Relative Efficiency of Pitfall Trapping vs. Nocturnal Hand Collecting in Assessing Soil-Dwelling Spider Diversity along A Structural Gradient of Neotropical Habitats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites
2.2. Sampling Protocol
2.3. Taxonomy
2.4. Hunting Guilds
2.5. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Spider Catalog World Spider Catalog. Version 20.0. Available online: http://wsc.nmbe.ch (accessed on 14 January 2020).
- Coddington, J.A.; Griswold, C.E.; Silva Dàvila, D.; Peñaranda, E.; Larcher, S.F. Designing and testing sampling protocols to estimate biodiversity in tropical ecosystems. In The Unity of Evolutionary Biology: Proceedings of the fourth International Congress of Systematic and Evolutionary Biology; Dudley, E., Ed.; Dioscorides Press: Portland, OR, USA, 1991; pp. 44–60. [Google Scholar]
- Cardoso, P.; Scharff, N.; Gaspar, C.; Henriques, S.S.; Carvalho, R.; Castro, P.H.; Schmidt, J.B.; Silva, I.; Szüts, T.; Castro, A.D.; et al. Rapid biodiversity assessment of spiders (Araneae) using semi-quantitative sampling: A case study in a Mediterranean forest. Insect Conserv. Divers. 2008, 1, 71–84. [Google Scholar] [CrossRef]
- Cardoso, P.; Crespo, L.; Carvalho, R.; Rufino, A.; Henriques, S. Ad-Hoc vs. Standardized and Optimized Arthropod Diversity Sampling. Diversity 2009, 1, 36–51. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, G.H.; Faleiro, B.T.; Magalhães, I.L.; Benedetti, A.R.; Oliveira, U.; Pena-Barbosa, J.P.; Santos, M.T.; Vilela, P.F.; de Maria, M.; Santos, A.J. Effectiveness of sampling methods and further sampling for accessing spider diversity: A case study in a Brazilian Atlantic rainforest fragment. Insect Conserv. Divers. 2014, 7, 381–391. [Google Scholar] [CrossRef]
- Malumbres-Olarte, J.; Scharff, N.; Pape, T.; Coddington, J.A.; Cardoso, P. Gauging megadiversity with optimized and standardized sampling protocols: A case for tropical forest spiders. Ecol. Evol. 2017, 7, 494–506. [Google Scholar] [CrossRef] [Green Version]
- Privet, K.; Courtial, C.; Decaens, T.; Djoudi, E.A.; Vedel, V.; Ysnel, F.; Pétillon, J. Spider assemblage structure in a neotropical rainforest-inselberg complex: Ecological and methodological insights from a small-scale intensive survey. Trop. Ecol. 2018, 59, 21–34. [Google Scholar]
- Adis, J. Problems for interpreting arthropod sampling with pitfall traps. Zool. Anziger Jena 1979, 202, 177–184. [Google Scholar]
- Döbel, H.G.; Denno, R.F.; Coddington, J.A. Spider (Araneae) Community Structure in an Intertidal Salt Marsh: Effects of Vegetation Structure and Tidal Flooding. Environ. Entomol. 1990, 19, 1356–1370. [Google Scholar] [CrossRef] [Green Version]
- Semenina, E.E.; Anichkin, A.E.; Shilenkova, O.L.; Ermilov, S.G.; Tiunov, A.V. Rapid extraction of invertebrates from tropical forest litter using modified Winkler apparatus. J. Trop. Ecol. 2015, 31, 191–194. [Google Scholar] [CrossRef]
- Churchill, T.B.; Arthur, J.M. Measuring Spider Richness: Effects of Different Sampling Methods and Spatial and Temporal Scales. J. Insect Conserv. 1999, 3, 287–295. [Google Scholar] [CrossRef]
- Hancock, M.H.; Legg, C.J. Pitfall trapping bias and arthropod body mass: Pitfall bias and body mass. Insect Conserv. Divers. 2012, 5, 312–318. [Google Scholar] [CrossRef]
