinina (Tenebrionidae: Pedinini). Ann. Zool. 2017, 67, 585–607. [Google Scholar] [CrossRef]
- Kamiński, M.J.; Kanda, K.; Raś, M.; Smith, A.D. Pythiopina, an enigmatic subtribe of darkling beetles (Coleoptera: Tenebrionidae: Pedinini): Taxonomic revision, microtomography, ecological niche models and phylogenetic position. Syst. Entomol. 2018, 43, 147–165. [Google Scholar] [CrossRef]
- Fattorini, S.; Mantoni, C.; Audisio, P.; Biondi, M. Taxonomic variation in levels of endemism: A case study of Italian tenebrionid beetles. Insect. Conserv. Divers. 2019, 12, 351–361. [Google Scholar] [CrossRef]
- Endroedy-Younga, S. Revision of the Genus Anomalipus Latreille, 1846 (Coleoptera: Tenebrionidae: Platynotini); Transvaal Museum Monograph No. 6; Transvaal Museum: Pretoria, South Africa, 1988; p. 129. [Google Scholar]
- Nowak, R.M. Walker’s Mammals of the World, 5th ed.; Johns Hopkins University Press: Baltimore, MD, USA, 1991; p. 1614. [Google Scholar]
Tenebrionid Groupings | Response Variable | Model | Slope (b) | Intercept (a) | R2 | t | P |
---|---|---|---|---|---|---|---|
Total tenebrionids | Number of species | S = a × log(E) + b | −46.394 ± 1.985 | 159.630 ± 5.916 | 0.961 | −23.369 | <0.0000001 |
Number of genera | G = a × log(E) + b | −31.491 ± 1.820 | 109.420 ± 5.422 | 0.932 | −17.306 | <0.0000001 | |
Generic diversity | GD = a × E + b | −0.032 ± 0.003 | 65.375 ± 3.461 | 0.874 | −11.798 | <0.0000001 | |
Geophilous tenebrionids | Number of species | S = a × log(E) + b | −28.661 ± 1.024 | 98.027 ± 3.052 | 0.973 | −27.982 | <0.0000001 |
Number of genera | G = a × log(E) + b | −19.256 ± 0.920 | 65.638 ± 2.741 | 0.952 | −20.937 | <0.0000001 | |
Generic diversity | GD = a × log(E) + b | −27.15 ± 2.074 | 91.602 ± 6.102 | 0.896 | −13.094 | <0.0000001 | |
Xylophilous tenebrionids | Number of species | S = a × E + b | −0.010 ± 0.001 | 22.220 ± 0.858 | 0.933 | −17.458 | <0.0000001 |
Number of genera | G = a × E + b | −0.008 ± 0.000 | 17.491 ± 0.450 | 0.966 | −25.098 | <0.0000001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fattorini, S.; Mantoni, C.; Di Biase, L.; Strona, G.; Pace, L.; Biondi, M. Elevational Patterns of Generic Diversity in the Tenebrionid Beetles (Coleoptera Tenebrionidae) of Latium (Central Italy). Diversity 2020, 12, 47. https://doi.org/10.3390/d12020047
Fattorini S, Mantoni C, Di Biase L, Strona G, Pace L, Biondi M. Elevational Patterns of Generic Diversity in the Tenebrionid Beetles (Coleoptera Tenebrionidae) of Latium (Central Italy). Diversity. 2020; 12(2):47. https://doi.org/10.3390/d12020047
Chicago/Turabian StyleFattorini, Simone, Cristina Mantoni, Letizia Di Biase, Giovanni Strona, Loretta Pace, and Maurizio Biondi. 2020. "Elevational Patterns of Generic Diversity in the Tenebrionid Beetles (Coleoptera Tenebrionidae) of Latium (Central Italy)" Diversity 12, no. 2: 47. https://doi.org/10.3390/d12020047
APA StyleFattorini, S., Mantoni, C., Di Biase, L., Strona, G., Pace, L., & Biondi, M. (2020). Elevational Patterns of Generic Diversity in the Tenebrionid Beetles (Coleoptera Tenebrionidae) of Latium (Central Italy). Diversity, 12(2), 47. https://doi.org/10.3390/d12020047