The Role of Nest Depth and Site Choice in Mitigating the Effects of Climate Change on an Oviparous Reptile
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Blaustein, A.R.; Walls, S.C.; Bancroft, B.A.; Lawler, J.J.; Searle, C.L.; Gervasi, S.S. Direct and indirect effects of climate change on amphibian populations. Diversity 2010, 2, 281–313. [Google Scholar] [CrossRef]
- Pankhurst, N.W.; Munday, P.L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 2011, 62, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Grazer, V.M.; Marin, O.Y. Investigating climate change and reproduction: Experimental tools from evolutionary biology. Biology 2012, 1, 411–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Roy, D.B.; Sparks, T.H. Phenology of British butterflies and climate change. Glob. Chang. Biol. 2000, 6, 407–416. [Google Scholar] [CrossRef]
- Cotton, P.A. Avian migration phenology and global climate change. Proc. Natl. Acad. Sci. USA 2003, 100, 12219–12222. [Google Scholar] [CrossRef] [Green Version]
- Jenni, L.; Kéry, M. Timing of autumn bird migration under climate change: Advances in long-distance migrants, delays in short-distance migrants. Proc. R. Soc. Lond. 2003, 270, 1467–1471. [Google Scholar] [CrossRef] [Green Version]
- Zaifman, J.Z.; Shan, D.; Ay, A.; Jimenez, A.G. Shifts in bird migration timing in North American long-distance and short-distance migrants are associated with climate change. Int. J. Zool. 2017, 2017, 6025646. [Google Scholar] [CrossRef] [Green Version]
- Fitter, A.H.; Fitter, R.S.R. Rapid changes in flowering time in British plants. Science 2002, 296, 1689–1691. [Google Scholar] [CrossRef]
- Crick, H.Q.; Sparks, T.H. Climate change related to egg-laying trends. Nature 1999, 399, 423. [Google Scholar] [CrossRef]
- Gibbs, J.P.; Breisch, A.R. Climate warming and calling phenology of frogs near Ithaca, New York, 1900–1999. Conserv. Biol. 2001, 15, 1175–1178. [Google Scholar] [CrossRef]
- Hawkes, L.A.; Broderick, A.C.; Godfrey, M.H.; Godley, B.J. Investigating the potential impacts of climate change on a marine turtle population. Glob. Chang. Biol. 2007, 13, 923–932. [Google Scholar] [CrossRef]
- Hovel, R.A.; Carlson, S.M.; Quinn, T.P. Climate change alters the reproductive phenology and investment of a lacustrine fish, the three-spine stickleback. Glob. Chang. Biol. 2017, 23, 2308–2320. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.M.; Lajeunesse, M.J.; Rohr, J.R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Chang. 2018, 8, 224–228. [Google Scholar] [CrossRef]
- Packard, G.C.; Packard, M.J.; Miller, K.; Boardman, T.J. Influence of moisture, temperature, and substrate on snapping turtle eggs and embryos. Ecology 1987, 68, 983–993. [Google Scholar] [CrossRef]
- Brooks, R.J.; Bobyn, M.L.; Galbraith, D.A.; Layfield, J.A.; Nancekivell, E.G. Maternal and environmental influences of growth and survival of embryonic and hatchling snapping turtles (Chelydra serpentina). Can. J. Zool. 1991, 69, 2667–2676. [Google Scholar] [CrossRef]
- Van Damme, R.; Bauwens, D.; Braña, F.; Verheyen, R.F. Incubation temperature differentially affects hatchling time, egg survival, and hatchling performance in the lizard Podarcis muralis. Herpetologica 1992, 48, 220–228. [Google Scholar]
- Shine, R.; Harlow, P.S. Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology 1996, 77, 1808–1817. [Google Scholar] [CrossRef]