- Vedel, V.; Rheims, C.; Murienne, J.; Brescovit, A.D. Biodiversity baseline of the French Guiana spider fauna. SpringerPlus 2013, 2, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topping, C.J.; Sunderland, K.D. Limitations to the Use of Pitfall Traps in Ecological Studies Exemplified by a Study of Spiders in a Field of Winter Wheat. J. Appl. Ecol. 1992, 29, 485. [Google Scholar] [CrossRef]
- Cardoso, P. Standardization and optimization of arthropod inventories—the case of Iberian spiders. Biodivers. Conserv. 2009, 18, 3949–3962. [Google Scholar] [CrossRef]
- Brown, G.R.; Matthews, I.M. A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecol. Evol. 2016, 6, 3953–3964. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, L.L.; Coddington, J.A.; Scharff, N. Inventorying and Estimating Subcanopy Spider Diversity Using Semiquantitative Sampling Methods in an Afromontane Forest. Environ. Entomol. 2002, 31, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Jansen, R.; Makaka, L.; Little, I.T.; Dippenaar-Schoeman, A. Response of ground-dwelling spider assemblages (Arachnida, Araneae) to Montane Grassland management practices in South Africa. Insect Conserv. Divers. 2013, 6, 572–589. [Google Scholar] [CrossRef] [Green Version]
- Corti, R.; Larned, S.T.; Datry, T. A comparison of pitfall-trap and quadrat methods for sampling ground-dwelling invertebrates in dry riverbeds. Hydrobiologia 2013, 717, 13–26. [Google Scholar] [CrossRef]
- Luff, M.L. Some features influencing the efficiency of pitfall traps. Oecologia 1975, 19, 345–357. [Google Scholar] [CrossRef]
- Baars, M.A. Catches in pitfall traps in relation to mean densities of carabid beetles. Oecologia 1979, 41, 25–46. [Google Scholar] [CrossRef]
- Vedel, V.; Cerdan, A.; Martinez, Q.; Baraloto, C.; Petitclerc, F.; Orivel, J.; Fortunel, C. Day-time vs. night-time sampling does not affect estimates of spider diversity across a land use gradient in the Neotropics. J. Arachnol. 2015, 43, 413–416. [Google Scholar] [CrossRef]
- Pétillon, J.; Leroy, B.; Djoudi, E.A.; Vedel, V. Small and large spatial scale coexistence of ctenid spiders in a neotropical forest (French Guiana). Trop. Zool. 2018, 31, 85–98. [Google Scholar] [CrossRef]
- Merkel, A. Climat Kourou: Température Moyenne Kourou, Diagramme Climatique Pour Kourou-Climate-Data.Org. Available online: https://fr.climate-data.org/europe/france/guyane/kourou-29098/ (accessed on 30 August 2019).
- Samson, T. Météo à Kourou En Juillet 2013. Available online: https://www.historique-meteo.net/amerique-du-sud/guyane-francaise/kourou/2013/07/ (accessed on 30 August 2019).
- Brescovit, A.D.; Bonaldo, A.B.; Bertani, R.; Rheims, C.A. Araneae. In Amazonian Arachnida and Myriapoda. Identification Keys to All Classes, Orders, Families, Some Genera, and Lists of Known Terrestrial Species; Adis, J., Ed.; Pensoft Publisher: Sofia, Moscow, 2002; pp. 303–343. [Google Scholar]
- Levy, G. Spiders of the genera Micaria and Aphantaulax (Araneae, Gnaphosidae) from Israel. Isr. J. Zool. 2002, 48, 111–134. [Google Scholar] [CrossRef]
- Prószyński, J. Monograph of the Salticidae (Araneae) of the World. Available online: http://salticidae.org/salticid/main.htm (accessed on 21 February 2019).
