Testing the Effectiveness of DNA Barcoding for Biodiversity Assessment of Moths from Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Collection and Preliminary Identification of Specimens
2.2. Molecular Laboratory Protocols
2.3. Molecular-Based Species Identification and Analyses
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumar, V.; Kundu, S.; Chakraborty, R.; Sanyal, A.; Raha, A.; Sanyal, O.; Ranjan, R.; Pakrashi, A.; Tyagi, K.; Chandra, K. DNA barcoding of Geometridae moths (Insecta: Lepidoptera): A preliminary effort from Namdapha National Park, Eastern Himalaya. Mitochondrial DNA Part B 2018, 4, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Mallet, J. Taxonomy of Lepidoptera: The Scale of the Problem; The Lepidoptera Taxome Project: London, UK, 2007. [Google Scholar]
- Kristensen, N.P.; Scoble, M.J.; Karsholt, O.L.E. Lepidoptera phylogeny and systematics: The state of inventorying moth and butterfly diversity. Zootaxa 2007, 1668, 699–747. [Google Scholar] [CrossRef] [Green Version]
- Zethner, O. South Asian Ways of Silk—A Patchwork of Biology, Manufacture, Culture and History. Entomol. Ornithol. Herpetol. Curr. Res. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Conlong, D.E. A review and perspectives for the biological control of the African sugarcane stalkborer Eldana saccharina Walker (Lepidoptera: Pyralidae). Agric. Ecosyst. Environ. 1994, 48, 9–17. [Google Scholar] [CrossRef]
- De Prins, J.; De Prins, W. Afromoths, Online Database of Afrotropical Moth Species (Lepidoptera). World Wide Web Electronic Publication. Available online: www.afromoths.net (accessed on 26 December 2019).
- Obot, E.A.; Ogar, G.; Edet, C.A.; Olory, C.S.; Ayuk, J.; Akongke, C. Biological Inventory in the Okwangwo Division; Progress Report; CRNP: Springboro, OH, USA, 1996; pp. 1994–1996. [Google Scholar]
- Larson, T. Butterflies of the Cross River National Park – diversity writ large. In Proceedings of the workshop: Essential Partnership—the Forest and the People, Cross River National Park, Calabar, Nigeria, 23–28 October 1997; pp. 229–235. [Google Scholar]
- Olory, C.S. Contributions of Cross River National Park to National Development: Prospects and Challenges. In Proceedings of the 6th NSCB Biodiversity Conference, University of Uyo, Uyo, Nigerya, 6–12 May 2018; pp. 309–315. [Google Scholar]
- Li, H.; Zhen, H.; Mey, W. Notes on Dichomeris Hubner, 1818 from Southern Africa and Kenya, with description of seven new species (Lepidoptera, Gelechiidae, Dichomeridinae). Zootaxa 2013, 3608, 561–574. [Google Scholar] [CrossRef]
- Dubatolov, V.V. A new genus of African tiger moths, with a review of the Amsacta melanogastra Holland species group (Lepidoptera, Erebidae). Zootaxa 2013, 3682, 579–583. [Google Scholar] [CrossRef]
- Kovtunovich, V.N.; Ustjuzhanin, P.Y. New Species of Plume Moths of the GenusAgdistisHübner, 1825 (Lepidoptera: Pterophoridae: Agdistinae) from southern Africa. Afr. Invertebr. 2015, 56, 137–145. [Google Scholar] [CrossRef]
- Agassiz, D.J.; Aarvik, L. New Tortricidae (Lepidoptera) from East Africa with an account of the tortricid fauna of acacia in the Kenyan Rift Valley. Zootaxa 2014, 3861, 369–397. [Google Scholar] [CrossRef]
