Livelihood, Food and Nutrition Security in Southern Africa: What Role Do Indigenous Cattle Genetic Resources Play?
Abstract
:1. Introduction
2. Contributions of Indigenous Cattle Genetic Diversity to Livelihood, Food and Nutrition Security
3. Economic Contributions of Indigenous Cattle to Livelihood, Food and Nutrition Security
3.1. Beef
3.2. Milk
3.3. Dung
3.4. Draught Animal Power
3.5. Other Products and By-Products From Cattle
3.6. Income Generation
3.7. Employment
4. Socio-Cultural Contributions of Indigenous Cattle to Livelihood, Food and Nutrition Security
5. Contributions of Indigenous Cattle Breeds’ Ecosystem Services to Livelihoods, Food Security and Nutrition Security
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- SADC-RVAA. Synthesis Report on the State of Food and Nutrition Security and Vulnerability in Southern Africa; SADC-RVAA: Windhoek, Namibia, 2019. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2019. Safeguarding Against Economic Slowdowns and Downturns; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; ISBN 978-92-5-109888-2. [Google Scholar]
- SADC-RVAA. SADC Regional Vulnerability Assessment and Analysis Synthesis Report; SADC-RVAA: Windhoek, Namibia, 2017. [Google Scholar]
- El Bilali, H. Research on agro-food sustainability transitions: Where are food security and nutrition? Food Secur. 2019, 11, 559–577. [Google Scholar] [CrossRef] [Green Version]
- Bohle, H.-G. Sustainable livelihood security. Evolution and application. In Facing Global Environmental Change: Environmental, Human, Energy, Food, Health and Water Security; Brauch, H.G., Kameri-Bonte, P., Spring, U.O., Behera, N.C., Grin, J., Chourou, B., Mesjasz, C., Krummenacher, H., Eds.; Springer International Publishing: Berlin, Germany, 2009; pp. 521–528. ISBN 978-3-540-68487-9. [Google Scholar]
- FAO. Coming to Terms with Terminology: Food Security Nutrition Security Food Security and Nutrition Food and Nutrition Security; FAO: Rome, Italy, 2012; Volume CFS 2012/3. [Google Scholar]
- FAO. Evaluation of FAO’s Role and Work in Nutrition; FAO: Rome, Italy, 2011. [Google Scholar]
- Frankenberger, T.R.; McCaston, M.K. The household livelihood security concept. Security 1998, 30–35. [Google Scholar]
- Chambers, R. Editorial introduction: Vulnerability, coping and policy. IDS Bull. 1989, 20, 1–7. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of the World’s Animal Genetic Resources for Food and Agriculture; Rischkowsky, B., Pilling, D., Eds.; Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations: Rome, Italy, 2007; ISBN 9789251057629. [Google Scholar]
- Chingala, G.; Raffrenato, E.; Dzama, K.; Hoffman, L.C.; Mapiye, C. Towards a regional beef carcass classification system for Southern Africa beef production and marketing systems in Southern Africa. S. Afr. J. Anim. Sci. 2017, 47, 408–423. [Google Scholar] [CrossRef] [Green Version]
- Nyamushamba, G.B.; Mapiye, C.; Tada, O.; Halimani, T.E.; Muchenje, V. Conservation of indigenous cattle genetic resources in Southern Africa’s smallholder areas: Turning threats into opportunities—A review. Asian Australas. J. Anim. Sci. 2017, 30, 603–621. [Google Scholar] [CrossRef] [PubMed]
- Mwai, O.; Hanotte, O.; Kwon, Y.J.; Cho, S. African indigenous cattle: Unique genetic resources in a rapidly changing world. Asian Australas. J. Anim. Sci. 2015, 28, 911–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO/IAEA. Genetic Characterization of Indigenous Cattle Breeds in Zambia - Which Way Forward? Available online: http://www-naweb.iaea.org/nafa/news/2011-zambia-cattle-breeds.html (accessed on 17 January 2019).
