Diversity of Rhizobia and Importance of Their Interactions with Legume Trees for Feasibility and Sustainability of the Tropical Agrosystems
Abstract
:1. Rhizobia Strains and Legume Tree Interactions: Importance and Use in Tropical Agricultural Systems
2. Biological N Fixation and Indigenous Rhizobia Communities in Tropical Environments
3. Identification of Bacterial Strains and Determination of Rhizobia Diversity
4. Diversity of Rhizobia in Nodules of Legume Trees in the Humid Tropics
5. Final Considerations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moura, E.G.; Marques, E.S.; Silva, T.M.B.; Piedade, A.; Aguiar, A.C.F. Interactions among leguminous trees, crops and weeds in a no-till alley cropping system. Int. J. Plant Prod. 2014, 8, 441–456. [Google Scholar]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- Prado, R.B.; Fidalgo, E.C.C.; Monteiro, J.M.G.; Schuler, A.E.; Vezzani, F.M.; Garcia, J.R.; Oliveira, A.P.; Viana, J.H.M.; Gomes, B.C.C.P.; Mendes, I.C.; et al. Current overview and potential applications of the soil ecosystem services approach in Brazil. Pesqui. Agropecu. Bras. 2016, 51, 1021–1038. [Google Scholar] [CrossRef] [Green Version]
- Medinski, T.; Freese, D. Soil carbon stabilization and turnover at alley-cropping systems, Eastern Germany. Geophys. Res. Abst. 2012, 14, 2012–9532. [Google Scholar]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Gehring, C.; Vlek, P.L.G.; De Souza, L.A.G.; Denich, M. Biological nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia. Agric. Ecosyst. Environ. 2005, 111, 237–252. [Google Scholar] [CrossRef]
- Batterman, S.A.; Hedin, L.O.; Van Breugel, M.; Ransijn, J.; Craven, D.J.; Hall, J.S. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 2013, 502, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Fernández, R.; Frasier, I.; Noellemeyer, E.; Quiroga, A. Soil quality and productivity under zero tillage and grazing on Mollisols in Argentina – A long-term study. Geoderma Reg. 2017, 11, 44–52. [Google Scholar] [CrossRef]
- Berenguer, E.; Gardner, T.A.; Ferreira, J.; Aragão, L.E.O.C.; Nally, R.M.; Thomson, J.R.; Vieira, I.C.G.; Barlow, J. Seeing the woods through the aplings: Using wood density to assess the recovery of human-modified Amazonian forests. J. Ecol. 2018, 106, 2190–2203. [Google Scholar] [CrossRef] [Green Version]
- Sena, V.G.L.; Moura, E.G.; Macedo, V.R.A.; Aguiar, A.C.F.; Price, A.H.; Mooney, S.J.; Calonego, J.C. Ecosystem services for intensification of agriculture, with emphasis on increased nitrogen ecological use efficiency. Ecosphere 2020, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Snapp, S.S. Nutrients in agroecosystems: Rethinking the management paradigm. Adv. Agron. 2007, 92, 163–186. [Google Scholar]
- Aguiar, A.C.F.; Elialdo, S.A.; Anagila, C.S.J.; Moura, E.G. How leguminous biomass can increase yield and quality of maize grain in tropical agrosystems. Legum. Res. 2019. [Google Scholar] [CrossRef]
- Chapman, N.; Miller, A.J.; Lindsey, K.; Whalley, W.R. Roots, water, and nutrient acquisition: Let’s get physical. Trends Plant Sci. 2012, 12, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Viero, F.; Bayer, C.; Fontoura, S.M.V.; Moraes, R.P. Ammonia volatilization from nitrogen fertilizers in no-till wheat and maize in southern. Rev. Bras. Ciênc. Solo 2014, 38, 1515–1525. [Google Scholar] [CrossRef] [Green Version]
- Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark. Eur. J. Agron. 2015, 62, 55–64. [Google Scholar] [CrossRef]