- Shine, R.; Madsen, T.R.L.; Ephick, M.J.; Harlow, P.S. The influences of nest temperatures and maternal brooding on hatchling phenotypes in water pythons. Ecology 1997, 78, 1713–1721. [Google Scholar] [CrossRef]
- Noble, D.W.; Stenhouse, V.; Schwanz, L.E. Developmental temperatures and phenotypic plasticity in reptiles: A systematic review and meta-analysis. Biol. Rev. 2018, 93, 72–97. [Google Scholar] [CrossRef]
- Shine, R. Egg-laying reptiles in cold climates: Determinants and consequences of nest temperatures in montane lizards. J. Evol. Biol. 1999, 12, 918–925. [Google Scholar] [CrossRef]
- Patricío, A.R.; Varela, M.R.; Barbosa, C.; Broderick, A.C.; Airaud, M.B.F.; Godley, B.J.; Regalla, A.; Tilley, D.; Catry, P. Nest site selection repeatability of green turtles, Chelonia mydas, and consequences for offspring. Anim. Behav. 2018, 139, 91–102. [Google Scholar] [CrossRef]
- Ashmore, G.M.; Janzen, F.J. Phenotypic variation in smooth softshell turtles (Apalone mutica) from eggs incubated in constant versus fluctuating temperatures. Oecologia 2003, 134, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, N.; Literman, R.; Neuwald, J.L.; Mizoguchi, B.; Iverson, J.B.; Riley, J.L.; Litzgus, J.D. Extreme thermal fluctuations from climate change unexpectedly accelerate demographic collapse of vertebrates with temperature-dependent sex determination. Sci. Rep. 2019, 9, 4254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bull, J.J. Sex determination in reptiles. Q. Rev. Biol. 1980, 55, 3–21. [Google Scholar] [CrossRef]
- Janzen, F.J. Climate change and temperature-dependent sex determination in reptiles. Proc. R. Soc. Lond. 1994, 91, 7487–7490. [Google Scholar] [CrossRef] [Green Version]
- Ospina-Álvarez, N.; Piferrer, F. Temperature-dependent sex determination in fish revisited: Prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS ONE 2008, 3, e2837. [Google Scholar] [CrossRef] [Green Version]
- Liles, M.J.; Peterson, T.R.; Seminoff, J.A.; Gaos, A.R.; Altamirano, E.; Henríquez, A.V.; Peterson, M.J. Potential limitations of behavioral plasticity and the role of egg relocation in climate change mitigation for a thermally sensitive endangered species. Ecol. Evol. 2019, 9, 1603–1622. [Google Scholar] [CrossRef] [Green Version]
- Schwarzkopf, L.; Brooks, R.J. Sex determination in northern painted turtles: Effect of incubation at constant and fluctuating temperatures. Can. J. Zool. 1985, 63, 2543–2547. [Google Scholar] [CrossRef]
- Roosenburg, W.M. Maternal condition and nest site choice: An alternative for the maintenance of environmental sex determination? Am. Zool. 1996, 36, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Burger, J.; Montevecchi, W.A. Nest site selection in the terrapin Malaclemys terrapin. Copeia 1975, 1975, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Janzen, F.J.; Morjan, C.I. Repeatability of microenvironment-specific nesting behaviour in a turtle with environmental sex determination. Anim. Behav. 2001, 62, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Whitmore, C.P.; Dutton, P.H. Infertility, embryonic mortality and nest-site selection in leatherback and green sea turtles in Suriname. Biol. Conserv. 1985, 34, 2251–2272. [Google Scholar] [CrossRef]
- Kolbe, J.J.; Janzen, F.J. Impact of nest-site selection on nest success and nest temperature in natural and disturbed habitats. Ecology 2002, 83, 269–281. [Google Scholar] [CrossRef]