- AU-IBAR. The State of Farm Animal Genetic Resources; Nouala, S., Bosso, N.A., Mbole-Kariuki, M., Nengomasha, E., Tchangai, P., Eds.; AU-IBAR: Nairobi, Kenya, 2019; ISBN 978-9966-63-198-5. [Google Scholar]
- van Marle-Köster, E.; Visser, C. Genetic improvement in South African livestock: Can genomics bridge the gap between the developed and developing sectors? Front. Genet. 2018, 9, 331. [Google Scholar] [CrossRef]
- Shava, S.; Masuku, S. Living currency: The multiple roles of livestock in livelihood sustenance and exchange in the context of rural indigenous communities in southern Africa. S. Afr. J. Environ. Educ. 2019, 35. [Google Scholar] [CrossRef]
- Hoffmann, I.; From, T.; Boerma, D. Ecosystem Services Provided by Livestock Species and Breeds, with Special Consideration to the Contributions of Small-Scale Livestock Keepers and Pastoralists; Background Study Paper No. 66; Commission on Genetic Resources for Food and Agriculture: Rome, Italy, 2014. [Google Scholar]
- Tamou, C.; de Boer, I.J.M.; Ripoll-Bosch, R.; Oosting, S.J. Understanding roles and functions of cattle breeds for pastoralists in Benin. Livest. Sci. 2018, 210, 129–136. [Google Scholar] [CrossRef]
- Frankham, R. Stress and adaptation in conservation genetics. J. Evol. Biol. 2005, 18, 750–755. [Google Scholar] [CrossRef]
- Ndlovu, T.; Chimonyo, M.; Muchenje, V. Monthly changes in body condition scores and internal parasite prevalence in Nguni, Bonsmara and Angus steers raised on sweetveld. Trop. Anim. Health Prod. 2009, 41, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Spickett, A.M.; De Klerk, D.; Enslin, C.B.; Scholtz, M.M. Resistance of Nguni, Bonsmara and Hereford cattle to ticks in a Bushveld region of South Africa. Onderstepoort J. Vet. Res. 1989, 56, 245–250. [Google Scholar] [PubMed]
- Muchenje, V.; Dzama, K.; Chimonyo, M.; Raats, J.G.; Strydom, P.E. Tick susceptibility and its effects on growth performance and carcass characteristics of Nguni, Bonsmara and Angus steers raised on natural pasture. Animal 2008, 2, 298–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marufu, M.C.; Chimonyo, M.; Mapiye, C.; Dzama, K. Tick loads in cattle raised on sweet and sour rangelands in the low-input farming areas of South Africa. Trop. Anim. Health Prod. 2011, 43, 307–313. [Google Scholar] [CrossRef]
- Marufu, M.C.; Chimonyo, M.; Dzama, K.; Mapiye, C. Seroprevalence of tick-borne diseases in communal cattle reared on sweet and sour rangelands in a semi-arid area of South Africa. Vet. J. 2010, 184, 71–76. [Google Scholar] [CrossRef]
- Osler, E.; Linington, M.; Ford, Y.; Swart, D. Grazing behaviour and forage utilization of Nguni, Afrikaner and Simmentaler cattle. Ann. Zootech. 1995, 44, 322. [Google Scholar] [CrossRef] [Green Version]
- Ndlovu, T.; Chimonyo, M.; Okoh, A.I.; Muchenje, V.; Dzama, K.; Dube, S.; Raats, J.G. A comparison of nutritionally-related blood metabolites among Nguni, Bonsmara and Angus steers raised on sweetveld. Vet. J. 2009, 179, 273–281. [Google Scholar] [CrossRef]
- Mapiye, C.; Chimonyo, M.; Dzama, K.; Marufu, M.C. Protein status of indigenous Nguni and crossbred cattle in the semi-arid communal rangelands in South Africa. Asian Australas. J. Anim. Sci. 2010, 23, 213–225. [Google Scholar] [CrossRef]
- Scholtz, M.M.; Theunissen, A. The use of indigenous cattle in terminal cross-breeding to improve beef cattle production in Sub-Saharan Africa. Anim. Genet. Resour. 2010, 46, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Mokolobate, M.C.; Theunissen, A.; Scholtz, M.M.; Neser, F.W.C. Sustainable crossbreeding systems of beef cattle in the era of climate change. S. Afr. J. Anim. Sci. 2014, 44, S8–S11. [Google Scholar]
- FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Scherf, B.D., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2015; ISBN 9789251088203. [Google Scholar]
- Mapiye, C.; Chikwanha, O.C.; Chimonyo, M.; Dzama, K. Strategies for sustainable use of indigenous cattle genetic resources in Southern Africa. Diversity 2019, 11, 214. [Google Scholar] [CrossRef] [Green Version]
- Frelat, R.; Lopez-Ridaura, S.; Giller, K.E.; Herrero, M.; Douxchamps, S.; Djurfeldt, A.A.; Erenstein, O.; Henderson, B.; Kassie, M.; Paul, B.K.; et al. Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proc. Natl. Acad. Sci. USA 2016, 113, 458–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.; Sones, K.; Grace, D.; MacMillan, S.; Tarawali, S.; Herrero, M. Beyond milk, meat, and eggs: Role of livestock in food and nutrition security. Anim. Front. 2013, 3, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Enahoro, D.; Lannerstad, M.; Pfeifer, C.; Dominguez-Salas, P. Contributions of livestock-derived foods to nutrient supply under changing demand in low- and middle-income countries. Glob. Food Sec. 2018, 19, 1–10. [Google Scholar] [CrossRef]
- Barrett, J.C. The economic role of cattle in communal farming systems in Zimbabwe. In Proceedings of the Socio-economic Impact of Improved Tick and Tick-borne Disease Control in Zimbabwe, Harare, Zimbabwe, 9 May 1991. [Google Scholar]
- Scoones, I. The economic value of livestock in the communal areas of southern Zimbabwe. Agric. Syst. 1992, 39, 339–359. [Google Scholar] [CrossRef]
- Randolph, T.F.; Schelling, E.; Grace, D.; Nicholson, C.F.; Leroy, J.L.; Cole, D.C.; Demment, M.W.; Omore, A.; Zinsstag, J.; Ruel, M. Role of livestock in human nutrition and health for poverty reduction in developing countries. J. Anim. Sci. 2007, 85, 2788–2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanepol, F.; Stroebel, A.; Moyo, S. The Role of Livestock in Developing Communities: Enhancing Multifunctionality; Swanepol, F., Stroebel, A., Moyo, S., Eds.; UFS: Bloemfontein, South Africa; CTA: Wageningen, The Netherlands, 2010; ISBN 978-0-86886-798-4. [Google Scholar]
- Steinfeld, H.; Mack, S. Livestock Development Strategies. 1997. Available online: http://www.fao.org/ 3/V8180T/v8180T0a.htm (accessed on 25 November 2019).