- Rutting, T.; Aronsson, H.; Delin, S. Efficient use of nitrogen in agriculture. Nutr. Cycl. Agroecosyst. 2018, 110, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Moura, E.G.; Portela, S.B.; Macedo, V.R.A.; Sena, V.G.L.; Souza, C.C.M.; Aguiar, A.C.F. Gypsum and legume residue as a strategy to improve soil conditions in sustainability of agrosystems of the humid tropics. Sustainability 2018, 10, 1006. [Google Scholar] [CrossRef] [Green Version]
- Moura, E.G.; Sena, V.G.; Corrêa, M.S.; Aguiar, A.C.F. The importance of an alternative for sustainability of agriculture around the periphery of the Amazon rainforest. Recent Pat. Food Nutr. Agric. 2013, 5, 70–78. [Google Scholar] [CrossRef]
- Martens, D.A. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biol. Biochem. 2000, 32, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.A.; Keiser, A.D.; Davies, C.A.; Mersmann, C.A.; Strickland, M.S. Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry 2013, 113, 271–281. [Google Scholar] [CrossRef]
- Castellano, M.J.; Mueller, K.E.; Olk, D.C.; Sawyer, J.E.; Six, J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob. Chang. Biol. 2015, 21, 3200–3209. [Google Scholar] [CrossRef] [PubMed]
- Moura, E.G.; Oliveira, A.K.; Coutinho, C.G.; Pinheiro, K.M.; Aguiar, A.C.F. Management of a cohesive tropical soil to enhance rootability and increase the efficiency of nitrogen and potassium use. Soil Use Manag. 2012, 28, 370–377. [Google Scholar] [CrossRef]
- Malhi, Y. The productivity, metabolism and carbon cycle of tropical forest vegetation. J. Ecol. 2012, 100, 65–75. [Google Scholar] [CrossRef]
- Coelho, K.P.; Ribeiro, P.R.D.A.; Moura, E.G.D.; Aguiar, A.D.C.F.; Rodrigues, T.L.; Moreira, F.M.D.S. Symbiosis of rhizobia with Gliricidia sepium and Clitoria fairchildiana in an Oxisol in the pre-Amazon region of Maranhão State. Acta Sci. Agron. 2018, 40, e35248. [Google Scholar] [CrossRef] [Green Version]
- Graham, P.H.; Vance, C.P. Nitrogen fixation in perspective: An overview of research and extension needs. Field Crops Res. 2000, 65, 93–106. [Google Scholar] [CrossRef]
- Zhang, X.; Bol, R.; Rahn, C.; Xiao, G.; Meng, F.; Wu, W. Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980–2014 in Northern China. Sci. Total Environ. 2017, 596–597, 61–68. [Google Scholar] [CrossRef]
- Bruijn, F.J. Biological nitrogen fixation. In Principles of Plant-Microbe Interactions; Lugtenberg, B., Ed.; Springer: Cham, Switzerland, 2015; pp. 215–224. [Google Scholar]
- Vitousek, P.M.; Menge, D.N.; Reed, S.C.; Cleveland, C.C. Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 2013–2019. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.S.; Nóbrega, R.S.A.; Barberi, A.; Silva, K.; Ferreira, D.F.; Moreira, F.M.S. Nitrogenfixing bacteria communities occurring in soils under different uses in the Western Amazon Region as indicated by nodulation of siratro (Macroptilium atropurpureum). Plant Soil 2009, 319, 127–145. [Google Scholar] [CrossRef]
- Guimarães, A.A.; Jaramillo, P.M.D.; Nóbrega, R.S.A.; Florentino, L.A.; Silva, K.B.; Moreira, F.M.S. Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the Western Amazon by using cowpea as the trap plant. Appl. Environ. Microbiol. 2012, 78, 6726–6733. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Microbial inoculants: Reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 2019, 9, 205. [Google Scholar] [CrossRef] [PubMed]
- Biswas, B.; Scott, P.T.; Gresshoff, P.M. Tree legumes as feedstock for sustainable biofuel production: Opportunities and challenges. J. Plant Physiol. 2011, 168, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Reis, V.M.; Olivares, F.L. Vias de Penetração e Infecção de Plantas por Bactérias; EMBRAPA Agrobiologia: Seropédica, Brazil, 2006; pp. 1–34. [Google Scholar]