- Maicher, V.; Sáfián, S.; Ishmeal, K.N.; Murkwe, M.; Kimbeng, T.J.; Janeček, Š.; Tropek, R. Two Genera and Nineteen Species of Fruit-Feeding Erebid Moths (Lepidoptera: Erebidae) Recorded in Cameroon for the First Time. Entomol. News. 2016, 126, 64–70. [Google Scholar] [CrossRef]
- Visser, D.; Uys, V.; Nieuwenhuis, R.; Pieterse, W. First records of the tomato leaf miner Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) in South Africa. BioInvasions Rec. 2017, 6, 301–305. [Google Scholar] [CrossRef]
- Ustjuzhanin, P.; Kovtunovich, V.; Safian, S.; Maicher, V.; Tropek, R. A newly discovered biodiversity hotspot of many-plumed moths in the Mount Cameroon area: First report on species diversity, with description of nine new species (Lepidoptera, Alucitidae). Zookeys 2018, 119–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janzen, D.H.; Hajibabaei, M.; Burns, J.M.; Hallwachs, W.; Remigio, E.; Hebert, P.D. Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1835–1845. [Google Scholar] [CrossRef] [Green Version]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delabye, S.; Rougerie, R.; Bayendi, S.; Andeime-Eyene, M.; Ayala, D.; deWaard, J.R.; Hebert, P.D.N.; Kamgang, R.; Le Gall, P.; Lopez-Vaamonde, C.; et al. Characterization and comparison of poorly known moth communities through DNA barcoding in two Afrotropical environments. Genome 2019, 62, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Lopez, V.C.; Sire, L.; Rasmussen, B.; Rougerie, R.; Wieser, C.; Ahamadi, A.; Minet, J.; deWaard, J.J.R.; Decaëns, T.; Lees, D. DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar. Genome 2019, 62, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Lukhtanov, V.A.; Sourakov, A.; Zakharov, E.V.; Hebert, P.D. DNA barcoding Central Asian butterflies: Increasing geographical dimension does not significantly reduce the success of species identification. Mol. Ecol. Resour. 2009, 9, 1302–1310. [Google Scholar] [CrossRef]
- Dinca, V.; Zakharov, E.V.; Hebert, P.D.; Vila, R. Complete DNA barcode reference library for a country’s butterfly fauna reveals high performance for temperate Europe. Proc. R. Soc. B Biol. Sci. 2011, 278, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Dewaard, J.R.; Hebert, P.D.N.; Humble, L.M. A Comprehensive DNA Barcode Library for the Looper Moths (Lepidoptera: Geometridae) of British Columbia, Canada. PLoS ONE 2011, 6, e18290. [Google Scholar] [CrossRef] [Green Version]
- Hausmann, A.; Haszprunar, G.; Hebert, P.D.N. DNA Barcoding the Geometrid Fauna of Bavaria (Lepidoptera): Successes, Surprises, and Questions. PLoS ONE 2011, 6, e17134. [Google Scholar] [CrossRef]
- Hausmann, A.; Godfray, H.C.J.; Huemer, P.; Mutanen, M.; Rougerie, R.; van Nieukerken, E.J.; Ratnasingham, S.; Hebert, P.D.N. Genetic Patterns in European Geometrid Moths Revealed by the Barcode Index Number (BIN) System. PLoS ONE 2013, 8, e84518. [Google Scholar] [CrossRef]
- Wilson, J.J.; Sing, K.W.; Sofian-Azirun, M. Building a DNA barcode reference library for the true butterflies (Lepidoptera) of Peninsula Malaysia: What about the subspecies? PLoS ONE 2013, 8, e79969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huemer, P.; Karsholt, O.; Mutanen, M. DNA barcoding as a screening tool for cryptic diversity: An example from Caryocolum, with description of a new species (Lepidoptera, Gelechiidae). Zookeys 2014, 91–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huemer, P.; Wieser, C.; Stark, W.; Hebert, P.D.N.; Wiesmair, B. DNA barcode library of megadiverse Austrian Noctuoidea (Lepidoptera)—a nearly perfect match of Linnean taxonomy. Biodivers. Data J. 2019, 7, e37734. [Google Scholar] [CrossRef] [PubMed]