- Pighin, D.; Pazos, A.; Chamorro, V.; Paschetta, F.; Cunzolo, S.; Godoy, F.; Messina, V.; Pordomingo, A.; Grigioni, G. A contribution of beef to human health: A review of the role of the animal production systems. Sci. World J. 2016, 2016, 8681491. [Google Scholar] [CrossRef] [Green Version]
- Leroy, F.; Cofnas, N. Should dietary guidelines recommend low red meat intake? Crit. Rev. Food Sci. Nutr. 2019. [Google Scholar] [CrossRef] [Green Version]
- Zeraatkar, D.; Johnston, B.C.; Bartoszko, J.; Cheung, K.; Bala, M.M.; Valli, C.; Rabassa, M.; Sit, D.; Milio, K.; Sadeghirad, B.; et al. Effect of lower versus higher red meat intake on cardiometabolic and cancer outcomes. Ann. Intern. Med. 2019, 171, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Warris, P.D. Meat Science: An Introductory Text, 2nd ed.; Warris, P.D., Ed.; CABI Publishing: Wallingford, UK, 2010; ISBN 9781845931. [Google Scholar]
- Williams, P. Nutritional composition of red meat. Nutr. Diet. 2007, 64, S113–S119. [Google Scholar] [CrossRef] [Green Version]
- Shabtay, A. Adaptive traits of indigenous cattle breeds: The Mediterranean Baladi as a case study. Meat Sci. 2015, 109, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Polkinghorne, R.; Gee, A.; Motiang, D.; Strydom, P.; Mashau, M.; Ng’ambi, J.; DeKock, R.; Heather, B. Beef Palatability in the Republic of South Africa: Implications for Niche-Marketing Strategies; Australian Centre for International Agricultural Research: Canberra, ACT, Australia, 2010.
- Ransom, E. Botswana’s beef global commodity chain: Explaining the resistance to change. J. Rural Stud. 2011, 27, 431–439. [Google Scholar] [CrossRef]
- Strydom, P.E.; Naude, R.T.; Smith, M.F.; Scholtz, M.M.; Van Wyk, J.B. Characterisation of indigenous African cattle breeds in relation to meat quality traits. Meat Sci. 2000, 55, 79–88. [Google Scholar] [CrossRef]
- Strydom, P.E.; Naudé, R.T.; Smith, M.F.; Scholtz, M.M.; Van Wyk, J.B. Characterization of indigenous African cattle breeds in relation to carcass characteristics. Anim. Sci. 2000, 70, 241–252. [Google Scholar] [CrossRef]
- Mapiye, C.; Chimonyo, M.; Dzama, K.; Strydom, P.E.; Muchenje, V.; Marufu, M.C. Nutritional status, growth performance and carcass characteristics of Nguni steers supplemented with Acacia karroo leaf-meal. Livest. Sci. 2009, 126, 206–214. [Google Scholar] [CrossRef]
- Mapiye, C.; Chimonyo, M.; Dzama, K.; Muchenje, V.; Strydom, P.E. Meat quality of Nguni steers supplemented with Acacia karroo leaf-meal. Meat Sci. 2010, 84, 621–627. [Google Scholar] [CrossRef]
- Mapiye, C.; Chimonyo, M.; Dzama, K.; Hugo, A.; Strydom, P.E.; Muchenje, V. Fatty acid composition of beef from Nguni steers supplemented with Acacia karroo leaf-meal. J. Food Compos. Anal. 2011, 24, 523–528. [Google Scholar] [CrossRef]
- Muchenje, V.; Hugo, A.; Dzama, K.; Chimonyo, M.; Strydom, P.E.; Raats, J.G. Cholesterol levels and fatty acid profiles of beef from three cattle breeds raised on natural pasture. J. Food Compos. Anal. 2009, 22, 354–358. [Google Scholar] [CrossRef]
- Chingala, G.; Raffrenato, E.; Dzama, K.; Hoffman, L.C.; Mapiye, C. Carcass and meat quality attributes of Malawi Zebu steers fed Vachellia polyacantha leaves or Adansonia digitata seed as alternative protein sources to Glycine max. S. Afr. J. Anim. Sci. 2019, 49, 396–402. [Google Scholar] [CrossRef]
- Muchenje, V.; Dzama, K.; Chimonyo, M.; Raats, J.G.; Strydom, P.E. Meat quality of Nguni, Bonsmara and Aberdeen Angus steers raised on natural pasture in the Eastern Cape, South Africa. Meat Sci. 2008, 79, 20–28. [Google Scholar] [CrossRef]
- Zhang, Z.; Goldsmith, P.D.; Winter-Nelson, A. The importance of animal source foods for nutrient sufficiency in the developing world: The Zambia scenario. Food Nutr. Bull. 2016, 37, 303–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musemwa, L.; Mushunje, A.; Chimonyo, M.; Mapiye, C. Low cattle market off-take rates in communal production systems of South Africa: Causes and mitigation strategies. J. Sustain. Dev. Afr. 2010, 12, 209–226. [Google Scholar]
- Mapiye, C.; Chimonyo, M.; Dzama, K.; Raats, J.G.; Mapekula, M. Opportunities for improving Nguni cattle production in the smallholder farming systems of South Africa. Livest. Sci. 2009, 124, 196–204. [Google Scholar] [CrossRef]
- Waters-Bayer, A.; Bayer, W. The role of livestock in the rural economy. Nomad. People. 1992, 31, 3–18. [Google Scholar]