- Suzaki, T.; Yoro, E.; Kawaguchi, M. Leguminous plants: Inventors of root nodules to accommodate symbiotic bacteria. In International Review of Cell and Molecular Biology; Jeon, K.W., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 304, pp. 111–158. [Google Scholar]
- Liu, C.W.; Murray, J.D. The role of flavonoids in nodulation host-range specificity: An update. Plants 2016, 5, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trabelsi, D.; Mhamdi, R. Microbial inoculants and their impact on soil microbial communities: A review. BioMed Res. Int. 2013. [Google Scholar] [CrossRef] [PubMed]
- Bakhoum, N.; Ndoye, F.; Kane, A.; Assigbetse, K.; Fall, D.; Sylla, S.N.; Diouf, D. Impact of rhizobial inoculation on Acacia senegal (L.) Willd. growth in greenhouse and soil functioning in relation to seed provenance and soil origin. World J. Microbiol. Biotechnol. 2012, 28, 2567–2579. [Google Scholar] [CrossRef] [PubMed]
- Thilakarathna, M.S.; Raizada, M.N. A meta-analysis of the effectiveness of diverse rhizobia inoculants on soybean traits under field conditions. Soil Biol. Biochem. 2017, 105, 177–196. [Google Scholar] [CrossRef]
- Lindström, K.; Mousavi, S.A. Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.M.S.; Siqueira, J.O. Microbiologia e Bioquímica do Solo, 2nd ed.; Univesidade Federal de Lavras: Lavras, Brazil, 2006; p. 729. [Google Scholar]
- Masson-Boivin, C.; Giraud, E.; Perret, X.; Batut, J. Establishing nitrogen-fixing symbiosis with legumes: How many rhizobium recipes? Trends Microbiol. 2009, 17, 10. [Google Scholar] [CrossRef]
- Perret, X.; Staehelin, C.; Broughton, W.J. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 2000, 64, 180–201. [Google Scholar] [CrossRef] [Green Version]
- Sachs, J.L.; Quides, K.W.; Wendlandt, C.E. Legumes versus rhizobia: A model for ongoing conflict in symbiosis. New Phytol. 2018, 219, 1199–1206. [Google Scholar] [CrossRef] [Green Version]
- Taylor, B.N.; Simms, E.L.; Komats, K.J. More Than a Functional Group: Diversity within the Legume–Rhizobia Mutualism and Its Relationship with Ecosystem Function. Diversity 2020, 12, 50. [Google Scholar] [CrossRef] [Green Version]
- Ramoneda, J.; Roux, J.L.; Frossard, E.; Frey, B.; Gamper, H.A. Different ecological processes drive the assembly of dominant and rare root-associated bacteria in a promiscuous legume. bioRxiv 2020. [Google Scholar] [CrossRef]
- Andrews, M.; Andrews, M.E. Specificity in Legume-Rhizobia Symbioses. Int. J. Mol. Sci. 2017, 18, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehinger, M.; Mohr, T.J.; Starcevich, J.B.; Sachs, J.L.; Porter, S.S.; Simms, E.L. Specialization-generalization trade-off in a Bradyrhizobium symbiosis with wild legume hosts. BMC Ecol. 2014, 14, 8. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Romero, E. Diversity of Rhizobium-Phaseolus vulgaris symbiosis: Overview and perspectives. Plant Soil. 2003, 252, 11–23. [Google Scholar] [CrossRef]
- Jain, P.; Pundir, R.K. Recent Trends in Identification and Molecular Characterization of Rhizobia Species. In Rhizobium Biology and Biotechnology; Hansen, A.P., Choudhary, D.K., Agrawal, P.K., Varma, A., Eds.; Springer: Cham, Switzerland, 2017; Volume 50, pp. 136–164. [Google Scholar]
- Wang, E.T.; Chen, W.F.; Tian, C.F.; Young, J.P.W.; Chen, W.X. Ecology and Evolution of Rhizobia: Principles and Applications; Springer: Cham, Switzerland, 2019; (eBook). [Google Scholar]
- Suneja, P.; Duhan, J.S.; Bhutani, N.; Dudeja, S.S. Recent Biotechnological Approaches to Study Taxonomy of Legume Nodule Forming Rhizobia. In Plant Biotechnology: Recent Advancements and Developments; Gahlawat, S.K., Salar, R.K., Siwach, P., Duhan, J.S., Kumar, S., Kaur, P., Eds.; Springer: Cham, Switzerland, 2017; pp. 135–164. [Google Scholar]