- Hajibabaei, M.; Janzen, D.H.; Burns, J.M.; Hallwachs, W.; Hebert, P.D. DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci. USA 2006, 103, 968–971. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.M.; Janzen, D.H.; Hajibabaei, M.; Hallwachs, W.; Hebert, P.D. DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservacion Guanacaste, Costa Rica. Proc. Natl. Acad. Sci. USA 2008, 105, 6350–6355. [Google Scholar] [CrossRef] [Green Version]
- Lavinia, P.D.; Nunez Bustos, E.O.; Kopuchian, C.; Lijtmaer, D.A.; Garcia, N.C.; Hebert, P.D.N.; Tubaro, P.L. Barcoding the butterflies of southern South America: Species delimitation efficacy, cryptic diversity and geographic patterns of divergence. PLoS ONE 2017, 12, e0186845. [Google Scholar] [CrossRef] [Green Version]
- Huemer, P.; Hebert, P.D.N. Cryptic diversity and phylogeography of high alpine Sattleria—A case study combining DNA barcodes and morphology (Lepidoptera: Gelechiidae). Zootaxa 2011, 2981, 1. [Google Scholar] [CrossRef] [Green Version]
- Dinca, V.; Montagud, S.; Talavera, G.; Hernandez-Roldan, J.; Munguira, M.L.; Garcia-Barros, E.; Hebert, P.D.; Vila, R. DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity. Sci. Rep. 2015, 5, 12395. [Google Scholar] [CrossRef]
- Chan-Chable, R.J.; Martinez-Arce, A.; Mis-Avila, P.C.; Ortega-Morales, A.I. DNA barcodes and evidence of cryptic diversity of anthropophagous mosquitoes in Quintana Roo, Mexico. Ecol. Evol. 2019, 9, 4692–4705. [Google Scholar] [CrossRef] [Green Version]
- Fry, R.; Waring, P. A guide to moth traps and their use. Amat. Entomol. 1996, 24, 60. [Google Scholar]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989. [Google Scholar]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Hebert, P.D.; Penton, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 2004, 101, 14812–14817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Ratnasingham, S.; Hebert, P.D. A DNA-based registry for all animal species: The barcode index number (BIN) system. PLoS ONE 2013, 8, e66213. [Google Scholar] [CrossRef] [Green Version]
- Lanfear, R.; Calcott, B.; Ho, S.Y.; Guindon, S. Partitionfinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012, 29, 1695–1701. [Google Scholar] [CrossRef] [Green Version]
- Townsend, T.M.; Mulcahy, D.G.; Noonan, B.P.; Sites, J.W., Jr.; Kuczynski, C.A.; Wiens, J.J.; Reeder, T.W. Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol. Phylogenet. Evol. 2011, 61, 363–380. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree v1.4.4. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 20 December 2019).
- Onah, E.I.; Taylor, D.; Eyo, J.E.; Ubachukwu, P.O. Identification of the false codling moth, Thaumatotibia leucotreta (meyrick) (Lepidoptera: Tortricidae), infesting sweet oranges in nigeria, by DNA barcoding. Proc. Entomol. Soc. Wash. 2016, 118, 574–581. [Google Scholar] [CrossRef]
- Simon, C.; Frati, F.; Beckenbach, A.; Crespi, B.; Liu, H.; Flook, P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 1994, 87, 651–701. [Google Scholar] [CrossRef]