- Sitali, D.C.; Mumba, C.; Skjerve, E.; Mweemba, O.; Kabonesa, C.; Mwinyi, M.O.; Nyakarahuka, L.; Muma, J.B. Awareness and attitudes towards anthrax and meat consumption practices among affected communities in Zambia: A mixed methods approach. PLoS Negl. Trop. Dis. 2017, 11, e0005580. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, C.M.; Shackleton, S.E.; Netshiluvhi, T.R.; Mathabela, F.R. The contribution and direct-use value of livestock to rural livelihoods in the Sand River catchment, South Africa. Afr. J. Range Forage Sci. 2005, 22, 127–140. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Mottet, A.; Teillard, F.; Boettcher, P.; De’Besi, G.; Besbes, B. Review: Domestic herbivores and food security: Current contribution, trends and challenges for a sustainable development. Animal 2018, 12, S188–S198. [Google Scholar] [CrossRef]
- Van Hal, O.; de Boer, I.J.M.; Muller, A.; de Vries, S.; Erb, K.H.; Schader, C.; Gerrits, W.J.J.; van Zanten, H.H.E. Upcycling food leftovers and grass resources through livestock: Impact of livestock system and productivity. J. Clean. Prod. 2019, 219, 485–496. [Google Scholar] [CrossRef]
- Mapekula, M.; Chimonyo, M.; Mapiye, C.; Dzama, K. Fatty acid, amino acid and mineral composition of milk from Nguni and local crossbred cows in South Africa. J. Food Compos. Anal. 2011, 24, 529–536. [Google Scholar] [CrossRef]
- Myburgh, J.; Osthoff, G.; Hugo, A.; de Wit, M.; Nel, K.; Fourie, D. Comparison of the milk composition of free-ranging indigenous African cattle breeds. S. Afr. J. Anim. Sci. 2012, 42, 1–14. [Google Scholar] [CrossRef]
- Banda, L.J.; Kamwanja, L.A.; Chagunda, M.G.G.; Ashworth, C.J.; Roberts, D.J. Status of dairy cow management and fertility in smallholder farms in Malawi. Trop. Anim. Health Prod. 2012, 44, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Chagunda, M.G.G.; Mwangwela, A.; Mumba, C.; Dos Anjos, F.; Kawonga, B.S.; Hopkins, R.; Chiwona-Kartun, L. Assessing and managing intensification in smallholder dairy systems for food and nutrition security in Sub-Saharan Africa. Reg. Environ. Chang. 2016, 16, 2257–2267. [Google Scholar] [CrossRef]
- Choudhury, S.; Headey, D.D. Household dairy production and child growth: Evidence from Bangladesh. Econ. Hum. Biol. 2018, 30, 150–161. [Google Scholar] [CrossRef]
- Hoddinott, J.; Headey, D.; Dereje, M. Cows, missing milk markets, and nutrition in rural Ethiopia. J. Dev. Stud. 2015, 51, 958–975. [Google Scholar] [CrossRef] [Green Version]
- Rawlins, R.; Pimkina, S.; Barrett, C.B.; Pedersen, S.; Wydick, B. Got milk? The impact of Heifer International’s livestock donation programs in Rwanda on nutritional outcomes. Food Policy 2014, 44, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Mapekula, M.; Chimonyo, M.; Mapiye, C.; Dzama, K. Milk production and calf rearing practices in the smallholder areas in the Eastern Cape Province of South Africa. Trop. Anim. Health Prod. 2009, 41, 1475–1485. [Google Scholar] [CrossRef]
- Masama, E.; Kusina, N.T.; Sibanda, S.; Majoni, C. Reproduction and lactational performance of cattle in a smallholder dairy system in Zimbabwe. Trop. Anim. Health Prod. 2003, 35, 117–129. [Google Scholar] [CrossRef]
- Mapiye, C.; Chimonyo, M.; Muchenje, V.; Dzama, K.; Marufu, M.C.; Raats, J.G. Potential for value-addition of Nguni cattle products in the communal areas of South Africa: A review. Afr. J. Agric. Res. 2007, 2, 488–495. [Google Scholar]
- Muchenje, V.; Sikhosana, J.L.N.; Assan, N. Milk yield of Jersey × Nguni and Jersey × Tuli F1 and F2 cows reared under smallholder farming conditions. S. Afr. J. Anim. Sci. 2007, 8, 7–10. [Google Scholar]
- Ngongoni, N.T.; Mapiye, C.; Mwale, M.; Mupeta, B. Effect of supplementing a high-protein ram press sunflower cake concentrate on smallholder milk production in Zimbabwe. Trop. Anim. Health Prod. 2007, 39, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Grobler, S.M.; Scholtz, M.M.; Bester, J.; Mamabolo, J.M.; Ramsay, K.A. Dairy production systems in the emerging and communal sectors of South Africa: Results from a structured survey. Appl. Anim. Husb. Rural Dev. 2008, 1, 25–30. [Google Scholar]
- Maiwashe, A.; Nengovhela, N.B.; Nephawe, K.A.; Sebei, J.; Netshilema, T.; Mashaba, H.D.; Nesengani, L.; Norris, D. Estimates of lactation curve parameters for Bonsmara and Nguni cattle using the weigh-suckle-weigh technique. S. Afr. J. Anim. Sci. 2013, 43, S12–S16. [Google Scholar] [CrossRef] [Green Version]