- Case, R.J.; Boucher, Y.; Dahllöf, I.; Holmström, C.; Doolittle, W.F.; Kjelleberg, S. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl. Environ. Microbiol. 2007, 73, 73278–73288. [Google Scholar] [CrossRef] [Green Version]
- Salvina, L.H.O.S.; Rus, A.; Borozan, A.; Popescu, S. Preliminary studies regarding the development of a procedure for genetic identification of Rhizobium species. J. Hortic. For. 2018, 2, 94–99. [Google Scholar]
- Hakim, S.; Mirza, B.S.; Imran, A.; Zaheer, A.; Yasmin, S.; Mubeen, F.; Mclean, J.E.; Mirza, M.S. Illumina sequencing of 16S rRNA tag shows disparity in rhizobial and nonrhizobial diversity associated with root nodules of mung bean (Vigna radiate L.) growing in different habitats in Pakistan. Microbiol. Res. 2020, 231, 126356. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, H.; Lopes, F.M.; Silla, P.R.; Hungria, M.A. database for the taxonomic and phylogenetic identification of the genus Bradyrhizobium using multilocus sequence analysis. BMC Genom. 2015, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hungria, M.; Menna, P.; Delamuta, J.R.M. Bradyrhizobium, the ancestor of all rhizobia: Phylogeny of housekeeping and nitrogen-fixation genes. In Biological Nitrogen Fixation; De BRUIJN, F.J., Ed.; Wiley Blackwell: Hoboken, NJ, USA, 2015; pp. 191–202. [Google Scholar]
- Lambais, M.R.; Cury, J.D.C.; Maluche-Baretta, C.R.; Büll, R.D.C. Diversidade microbiana nos solos: Definindo novos paradigmas. Tópicos em Ciência do Solo 2005, 4, 43–84. [Google Scholar]
- Jesus, E.C.; Moreira, F.M.S.; Florentino, L.A.; Rodrigues, M.I.D.; Oliveira, M.S. Diversidade de bactérias que nodulam siratro em três sistemas de uso da terra da Amazônia Ocidental. Pesqui. Agropecu. Bras. 2005, 40, 769–776. [Google Scholar] [CrossRef]
- Vandamme, P.; Pot, B.; Gillis, M.; De Vos, P.; Kersters, K.; Swings, J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 1996, 60, 407–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, J.M.A. Manual for the Practical Study of Root-Nodule Bacteria; Blackwell Scientific: Oxford, UK, 1970; p. 164. [Google Scholar]
- Moreira, F.M.S.; Pereira, E.G. Microsymbionts: Rhizobia. In Standard Methods for Assessment of Soil Biodiversity and Land Use Practice; SWIFT, M., BIGNELL, D., Eds.; International Centre for Research in Agroforestry: Bogor, Indonesia, 2001; pp. 19–24. [Google Scholar]
- Thomas-Oates, J.; Bereszczak, J.; Edwards, E.; Gill, A.; Noreen, S.; Zhou, J.C.; Chen, M.Z.; Miao, L.H.; Xie, F.L.; Yang, J.K.; et al. A catalogue of molecular, physiological and symbiotic properties of soybean-nodulating rhizobial strains from different soybean cropping areas of China. Syst. Appl. Microbiol. 2003, 26, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Grönemeyer, J.L.; Bünger, W.; Reinhold-Hurek, B. Bradyrhizobium namibiense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of Lablab purpureus, hyacinth bean, in Namibia. Int. J. Syst. Evol. Microbiol. 2017, 67, 4884–4891. [Google Scholar] [PubMed]
- Safronova, V.I.; Sazanova, A.L.; Kuznetsova, I.G.; Belimov, A.A.; Andronov, E.E.; Chirak, E.R.; Popova, J.P.; Verkhozina, A.V.; Willems, A.; Tikhonovich, I.A. Phyllobacterium zundukense sp. nov., a novel species of rhizobia isolated from root nodules of the legume species Oxytropis triphylla (Pall.) Pers. Int. J. Syst. Evol. Microbiol. 2018, 68, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- Frank, B. Über die Pilzsymbiose der Leguminosen. Berichte Dtsch. Bot. Ges. 1889, 7, 332–346. [Google Scholar]