- Wong, M.K.L.; Guénard, B.; Lewis, O.T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 2019, 94, 999–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brousseau, P.-M.; Gravel, D.; Handa, I.T. On the development of a predictive functional trait approach for studying terrestrial arthropods. J. Anim. Ecol. 2018, 87, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.; Pekár, S.; Jocqué, R.; Coddington, J.A. Global Patterns of Guild Composition and Functional Diversity of Spiders. PLoS ONE 2011, 6, e21710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, S.C.; Carvalho, L.S.; Bonaldo, A.B.; Brescovit, A.D. Refining the establishment of guilds in Neotropical spiders (Arachnida: Araneae). J. Nat. Hist. 2009, 44, 219–239. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Chao, A.; Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 2012, 93, 2533–2547. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Baselga, A.; Orme, C.D.L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 2012, 3, 808–812. [Google Scholar] [CrossRef]
- Baselga, A. Separating the two components of abundance-based dissimilarity: Balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 2013, 4, 552–557. [Google Scholar] [CrossRef]
- R Development Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019.
- Coddington, J.A.; Agnarsson, I.; Miller, J.A.; Kuntner, M.; Hormiga, G. Undersampling bias: The null hypothesis for singleton species in tropical arthropod surveys. J. Anim. Ecol. 2009, 78, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Sereda, E.; Blick, T.; Dorow, W.H.; Wolters, V.; Birkhofer, K. Assessing spider diversity on the forest floor: Expert knowledge beats systematic design. J. Arachnol. 2014, 42, 44–51. [Google Scholar] [CrossRef]
- Maelfait, J.-P.; Baert, L. Contribution to the knowledge of the arachni and entomofauna of different wood habitats. Part I. Sampled habitats, Theoretical study of the pitfall method, survey of the captured taxa-Carabidae. Biol. Jaarb. Dodonaea 1975, 43, 179–196. [Google Scholar]
- Lafage, D.; Maugenest, S.; Bouzillé, J.-B.; Pétillon, J. Disentangling the influence of local and landscape factors on alpha and beta diversities: Opposite response of plants and ground-dwelling arthropods in wet meadows. Ecol. Res. 2015, 30, 1025–1035. [Google Scholar] [CrossRef]
- Rodriguez-Artigas, S.M.; Ballester, R.; Corronca, J.A. Factors that influence the beta-diversity of spider communities in northwestern Argentinean Grasslands. PeerJ 2016, 4, e1946. [Google Scholar] [CrossRef]
- Ávila, A.C.; Stenert, C.; Rodrigues, E.N.L.; Maltchik, L. Habitat structure determines spider diversity in highland ponds. Ecol. Res. 2017, 32, 359–367. [Google Scholar] [CrossRef]
- Sebek, P.; Vodka, S.; Bogusch, P.; Pech, P.; Tropek, R.; Weiss, M.; Zimova, K.; Cizek, L. Open-grown trees as key habitats for arthropods in temperate woodlands: The diversity, composition, and conservation value of associated communities. For. Ecol. Manag. 2016, 380, 172–181. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Cardoso, P.; Crespo, L.C.; Henriques, S.; Carvalho, R.; Gomes, P. Biogeographic patterns of spiders in coastal dunes along a gradient of mediterraneity. Biodivers. Conserv. 2011, 20, 873–894. [Google Scholar] [CrossRef]
- Foord, S.; Dippenaar-Schoeman, A.; Haddad, C.R. South African Spider Diversity: African Perspectives on the Conservation of a Mega-Diverse Group. In Changing Diversity in Changing Environment; Grillo, O., Venora, G.I., Eds.; InTech: Rijeka, Croatia, 2011; ISBN 978-953-307-796-3. [Google Scholar]