- Chimonyo, M.; Kusina, N.; Hamudikuwanda, H.; Nyoni, O.; Ncube, I. Effects of dietary supplementation and work stress on ovarian activity in non-lactating Mashona cows in a small-holder farming area of Zimbabwe. Anim. Sci. 2000, 70, 317–323. [Google Scholar] [CrossRef]
- Schoeman, S.J. Recent research into the production potential of indigenous cattle with special reference to the Sanga. S. Afr. J. Anim. Sci. 1989, 19, 55–61. [Google Scholar]
- Yadav, A.; Gupta, R.; Garg, V.K. Organic manure production from cow dung and biogas plant slurry by vermicomposting under field conditions. Int. J. Recycl. Org. Waste Agric. 2013, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Sager, M. Trace and nutrient elements in manure, dung and compost samples in Austria. Soil Biol. Biochem. 2007, 39, 1383–1390. [Google Scholar] [CrossRef]
- Randela, R. An economic assessment of the value of cattle to the rural communities in the former Venda region. Dev. S. Afr. 2003, 20, 89–103. [Google Scholar] [CrossRef]
- Peltre, C.; Nyord, T.; Bruun, S.; Jensen, L.S.; Magid, J. Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage. Agric. Ecosyst. Environ. 2015, 211, 94–101. [Google Scholar] [CrossRef]
- Whalen, J.K.; Chang, C.; Clayton, G.W. Cattle manure and lime amendments to improve crop production of acidic soils in northern Alberta. Can. J. Soil Sci. 2002, 82, 227–238. [Google Scholar] [CrossRef]
- Whalen, J.K.; Chang, C.; Olson, B.M. Nitrogen and phosphorus mineralization potentials of soils receiving repeated annual cattle manure applications. Biol. Fertil. Soils 2001, 34, 334–341. [Google Scholar] [CrossRef]
- Font-Palma, C. Methods for the treatment of cattle manure—A review. J. Carbon Res. 2019, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Naramabuye, F.X.; Haynes, R.J.; Modi, A.T. Cattle manure and grass residues as liming materials in a semi-subsistence farming system. Agric. Ecosyst. Environ. 2008, 124, 136–141. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Nitrogen Inputs to Agricultural Soils from Livestock Manure. New Statistics; FAO: Rome, Italy, 2018; Volume 24, ISBN 9789251300244. [Google Scholar]
- Simalenga, T.E.; Belete, A.; Mseleni, N.A.; Jongisa, L.L. Assessing the profitability of using animal traction under smallholder farming conditions. S. Afr. J. Agric. Ext. 2000, 29, 1–9. [Google Scholar]
- Eghball, B. Liming effects of beef cattle feedlot manure or compost. Commun. Soil Sci. Plant Anal. 1999, 30, 2563–2570. [Google Scholar] [CrossRef]
- Whalen, J.K.; Chang, C.; Clayton, G.W.; Carefoot, J.P. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 2000, 64, 962–966. [Google Scholar] [CrossRef] [Green Version]
- Tucho, G.T.; Nonhebel, S. Bio-wastes as an alternative household cooking energy source in Ethiopia. Energies 2015, 8, 9565–9583. [Google Scholar] [CrossRef]
- Nape, K.M.; Magama, P.; Moeletsi, M.E.; Tongwane, M.I.; Nakana, P.M.; Mliswa, V.K.; Motsepe, M.; Madikiza, S. Introduction of household biogas digesters in rural farming households of the Maluti-a-Phofung municipality, South Africa. J. Energy S. Afr. 2019, 30, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Msibi, S.S.; Kornelius, G. Potential for domestic biogas as household energy supply in South Africa. J. Energy S. Afr. 2017, 28, 1–13. [Google Scholar] [CrossRef]
- Pearson, R.A. Resource requirements for draught animal power. Br. Soc. Anim. Prod. Occas. Publ. 1993, 16, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Chanie, M.; Fentahun, T.; Mitiku, T.; Berhan, M. Strategies for improvement of draft animal power supply for cultivation in Ethiopia: A review. Eur. J. Biol. Sci. 2012, 4, 96–104. [Google Scholar]
- Okello, W.O.; Muhanguzi, D.; MacLeod, E.T.; Welburn, S.C.; Waiswa, C.; Shaw, A.P. Contribution of draft cattle to rural livelihoods in a district of southeastern Uganda endemic for bovine parasitic diseases: An economic evaluation. Parasites Vectors 2015, 8, 571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guthiga, P.M.; Karugia, J.T.; Nyikal, R.A. Does use of draft animal power increase economic efficiency of smallholder farms in Kenya? Renew. Agric. Food Syst. 2007, 22, 290–296. [Google Scholar] [CrossRef]
- Tawonezvi, P.; Makuza, S.; Moyo, S.; Nengomasha, E. Zimbabwe Country Report on the State of the World’s Animal Genetic Resources; Agricultural Research Council: Harare, Zimbabwe, 2004. [Google Scholar]
- FAO. Draught Animal Power: An Overview; FAO: Rome, Italy, 2010. [Google Scholar]