- Casida Junior, L.E. Ensifer adhaerens gen. nov., sp. nov.: A bacterial predator of bacteria in soil. Int. J. Syst. Bacteriol. 1982, 32, 339–345. [Google Scholar]
- Chen, W.X.; Yan, G.H.; Li, J.L. Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int. J. Syst. Bacteriol. 1988, 38, 392–397. [Google Scholar] [CrossRef] [Green Version]
- De Lajudie, P.; Laurent-Fulele, E.; Willems, A.; Torek, U.; Coopman, R.; Collins, M.D.; Kersters, K.; Dreyfus, B.; Gillis, M. Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int. J. Syst. Bacteriol. 1998, 48, 1277–1290. [Google Scholar] [CrossRef] [Green Version]
- Ren, D.W.; Wang, E.T.; Chen, W.F.; Sui, X.H.; Zhang, X.X.; Liu, H.C.; Chen, W.X. Rhizobium herbae sp. nov. and Rhizobium giardinii-related bacteria, minor microsymbionts of various wild legumes in China. Int. J. Syst. Evol. Microbiol. 2011, 61, 1912–1920. [Google Scholar] [CrossRef] [Green Version]
- An, D.S.; Im, W.T.; Yang, H.C.; Lee, S.T. Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int. J. Syst. Evol. Microbiol 2006, 56, 443–448X. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.X. Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int. J. Syst. Evol. Microbiol. 2008, 58, 1409–1413. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.A.; Österman, J.; Wahlberg, N.; Nesme, X.; Lavire, C.; VialC, L.; Paulin, L.; De Lajudie, P.; Lindström, K. Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium cladesupports the delineation of Neorhizobium gen. nov. Syst. Appl. Microbiol. 2014, 37, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Dreyfus, B.; Garcia, J.L.; Gillis, M. Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Bacteriol. 1988, 38, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Lang, E.; Schumann, P.; Adler, S.; Spröer, C.; Sahin, N. Azorhizobium oxalatiphilum sp. nov., and emended description of the genus Azorhizobium. Int. J. Syst. Evol. Microbiol. 2013, 63, 1505–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, F.M.S.; Cruz, L.; De Faria, S.M.; Marsh, T.; Martínez-Romero, E.; de Oliveira Pedrosa, F.; Pitard, R.M.; Young, J.P.W. Azorhizobium doebereinerae sp. nov. Microsymbiont of Sesbania virgata (Caz.) Pers. Syst. Appl. Microbiol. 2006, 29, 197–206. [Google Scholar]
- Nakagawa, Y.; Sakane, T.; Yokota, A. Transfer of “Pseudomonas riboflavina” (Foster 1944), a gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. Int. J. Syst. Bacteriol 1996, 46, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Rivas, R.; Willems, A.; Subba-Rao, N.S.; Mateos, P.F.; Dazzo, F.B.; Kroppenstedt, R.M.; Martínez-Molina, E.; Gillis, M.; Velázquez, E. Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst. Appl. Microbiol. 2003, 26, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Jordan, D.C. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. 1982, 32, 136–139. [Google Scholar]
- Buchanan, R.E. Approved lists of bacterial names. Int. J. Syst. Bacteriol. 1980, 30, 225–420. [Google Scholar]
- Kirchner, O. Die Wurzelkno¨llchen der Sojabohne. Beitra¨ge zur Biologie der Pflanzen 1896, 7, 213–224. [Google Scholar]
- Van Berkum, P.; Eardly, B.D. The aquatic budding bacterium Blastobacter denitrificans is a nitrogen-fixing symbiont of Aeschynomene indica. Appl. Environ. Microbiol. 2002, 68, 1132–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarvis, B.D.W.; Van Berkum, P.; Chen, W.X.; Nour, S.M.; Fernandez, M.P.; Cleyet-Marel, J.C.; Gillis, M. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int. J. Syst. Bacteriol. 1997, 47, 895–898. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, B.D.W.; Pankhurst, C.E.; Patel, J.J. Rhizobium loti, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. Read. 1982, 32, 378–380. [Google Scholar] [CrossRef] [Green Version]