- Congdon, J.D.; Breitenback, G.L.; van Loben Sels, R.C.; Tinkle, D.W. Reproduction and nesting ecology of snapping turtles (Chelydra serpentina) in southeastern Michigan. Herpetologica 1987, 43, 39–54. [Google Scholar]
- Weisrock, D.W.; Janzen, F.J. Thermal and fitness-related consequences of nest location in Painted Turtles (Chrysemys picta). Funct. Ecol. 2002, 13, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Juliana, J.R.S.; Bowden, R.M.; Janzen, F.J. The impact of behavioral and physiological maternal effects of offspring sex ratio in the common snapping turtle, Chelydra serpentina. Behav. Ecol. Sociobiol. 2004, 56, 270–278. [Google Scholar]
- Vogt, R.C.; Bull, J.J. Temperature controlled sex-determination in turtles: Ecological and behavioral aspects. Herpetologica 1982, 38, 156–164. [Google Scholar]
- Janzen, F.J. Vegetation cover predicts the sex ratio of hatchling turtles in natural nests. Ecology 1994, 75, 1593–1599. [Google Scholar] [CrossRef]
- Thompson, M.B. Nest temperatures in the pleurodiran turtle, Emydura macquarii. Copeia 1988, 1988, 996–1000. [Google Scholar] [CrossRef]
- Kamel, S.J.; Mrosovsky, N. Repeatability of nesting preferences in the hawksbill sea turtle, Eretmockelys imbricata, and their fitness consequences. Anim. Behav. 2005, 70, 819–828. [Google Scholar] [CrossRef]
- Doody, J.S.; Guarino, E.; Georges, A.; Corey, B.; Murray, G.; Ewert, M. Nest site choice compensates for climate effects on sex ratios in a lizard with environmental sex determination. Evol. Ecol. 2006, 20, 307–330. [Google Scholar] [CrossRef]
- Morjan, C.L. Variation in nesting patterns affecting nest temperatures in two populations of turtles (Chrysemys picta) with temperature-dependent sex determination. Behav. Ecol. Sociobiol. 2003, 53, 254–261. [Google Scholar] [CrossRef]
- Wilson, D.S. Nest-site selection: Microhabitat variation and its effects on the survival of turtle embryos. Ecology 1998, 79, 1884–1892. [Google Scholar] [CrossRef]
- Hughes, E.J.; Brooks, R.J. The good mother: Does nest-site selection constitute parental investment in turtles? Can. J. Zool. 2006, 84, 1545–1554. [Google Scholar] [CrossRef]
- Marco, A.; Abella, E.; Martina, S.; López, O.; Patino-Martinez, J. Female nesting behaviour affects hatchling survival and sex ratio in the loggerhead sea turtle: Implications for conservation programmes. Ethol. Ecol. Evol. 2018, 30, 141–155. [Google Scholar] [CrossRef]
- Doody, J.S.; James, H.; Colyvas, K.; Mchenry, C.R.; Clulow, S. Deep nesting in a lizard, déjà vu devil’s corkscrews: First helical reptile burrow and deepest vertebrate nest. Biol. J. Linn. Soc. 2015, 166, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Burger, J. Temperature relationships in nests of the northern diamondback terrapin, Malaclemys terrapin terrapin. Herpetologica 1976, 32, 412–418. [Google Scholar]
- Booth, D.T.; Astill, K. Temperature variation within and between nests of the green sea turtle, Chelonia mydas (Chelonia: Cheloniidae) on Heron Island, Great Barrier Reef. Aust. J. Zool. 2001, 49, 71–84. [Google Scholar] [CrossRef]
- Valenzuela, N.M. Constant, shift, and natural temperature effects on sex determination in Podocnemis expansa turtles. Ecology 2001, 82, 3010–3024. [Google Scholar] [CrossRef]
- Tucker, C.R.; Strickland, J.T.; Delaney, D.K.; Ligon, D.B. Thermal consequences of subterranean nesting behavior in a prairie-dwelling turtle, the Ornate Box Turtle (Terrapene ornate). Can. J. Zool. 2017, 9, 123–131. [Google Scholar] [CrossRef]