- Ellis-Jones, J.; Neill, D. The contribution of draught animal power to sustainable livelihoods in sub-Saharan Africa: An example from Zimbabwe. In Proceedings of the Animal Traction, Health and Technology, the Role of Draught and Pack Animals in the 21st Century, London, UK, 28 October 2000; pp. 1–8. [Google Scholar]
- Lawrence, P.R.; Pearson, R.A. Use of draught animal power on small mixed farms in Asia. Agric. Syst. 2002, 71, 99–110. [Google Scholar] [CrossRef]
- FAO. Invisible Guardians—Women Manage Livestock Diversity; FAO: Rome, Italy, 2012; Available online: http://www.fao.org/fileadmin/user_upload/ags/publications/draugth_ap_overview.pdf (accessed on 28 October 2019).
- Salmon, G.; Teufel, N.; Baltenweck, I.; van Wijk, M.; Claessens, L.; Marshall, K. Trade-offs in livestock development at farm level: Different actors with different objectives. Glob. Food Sec. 2018, 17, 103–112. [Google Scholar] [CrossRef]
- Galiè, A.; Teufel, N.; Girard, A.W.; Baltenweck, I.; Dominguez-Salas, P.; Price, M.J.; Jones, R.; Lukuyu, B.; Korir, L.; Raskind, I.G.; et al. Women’s empowerment, food security and nutrition of pastoral communities in Tanzania. Glob. Food Sec. 2019, 23, 125–134. [Google Scholar] [CrossRef]
- Verhart, N.; van den Wijngaart, A.; Dhamankar, M.; Danielsen, K. Bringing Agriculture and Nutrition Together; Royal Tropical Institute (KIT) and Netherlands Development Organisation (SNV): Amsterdam, The Netherlands, 2015. [Google Scholar]
- Alao, B.O.; Falowo, A.B.; Chulayo, A.; Muchenje, V. The potential of animal by-products in food systems: Production, prospects and challenges. Sustainability 2017, 9, 1089. [Google Scholar] [CrossRef] [Green Version]
- Oiye, S.; Simel, J.O.; Oniang’o, R.; Johns, T. The Maasai food system and food and nutrition security. In Indigenous Peoples’ Food Systems: The Many Dimensions of Culture, Diversity and Environment for Nutrition and Health; FAO: Rome, Italy, 2009; pp. 231–249. ISBN 9789251060711. [Google Scholar]
- Wurzinger, M.; Ndumu, D.; Baumung, R.; Drucker, A.; Okeyo, A.M.; Semambo, D.K.; Byamungu, N.; Sölkner, J. Comparison of production systems and selection criteria of Ankole cattle by breeders in Burundi, Rwanda, Tanzania and Uganda. Trop. Anim. Health Prod. 2006, 38, 571–581. [Google Scholar] [CrossRef]
- Fayemi, P.O.; Muchenje, V. Meat in African context: From history to science. Afr. J. Biotechnol. 2012, 11, 1298–1306. [Google Scholar] [CrossRef]
- Gebremedhin, B.; Ehui, S. Essential Actions to Meet Quality Requirements of Hides, Skins and Semi-Processed Leather from Africa; Common Fund for Commodities: Amsterdam, Netherlands, 2002. [Google Scholar]
- Mahmud, A. Development Potential and Constraints of Hides and Skins Marketing in Ethiopia; LMA: Addis Ababa, Ethiopia, 1999. [Google Scholar]
- Soji, Z.; Chikwanda, D.; Chikwanda, A.T.; Jaja, I.F.; Mushonga, B.; Muchenje, V. Relevance of the formal red meat classification system to the South African informal livestock sector. S. Afr. J. Anim. Sci. 2015, 45, 263–277. [Google Scholar]
- Gwiriri, L.C.; Bennett, J.; Mapiye, C.; Marandure, T.; Burbi, S. Constraints to the sustainability of a ’systematised’ approach to livestock marketing amongst smallholder cattle producers in South Africa. Int. J. Agric. Sustain. 2019, 17, 189–204. [Google Scholar] [CrossRef]
- Rootman, G.T.; Stevens, J.B.; Mollel, N.M. Policy opportunities to enhance the role of smallholder livestock systems in Limpopo Province of South Africa. S. Afr. J. Agric. Ext. 2015, 43, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Mapekula, M.; Chimonyo, M.; Mapiye, C.; Dzama, K. Milk utilisation patterns in the low-input production systems in South Africa. Trop. Anim. Health Prod. 2010, 42, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Nabarro, D.; Wannous, C. The potential contribution of livestock to food and nutrition security: The application of the One Health approach in livestock policy and practice. Rev. Sci. Tech. 2014, 33, 475–485. [Google Scholar] [CrossRef]
- McRoberts, K.C.; Nicholson, C.F.; Parsons, D.; Van Nam, L.; Ba, N.X.; Ketterings, Q.M.; Cherney, D.J.R. Structure and impact of cattle manure trade in crop-livestock systems of Vietnam. Renew. Agric. Food Syst. 2018, 33, 86–101. [Google Scholar] [CrossRef]
- Gwanya, T.T. South Africa Position Paper on Rural Development—A Model for the Comprehensive Rural Develpment Programme; Government of South Africa: Pretoria, South Africa, 2010.