- Friberg, M.; Bergman, M.; Kullberg, J.; Wahlberg, N.; Wiklund, C. Niche separation in space and time between two sympatric sister species—A case of ecological pleiotropy. Evol. Ecol. 2007, 22, 1–18. [Google Scholar] [CrossRef]
- Friberg, M.; Leimar, O.; Wiklund, C. Heterospecific courtship, minority effects and niche separation between cryptic butterfly species. J. Evol. Biol. 2013, 26, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Pazhenkova, E.A.; Zakharov, E.V.; Lukhtanov, V.A. DNA barcoding reveals twelve lineages with properties of phylogenetic and biological species within Melitaea didyma sensu lato (Lepidoptera, Nymphalidae). Zookeys 2015, 35–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, A.; Gopurenko, D. DNA Barcoding the Heliothinae (Lepidoptera: Noctuidae) of Australia and Utility of DNA Barcodes for Pest Identification in Helicoverpa and Relatives. PLoS ONE 2016, 11, e0160895. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Ratnasingham, S.; Zakharov, E.V.; Telfer, A.C.; Levesque-Beaudin, V.; Milton, M.A.; Pedersen, S.; Jannetta, P.; deWaard, J.R. Counting animal species with DNA barcodes: Canadian insects. Philos. Trans. R. Soc. B 2016, 371, 20150333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janzen, D.H.; Burns, J.M.; Cong, Q.; Hallwachs, W.; Dapkey, T.; Manjunath, R.; Hajibabaei, M.; Hebert, P.D.N.; Grishin, N.V. Nuclear genomes distinguish cryptic species suggested by their DNA barcodes and ecology. Proc. Natl. Acad. Sci. USA 2017, 114, 8313–8318. [Google Scholar] [CrossRef] [Green Version]
- Carstens, B.C.; Pelletier, T.A.; Reid, N.M.; Satler, J.D. How to fail at species delimitation. Mol. Ecol. 2013, 22, 4369–4383. [Google Scholar] [CrossRef]
s/No | Species | No of Individuals | Mean Intraspecific Divergence | Mean Interspecific Distance | Barcode Index Number | Average Distance | Maximum Distance | Distance to Nearest Neighbor | Nearest BIN URI |
---|---|---|---|---|---|---|---|---|---|
1 | Acropteris costinigrata | 4 | 0.0000 | 1.355 | BOLD:AAP1920 | 0.14 | 0.31 | 8.99 | BOLD:ACM6903 |
2 | Amnemopsyche sp. | 4 | 0.0000 | 1.351 | BOLD:ADH4903 | N/A | N/A | 3.53 | BOLD:AAV9999 |
3 | Archichlora viridimacula | 4 | 0.0000 | 1.396 | BOLD:AAO0809 | 0.1 | 0.15 | 2.09 | BOLD:ADA7547 |
4 | Arctia sp. | 8 | 0.0000 | 1.247 | N/A | ||||
5 | Cadarena sinuate | 4 | 0.0000 | 1.231 | N/A | ||||
6 | Dactyloceras lucina | 4 | 0.0000 | 1.395 | N/A | ||||
7 | Deinypena lacista | 16 | 0.00503 | 0.875 | BOLD:ABV8997 | 1.94 | 2.14 | 4.82 | BOLD:AAF8581 |
8 | Deinypena sp. | 4 | 0.0000 | 0.875 | N/A | ||||
9 | Dissoprumna erycinaria | 4 | 0.0000 | 1.281 | BOLD:AAJ8426 | 0.11 | 0.46 | 3.37 | BOLD:ADH4360 |
10 | Erastria albosignata | 8 | 0.0000 | 1.239 | N/A | ||||
11 | Euchromia lethe | 32 | 0.0903 | 1.131 | N/A | ||||
12 | Hodebertia sp. | 4 | 0.0000 | 1.308 | N/A | ||||
13 | Mocis mayeri | 4 | 0.0000 | 1.022 | BOLD:AAK6780 | 0.52% | 1.4 | 3 | BOLD:AAB5638 |
14 | Nyctemera leuconoe | 12 | 0.00985 | 1.383 | BOLD:AAI3435 | 0.52 | 0.79 | 3.69 | BOLD:AAI3436 |
15 | Otroeda sp. | 16 | 0.0144 | 1.154 | N/A | ||||
16 | Palpita sp. | 16 | 0.0017 | 1.140 | N/A | ||||
17 | Polydesma umbricola | 4 | 0.0000 | 1.344 | BOLD:AAW0459 | 0.1 | 0.4 | 4.4 | BOLD:ADZ5248 |