- Urakami, T.; Araki, H.; Oyanagi, H.; Suzuki, K.I.; Komagata, K. Transfer of Pseudomonas aminovorans (den Dooren de Jong 1926) to Aminobacter gen. nov. as Aminobacter aminovorans comb. nov. and description of Aminobacter aganoensis sp. nov. and Aminobacter niigataensis sp. nov. Int. J. Syst. Bacteriol. 1992, 42, 84–92. [Google Scholar]
- Maynaud, G.; Willems, A.; Soussou, S.; Vidal, C.; Mauré, L.; Moulin, L.; Cleyet-Marel, J.; Brunel, B. Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Syst. Appl. Microbiol. 2012, 35, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, A. Uber Bakterienknoten in den Bla¨ttern einiger Rubiaceen. Jahrb. Wiss. Bot. 1902, 37, 1–11. [Google Scholar]
- Knösel, D.H. Genus Phyllobacterium. In Bergey’s Manual of Systematic Bacteriology; Krieg, N.R., Holt, J.G., Eds.; The Williams & Wilkins Co.: Baltimore, MD, USA, 1984; Volume 1, pp. 254–256. [Google Scholar]
- Patt, T.E.; Cole, G.C.; Hanson, R.S. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 1976, 26, 226–229. [Google Scholar] [CrossRef] [Green Version]
- Sy, A.; Giraud, E.; Jourand, P.; Garcia, N.; Willems, A.; De Lajudie, P.; Prin, Y.; Neyra, M.; Gillis, M.; Boivin-Masson, C.; et al. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol. 2001, 183, 214–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanso, S.; Patel, B.K. Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int. J. Syst. Evol. Microbiol. 2003, 53, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Radl, V.; Simões-Araújo, J.L.; Leite, J.; Passos, S.R.; Martins, L.M.; Xavier, G.R.; Rumjanek, N.G.; Baldani, J.I.; Zilli, J.E. Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil". Int. J. Syst. Evol. Microbiol. 2014, 64, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Holmes, B.; Popoff, M.; Kiredjian, M.; Kersters, K. Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. Int. J. Syst. Bacteriol. 1988, 38, 406–416. [Google Scholar]
- Ngom, A.; Nakagawa, Y.; Sawada, H.; Tsukahara, J.; Wakabayashi, S.; Uchiumi, T.; Nuntagij, A.; Kotepong, S.; Suzuki, A.; Higashi, S.; et al. A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. J. Gen. Appl. Microbiol. 2004, 50, 17–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trujillo, M.E.; Willems, A.; Abril, A.; Planchuelo, A.M.; Rivas, R.; Ludena, D.; Mateos, P.F.; Martinez-Molina, E.; Velázquez, E. Nodulation of Lupinus albus by Strains of Ochrobactrum lupini sp. nov. Appl. Environ. Microbiol. 2005, 71, 1318–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurdo-Pineiro, J.L.; Rivas, R.; Trujillo, M.E.; Vizcaino, N.; Carrasco, J.A.; Chamber, M.; Palomares, A.; Mateos, P.F.; Martinez-Molina, E.; Velazquez, E. Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int. J. Syst. Evol. Microbiol. 2007, 57, 784–788. [Google Scholar]
- Yabuuchi, E.; Kosako, Y.; Oyaizu, H.; Yano, I.; Hotta, H.; Hashimoto, Y.; Ezaki, T.; Arakawa, M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 1992, 36, 1251–1275. [Google Scholar] [CrossRef]
- Vandamme, P.; Goris, J.; Chen, W.M.; De Vos, P.; Willems, A.A. Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst. Appl. Microbiol. 2002, 25, 507–512. [Google Scholar]
- Sawana, A.; Adeolu, M.; Gupta, R.S. Molecular signatures and phylogenomic analysis of the genus Burkholderia: Proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen.nov.harboring environmental species. Genetics 2014, 5, 429. [Google Scholar] [CrossRef] [Green Version]