- Livestock Data Innovation in Africa. Business and Livelihoods in African Livestock: Investments to Overcome Information Gaps; FAO: Rome, Italy, 2014. [Google Scholar]
- Chaminuka, P.; Udo, H.M.J.; Eilers, K.C.H.A.M.; van der Zijpp, A. Livelihood roles of cattle and prospects for alternative land uses at the wildlife/livestock interface in South Africa. Land Use Policy 2014, 38, 80–90. [Google Scholar] [CrossRef]
- Bere-Chikara, F. Cattle: The life blood of Shona society. In Shona Customs: Essays by African Writers; Kileff, C., Kileff, P., Eds.; Mambo Press: Harare, Zimbabwe, 1970; pp. 20–23. [Google Scholar]
- Widi, T.S.M.; Udo, H.M.J.; Oldenbroek, K.; Budisatria, I.G.S.; Baliarti, E.; van der Zijpp, A.J. Unique cultural values of Madura cattle: Is cross-breeding a threat? Anim. Genet. Resour. 2014, 54, 141–152. [Google Scholar] [CrossRef]
- Scholtz, M.M.; Bester, J.; Mamabolo, J.M.; Ramsay, K.A. Results of the national beef cattle survey undertaken in South Africa. Appl. Anim. Husb. Rural Dev. 2008, 1, 1–9. [Google Scholar]
- Rege, J.E.O.; Marshall, K.; Notenbaert, A.; Ojango, J.M.K.; Okeyo, A.M. Pro-poor animal improvement and breeding—What can science do? Livest. Sci. 2011, 136, 15–28. [Google Scholar] [CrossRef]
- Ovaska, U.; Soini, K. Native breeds as providers of ecosystem services: The stakeholders’ perspective. TRACE Finn. J. Hum. Animal Stud. 2016, 2, 29–51. [Google Scholar]
- Leroy, G.; Baumung, R.; Boettcher, P.; Besbes, B.; From, T.; Hoffmann, I. Animal genetic resources diversity and ecosystem services. Glob. Food Sec. 2018, 17, 84–91. [Google Scholar] [CrossRef]
- Srivastava, M.; Kumar, V. The methods of using low cost housing techniques in India. J. Build. Eng. 2018, 15, 102–108. [Google Scholar] [CrossRef]
- Bettencourt, E.M.V.; Tilman, M.; Narciso, V.; da Silva Carvalho, M.L.; de Sousa Henriques, P.D. The livestock roles in the wellbeing of rural communities of Timor-Leste. Rev. Econ. Sociol. Rural. 2015, 53, S063–S080. [Google Scholar] [CrossRef]
- Marsoner, T.; Vigl, L.; Manck, F.; Jaritz, G.; Tappeiner, U.; Tasser, E. Indigenous livestock breeds as indicators for cultural ecosystem services: A spatial analysis within the Alpine Space. Ecol. Indic. 2018, 94, 55–63. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Muradian, R. In markets we trust? Setting the boundaries of market-based instruments in ecosystem services governance. Ecol. Econ. 2015, 117, 217–224. [Google Scholar] [CrossRef]
- Mhlanga, F.N.; Khombe, C.T.; Makuza, S.M. Indigenous Livestock Genotypes of Zimbabwe; University of Zimbabwe: Harare, Zimbabwe, 1999; Volume 116. [Google Scholar]
- Arhem, K. Maasai food symbolism: The cultural connotations of milk, meat, and blood in the pastoral Maasai diet. Anthropos 1989, 84, 1–23. [Google Scholar]
- Riang’a, R.M.; Broerse, J.; Nangulu, A.K. Food beliefs and practices among the Kalenjin pregnant women in rural Uasin Gishu County, Kenya. J. Ethnobiol. Ethnomed. 2017, 13, 29. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.J.G. Livestock biodiversity as interface between people, landscapes and nature. People Nat. 2019, 1, 284–290. [Google Scholar] [CrossRef]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Vignolio, O.R.; Fernández, O.N. Cattle dung as vector of spreading seeds of exotic species in the flooding Pampa Grasslands (Buenos Aires, Argentina). Ann. Bot. Fenn. 2010, 47, 14–22. [Google Scholar] [CrossRef]