18 | Scopula transsecta | 4 | 0.0000 | 1.349 | BOLD:AAU2595 | 0.91 | 1.22 | 4.65 | BOLD:AAU2593 |
S/No | Species | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Acropteris costinigrata | |||||||||||||||||
2 | Amnemopsyche sp. | 14.88 | ||||||||||||||||
3 | Archichlora viridimacula | 13.92 | 13.60 | |||||||||||||||
4 | Arctia sp. | 13.28 | 13.12 | 13.28 | ||||||||||||||
5 | Cadarena sinuate | 13.76 | 13.76 | 13.60 | 10.56 | |||||||||||||
6 | Dactyloceras lucina | 15.04 | 14.24 | 12.16 | 14.08 | 15.04 | ||||||||||||
7 | Deinypena lacista | 10.80 | 12.44 | 11.88 | 8.60 | 9.24 | 12.28 | |||||||||||
8 | Deinypena sp. | 12.64 | 13.92 | 13.60 | 10.08 | 10.56 | 13.12 | 4.80 | ||||||||||
9 | Dissoprumna erycinaria | 12.16 | 15.52 | 12.96 | 14.88 | 14.08 | 14.40 | 13.12 | 15.20 | |||||||||
10 | Erastria albosignata | 12.80 | 13.60 | 10.88 | 13.28 | 12.48 | 13.44 | 10.96 | 13.12 | 11.36 | ||||||||
11 | Euchromia lethe | 13.87 | 14.01 | 13.11 | 10.98 | 10.98 | 14.13 | 9.79 | 10.98 | 15.17 | 13.11 | |||||||
12 | Hodebertia sp. | 13.44 | 14.72 | 13.28 | 14.08 | 11.84 | 14.56 | 11.60 | 12.48 | 14.40 | 12.64 | 12.12 | ||||||
13 | Mocis mayeri | 12.16 | 12.64 | 12.64 | 9.92 | 10.88 | 12.32 | 8.24 | 8.16 | 14.56 | 13.12 | 11.16 | 12.96 | |||||
14 | Nyctemera leuconoe | 15.25 | 13.01 | 11.57 | 12.05 | 12.05 | 11.73 | 10.25 | 11.57 | 14.61 | 13.01 | 10.73 | 12.69 | 11.25 | ||||
15 | Otroeda sp. | 12.60 | 12.84 | 13.36 | 12.08 | 11.92 | 13.68 | 8.48 | 10.44 | 12.08 | 11.92 | 10.75 | 11.96 | 11.92 | 11.97 | |||
16 | Palpita sp. | 14.24 | 13.60 | 12.00 | 14.40 | 10.24 | 12.64 | 10.08 | 11.84 | 14.24 | 12.16 | 12.40 | 10.88 | 10.24 | 11.73 | 12.88 | ||
17 | Polydesma umbricola | 14.56 | 13.60 | 13.28 | 11.84 | 11.52 | 12.80 | 10.24 | 11.36 | 14.24 | 13.28 | 12.30 | 12.96 | 10.24 | 11.73 | 11.60 | 11.20 | |
18 | Scopula transsecta | 12.48 | 14.08 | 13.44 | 12.48 | 11.52 | 14.08 | 11.12 | 12.32 | 12.96 | 12.00 | 12.94 | 12.00 | 11.68 | 14.77 | 12.20 | 12.64 | 13.76 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nneji, L.M.; Adeola, A.C.; Wang, Y.-Y.; Ajao, A.M.; Anyaele, O.; Malann, Y.; Olatunde, O.; Nneji, I.C.; Ayoola, A.O.; Rahman, M.M.; et al. Testing the Effectiveness of DNA Barcoding for Biodiversity Assessment of Moths from Nigeria. Diversity 2020, 12, 85. https://doi.org/10.3390/d12020085
Nneji LM, Adeola AC, Wang Y-Y, Ajao AM, Anyaele O, Malann Y, Olatunde O, Nneji IC, Ayoola AO, Rahman MM, et al. Testing the Effectiveness of DNA Barcoding for Biodiversity Assessment of Moths from Nigeria. Diversity. 2020; 12(2):85. https://doi.org/10.3390/d12020085
Chicago/Turabian StyleNneji, Lotanna Micah, Adeniyi Charles Adeola, Yun-Yu Wang, Adeyemi Mufutau Ajao, Okorie Anyaele, Yoila Malann, Omotoso Olatunde, Ifeanyi Christopher Nneji, Adeola Oluwakemi Ayoola, Md Mizanur Rahman, and et al. 2020. "Testing the Effectiveness of DNA Barcoding for Biodiversity Assessment of Moths from Nigeria" Diversity 12, no. 2: 85. https://doi.org/10.3390/d12020085
APA StyleNneji, L. M., Adeola, A. C., Wang, Y. -Y., Ajao, A. M., Anyaele, O., Malann, Y., Olatunde, O., Nneji, I. C., Ayoola, A. O., Rahman, M. M., Adeniyi, A. V., Okeyoyin, A., & Olory, C. S. (2020). Testing the Effectiveness of DNA Barcoding for Biodiversity Assessment of Moths from Nigeria. Diversity, 12(2), 85. https://doi.org/10.3390/d12020085