- Burger, J. Determinants of hatchling success in diamondback terrapin, Malaclemys terrapin. Am. Midl. Nat. 1977, 97, 444–464. [Google Scholar] [CrossRef]
- Mortimer, J.A. The influence of beach sand characteristics on the nesting behavior and clutch survival of green turtles (Chelonia mydas). Copeia 1990, 1990, 802–817. [Google Scholar] [CrossRef]
- Van de Merwe, J.; Ibrahim, K.; Whittier, J. Effects of hatchery shading and nest depth on development and quality of Chelonia mydas hatchlings: Implications for hatchery management in Peninsular, Malaysia. Aust. J. Zool. 2005, 53, 205–211. [Google Scholar] [CrossRef]
- Refsnider, J.M.; Bodensteiner, B.L.; Reneker, J.L.; Janzen, F.J. Nest depth may not compensate for sex ratio skews caused by climate change in turtles. Anim. Conserv. 2013, 16, 481–499. [Google Scholar] [CrossRef]
- Iverson, J.B.; Higgins, H.; Sirulnik, A.; Griffiths, C. Local and geographic variation in the reproductive biology of the snapping turtle (Chelydra serpentina). Herpetologica 1997, 53, 96–117. [Google Scholar]
- Nagle, R.D.; Lutz, C.L.; Pyle, A.L. Overwintering in the nest by hatchling map turtles (Graptemys geographica). Can. J. Zool. 2004, 82, 1211–1218. [Google Scholar] [CrossRef]
- Montevecchi, W.A.; Burger, J. Aspects of the reproductive biology of the northern diamondback terrapin Malaclemys terrapin terrapin. Am. Midl. Nat. 1975, 94, 166–178. [Google Scholar] [CrossRef] [Green Version]
- Bodie, J.R.; Smith, K.R.; Burke, V.J. A comparison of diel temperature and nest site selection for two sympatric species of freshwater turtles. Am. Midl. Nat. 1996, 136, 181–186. [Google Scholar] [CrossRef]
- Rhodin, A.G.; Stanford, C.B.; Van Dijk, P.P.; Eisemberg, C.; Luiselli, L.; Mittermeier, R.A.; Hudson, R.; Horne, B.D.; Good, E.V.; Kuchling, G.; et al. Global conservation status of turtles and tortoises (order Testudines). Chelonian Conserv. Biol. 2018, 17, 135–161. [Google Scholar] [CrossRef]
- Laloë, O.; Esteban, N.; Berkel, J.; Hays, G.C. Sand temperatures for nesting turtles in the Caribbean: Implications for hatchling sex ratios in the face of climate change. J. Exp. Mar. Biol. Ecol. 2016, 474, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Ernst, C.H.; Burry, R.B. Malaclemys M. terrapin. Cat. Am. Amphib. Reptiles 1982, 299, 1–4. [Google Scholar]
- Butler, J.A.; Burke, R.L.; Roosenburg, W.M. Reproductive behavior and ecology. In Ecology and Conservation of the Diamondback Terrapin; Roosenburg, W.M., Kennedy, V.S., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2018; pp. 81–91. [Google Scholar]
- Seigel, R.A. Nesting habits of diamondback terrapins (Malaclemys terrapin) on the Atlantic coast of Florida. Trans. Kans. Acad. Sci. 1980, 83, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Feinberg, J.A.; Burke, R.L. Nesting ecology and predation of diamondback terrapins, Malaclemys terrapin, at Gateway National Recreation Area, New York. J. Herpetol. 2003, 37, 517–526. [Google Scholar] [CrossRef]
- Burke, R.L.; Calichio, A.M. Temperature-dependent sex determination in the diamond-backed terrapin (Malaclemys terrapin). J. Herpetol. 2014, 48, 466–470. [Google Scholar] [CrossRef]
- Ewert, M.A. The embryo and its egg: Development and natural history. In Turtles—Perspectives and Research; Harless, M., Morlock, H., Eds.; Krieger Publishing Company: Malabar, FL, USA, 1979; pp. 333–413. [Google Scholar]