- Kerby, J.D.; Fuhlendorf, S.D.; Engle, D.M. Landscape heterogeneity and fire behavior: Scale-dependent feedback between fire and grazing processes. Landsc. Ecol. 2007, 22, 507–516. [Google Scholar] [CrossRef]
- Dlamini, P.; Chaplot, V. The impact of land degradation on the quality of soils in a South African communal rangeland. In Land Degradation and Desertification—A Global Crisis; IntechOpen: London, UK, 2016; pp. 81–92. [Google Scholar]
- Kgosikoma, O.E.; Mojeremane, W.; Harvie, B. The impact of livestock grazing management systems on soil and vegetation characteristics across savanna ecosystems in Botswana. Afr. J. Range Forage Sci. 2015, 32, 271–278. [Google Scholar] [CrossRef]
- Klumpp, K.; Fontaine, S.; Attard, E.; Le Roux, X.; Gleixner, G.; Soussana, J.F. Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. J. Ecol. 2009, 97, 876–885. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Gerber, P.; Reid, R.S. Livestock, livelihoods and the environment: Understanding the trade-offs. Curr. Opin. Environ. Sustain. 2009, 1, 111–120. [Google Scholar] [CrossRef]
Parameter | Nguni a,c | Malawi Zebu b | Bonsmara c | Aberdeen Angus c |
---|---|---|---|---|
Average daily gain (kg/d) | 0.20–0.38 | 0.83 ± 11 | 1.83 ± 16.6 | 1.98 ± 19.4 |
Slaughter weight (kg) | 205–295 | 241 ± 12.3 | 255 ± 6.8 | 240 ± 8.0 |
Cold carcass weight (kg) | 107–170 | 119 ± 6.17 | 145 ± 3.7 | 129 ± 4.4 |
Dressing percentage | 52.1–56.3 | 50.4 ± 0.58 | 56.9 ± 0.78 | 53.7 ± 0.92 |
Meat proximate (%) | ||||
Moisture | 76.2–77.4 | 72.2 ± 0.77 | 77.7 ± 0.13 | 77.7–77.9 |
Protein | 21.0–22.5 | 22.3 ± 0.62 | 20.6 ± 0.12 | 20.0–20.4 |
Fat | 0.87–1.21 | 1.80 ± 0.45 | 0.79 ± 0.08 | 0.76–1.18 |
Ash | 1.07–1.80 | 1.20 ± 0.07 | 1.07 ± 0.01 | 1.06–1.07 |
Meat colour | ||||
Meat lightness (L*) | 36.5–38.2 | 39.6 ± 1.65 | 38.6 ± 0.52 | 39.9 ± 0.62 |
Meat redness (a*) | 15.5–15.8 | 12.6 ± 0.94 | 16.0 ± 0.39 | 16.6 ± 0.47 |
Meat yellowness (b*) | 6.5–7.4 | 7.73 ± 1.11 | 6.7 ± 0.21 | 7.1 ± 0.25 |
Meat tenderness (WBSF d, Newtons) | 39.2–61.8 | 41.2 ± 4.9 | 46.1 ± 3.82 | 37.2 ± 4.51 |
Fatty acids (%) | ||||
Oleic acid | 28.9–31.8 | - | 29.9 ± 0.60 | 31.1 ± 0.94 |
Vaccenic acid | 1.28–1.39 | - | 1.40 ± 0.18 | 1.74 ± 0.28 |
Rumenic acid | 0.34–0.39 | - | 0.31 ± 0.03 | 0.33 ± 0.05 |
Linoleic acid | 2.41–5.44 | - | 2.49 ± 0.13 | 2.21 ± 2.08 |
Alpha-linolenic acid | 1.53–2.41 | - | 2.48 ± 0.13 | 2.20 ± 0.21 |
Eicosapentaenoic acid | 1.60–1.95 | - | 2.04 ± 0.15 | 2.00 ± 0.23 |
Docosahexaenoic acid | 0.10–2.64 | - | 2.57 ± 0.19 | 2.43 ± 0.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mapiye, O.; Chikwanha, O.C.; Makombe, G.; Dzama, K.; Mapiye, C. Livelihood, Food and Nutrition Security in Southern Africa: What Role Do Indigenous Cattle Genetic Resources Play? Diversity 2020, 12, 74. https://doi.org/10.3390/d12020074
Mapiye O, Chikwanha OC, Makombe G, Dzama K, Mapiye C. Livelihood, Food and Nutrition Security in Southern Africa: What Role Do Indigenous Cattle Genetic Resources Play? Diversity. 2020; 12(2):74. https://doi.org/10.3390/d12020074
Chicago/Turabian StyleMapiye, Obvious, Obert C. Chikwanha, Godswill Makombe, Kennedy Dzama, and Cletos Mapiye. 2020. "Livelihood, Food and Nutrition Security in Southern Africa: What Role Do Indigenous Cattle Genetic Resources Play?" Diversity 12, no. 2: 74. https://doi.org/10.3390/d12020074
APA StyleMapiye, O., Chikwanha, O. C., Makombe, G., Dzama, K., & Mapiye, C. (2020). Livelihood, Food and Nutrition Security in Southern Africa: What Role Do Indigenous Cattle Genetic Resources Play? Diversity, 12(2), 74. https://doi.org/10.3390/d12020074