- Magura, T.; Horváth, R.; Tóthmérész, B. Effects of urbanization on ground-dwelling spiders in forest patches, in Hungary. Landsc. Ecol. 2010, 25, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Alaruikka, D.; Kotze, D.J.; Matveinen, K.; Niemela, J. Carabid beetle and spider assemblages along a forested urban–rural gradient in southern Finland. J. Insect Conserv. 2002, 6, 195–206. [Google Scholar] [CrossRef]
- Varet, M.; Burel, F.; Lafage, D.; Pétillon, J. Age-dependent colonization of urban habitats: A diachronic approach using carabid beetles and spiders. Anim. Biol. 2013, 63, 257–269. [Google Scholar] [CrossRef]
- Tourinho, A.L.; Dias, S.C.; Lo-Man-Hung, N.F.; Pinto-da-Rocha, R.; Bonaldo, A.B.; Baccaro, F.B. Optimizing survey methods for spiders and harvestmen assemblages in an Amazonian upland forest. Pedobiologia 2018, 67, 35–44. [Google Scholar] [CrossRef]
Habitats | ||||
---|---|---|---|---|
Garden | Orchard | Edge | Forest | |
GPS coordinates | 5°04′43.3″ N 52°40′36.8″ W | 5°04′58.6″ N 52°41′47.3″ W | 5°04′15.0″ N 52°41′33.8″ W | 5°04′11.4″ N 52°41′48.1″ W |
Corine Land Cover 2012 code and libellee | 2430 – Land principally occupied by agriculture, with significant areas of natural vegetation | 3111 – Broad-leaved forest | 3111 – Broad-leaved forest | 3111 – Broad-leaved forest |
Habitat | Garden | Orchard | Edge | Forest |
---|---|---|---|---|
β | 0.22 | 1 | 0.93 | 0.81 |
βTURN | 0.05 | 1 | 0.9 | 0.61 |
βNEST | 0.17 | 0 | 0.03 | 0.20 |
Habitat | Garden | Orchard | Edge | ||||||
---|---|---|---|---|---|---|---|---|---|
Pitfall | β | βTURN | βNEST | β | βTURN | βNEST | β | βTURN | βNEST |
Orchard | 1 | 1 | 0 | ||||||
Edge | 0.97 | 0.8 | 0.17 | 1 | 1 | 0 | |||
Forest | 1 | 1 | 0 | 1 | 1 | 0 | 0.93 | 0.9 | 0.3 |
NHC | β | βTURN | βNEST | β | βTURN | βNEST | β | βTURN | βNEST |
Orchard | 0.9 | 0.68 | 0.22 | ||||||
Edge | 1 | 1 | 0 | 1 | 1 | 0 | |||
Forest | 1 | 1 | 0 | 1 | 1 | 0 | 0.89 | 0.8 | 0.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Privet, K.; Vedel, V.; Fortunel, C.; Orivel, J.; Martinez, Q.; Cerdan, A.; Baraloto, C.; Pétillon, J. Relative Efficiency of Pitfall Trapping vs. Nocturnal Hand Collecting in Assessing Soil-Dwelling Spider Diversity along A Structural Gradient of Neotropical Habitats. Diversity 2020, 12, 81. https://doi.org/10.3390/d12020081
Privet K, Vedel V, Fortunel C, Orivel J, Martinez Q, Cerdan A, Baraloto C, Pétillon J. Relative Efficiency of Pitfall Trapping vs. Nocturnal Hand Collecting in Assessing Soil-Dwelling Spider Diversity along A Structural Gradient of Neotropical Habitats. Diversity. 2020; 12(2):81. https://doi.org/10.3390/d12020081
Chicago/Turabian StylePrivet, Kaïna, Vincent Vedel, Claire Fortunel, Jérôme Orivel, Quentin Martinez, Axel Cerdan, Christopher Baraloto, and Julien Pétillon. 2020. "Relative Efficiency of Pitfall Trapping vs. Nocturnal Hand Collecting in Assessing Soil-Dwelling Spider Diversity along A Structural Gradient of Neotropical Habitats" Diversity 12, no. 2: 81. https://doi.org/10.3390/d12020081
APA StylePrivet, K., Vedel, V., Fortunel, C., Orivel, J., Martinez, Q., Cerdan, A., Baraloto, C., & Pétillon, J. (2020). Relative Efficiency of Pitfall Trapping vs. Nocturnal Hand Collecting in Assessing Soil-Dwelling Spider Diversity along A Structural Gradient of Neotropical Habitats. Diversity, 12(2), 81. https://doi.org/10.3390/d12020081