- Burke, R.L.; Eugene, A.M. The effects of plastic and metal predator excluders on Diamondback Terrapin (Malaclemys terrapin) nest temperatures, hatching success, and estimated hatchling sex ratios. Herpetol. Conserv. Bio 2020. under review. [Google Scholar]
- Joern, W.T.; Jackson, J.F. Homogeneity of vegetation cover around the nest and avoidance of nest predation in mockingbirds. Auk 1983, 100, 497–499. [Google Scholar] [CrossRef]
Characteristic | 2004 Mean (SD) | 2005 Mean (SD) |
---|---|---|
Nest depth | 15.2 (1.9) cm | 14.9 (2.2) cm |
Female carapace length | 20.2 (1.4) cm | 19.6 (0.9) cm |
Clutch size | 13.3 (2.6) eggs | 12.9 (2.9) eggs |
Egg weight | 8.7 (0.9) g | 8.7 (1.1) g |
Variable | 2004 Mean (SD) | 2005 Mean (SD) | Test Type | Test Statistic | p-Value |
---|---|---|---|---|---|
Average Temperature | 26.1 (1.5) °C | 28.1 (2.0) °C | Mann-Whitney | W = 1596 | 3.3 × 10−11 |
Pivotal Temperature Units (PTUs) | 149.8 (111.6) | 281.9 (182.7) | Mann-Whitney | W = 2194 | 9.4 × 10−7 |
Maximum Temperature | 30.6 (2.3) °C | 32.4 (2.6) °C | Welch Two-Sample t | T = −4.6 | 8.7 × 10−6 |
Minimum Temperature | 22.6 (0.9) °C | 25.0 (1.7) °C | Mann-Whitney | W = 1014 | <2.2 × 10−16 |
Range of Temperatures | 8.1 (1.9) °C | 7.4 (2.0) °C | Mann-Whitney | W = 4616 | 0.021 |
Year | Response Variable | Predictor Variables (Correlation) | F-Statistic | df | R2 | p-Value |
---|---|---|---|---|---|---|
2004 | Average Nest Temperature | Den S (–) Bare ground (+) Nest depth (–) | 3.55 | 3.62 | 0.15 | 0.019 |
Pivotal Temperature Units (PTUs) | Den S (–) Bare ground (+) Nest depth (–) | 5.28 | 3.62 | 0.20 | 0.0026 | |
Maximum Nest Temperature | Den S (–) Bare ground (+) Nest depth (-) | 6.10 | 3.62 | 0.23 | 0.0011 | |
Temperature Range | Den S (–) Bare ground (+) Nest depth (–) | 8.98 | 3.62 | 0.30 | 5.0 × 10−5 | |
2005 | Average Nest Temperature | Den N (+) Den S (+) Den E (–) Nest depth (–) | 6.80 | 4.112 | 0.20 | 6.2 × 10−5 |
Pivotal Temperature Units (PTUs) | Den N (+) Den S (+) Den E (–) Depth (–) | 11.04 | 4.112 | 0.26 | 1.4 × 10−7 | |
Maximum Nest Temperature | Den N (+) Den S (+) Den E (–) Depth (–) | 12.26 | 4.110 | 0.31 | 2.8 × 10−8 | |
Minimum Nest Temperature | Den N (+) Den W (+) Bare ground (+) | 3.99 | 3.111 | 0.097 | 0.0097 | |
Temperature Range | Den E (–) Bare Ground (–) Litter (–) Dicots (–) Nest Depth (–) | 14.83 | 5.109 | 0.40 | 4.3 × 10−11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czaja, R.A.; Scholz, A.L.; Figueras, M.P.; Burke, R.L. The Role of Nest Depth and Site Choice in Mitigating the Effects of Climate Change on an Oviparous Reptile. Diversity 2020, 12, 151. https://doi.org/10.3390/d12040151
Czaja RA, Scholz AL, Figueras MP, Burke RL. The Role of Nest Depth and Site Choice in Mitigating the Effects of Climate Change on an Oviparous Reptile. Diversity. 2020; 12(4):151. https://doi.org/10.3390/d12040151
Chicago/Turabian StyleCzaja, Rebecca A., Amanda L. Scholz, Miranda P. Figueras, and Russell L. Burke. 2020. "The Role of Nest Depth and Site Choice in Mitigating the Effects of Climate Change on an Oviparous Reptile" Diversity 12, no. 4: 151. https://doi.org/10.3390/d12040151
APA StyleCzaja, R. A., Scholz, A. L., Figueras, M. P., & Burke, R. L. (2020). The Role of Nest Depth and Site Choice in Mitigating the Effects of Climate Change on an Oviparous Reptile. Diversity, 12(4), 151. https://doi.org/10.3390/d12040151