- Makkar, N.S.; Casida Junior, L.E. Cupriavidus necator gen. nov., sp. nov.; a nonobligate bacterial predator of bacteria in soil. Int. J. Syst. Bacteriol. 1987, 37, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Barrett, C.F.; Parker, M.A. Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule Bacteria on two Mimosa spp. in Costa Rica. Appl. Environ. Microbiol. 2006, 72, 1198–1206. [Google Scholar] [CrossRef] [Green Version]
- Silva, K.; Florentinho, L.A.; Silva, K.B.; Brandt, E.; Vandamme, P.; Moreira, F.M.S. Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst. Appl. Microbiol. 2012, 35, 175–182. [Google Scholar] [PubMed]
- Yabuuchi, E.; Kosako, Y.; Yano, I.; Hotta, H.; Nishiuchi, Y. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol. Immunol. 1995, 39, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.M.; Laevens, S.; Lee, T.M.; Coenye, T.; De Vos, P.; Mergeay, M.; Vandamme, P. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int. J. Syst. Evol. Microbiol. 2001, 51, 1729–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bala, A.; Giller, K.E. Relationships between rhizobial diversity and host legume nodulation and nitrogen fixation in tropical ecosystems. Nutr. Cycling Agroecosyst. 2006, 76, 319–330. [Google Scholar] [CrossRef]
- Bala, A.; Murphy, P.J.; Osunde, A.O.; Giller, K.E. Nodulation of tree legumes and the ecology of their native rhizobial populations in tropical soils. Appl. Soil Ecol. 2003, 22, 211–223. [Google Scholar] [CrossRef]
- Nascimento, J.T.; Silva, I.F. Avaliação quantitativa e qualitativa da fitomassa de leguminosas para uso como cobertura de solo. Cienc. Rural 2004, 34, 947–949. [Google Scholar] [CrossRef]
- Costa, J.N.M.N.; Durigan, G. Leucaena leucocephala (Lam.) de Wit (Fabaceae): Invasive or ruderal? Rev. Arvore 2010, 34, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Bala, A.; Giller, K.E. Symbiotic specificity of tropical tree rhizobia for host legumes. New Phytol. 2001, 149, 495–507. [Google Scholar] [CrossRef]
- Bala, A.; Murphy, P.; Giller, K.E. Distribution and diversity of rhizobia nodulating agroforestry legumes in soils from three continents in the tropics. Mol. Ecol. 2003, 12, 917–929. [Google Scholar] [CrossRef]
- Xu, K.W.; Penttinen, P.; Chen, Y.X.; Chen, Q.; Zhang, X. Symbiotic efficiency and phylogeny of the rhizobia isolated from Leucaena leucocephala in arid–hot river valley area in Panxi, Sichuan, China. Appl. Microbiol. Biotechnol. 2013, 97, 783–793. [Google Scholar] [CrossRef]
- Wang, E.T.; Kan, F.L.; Tan, Z.Y.; Toledo, I.; Chen, W.X.; Martínez-Romero, E. Diverse Mesorhizobium plurifarium populations native to Mexican soils. Arch. Microbiol. 2003, 180, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Florentino, L.A.; Guimarães, A.P.; Rufini, M.; Silva, K.; Moreira, F.M.S. Sesbania virgata stimulates the occurrence of its microsymbiont in soils but does not inhibit microsymbionts of other species. Sci. Agric. 2009, 66, 667–676. [Google Scholar] [CrossRef]
- Moreira, F.M.S.; Gillis, M.; Pot, B.; Kersters, K.; Franco, A.A. Characterization of rhizobia isolated from different divergence groups of tropical Leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. Syst. Appl. Microbiol. 1993, 16, 135–146. [Google Scholar] [CrossRef]
- Wang, F.Q.; Wang, E.T.; Zhang, Y.F.; Chen, W.X. Characterization of rhizobia isolated from Albizia spp. in comparison with microsymbionts of Acacia spp. and Leucaena leucocephala grown in China. Syst. Appl. Microbiol. 2006, 29, 502–517. [Google Scholar] [CrossRef]
- Clapp, J.P.; Mansur, I.; Dodd, J.C.; Jeffries, P. Ribotyping of rhizobia nodulating Acacia mangium and Paraserianthes falcataria from differentes geografical areas in Indonesia using PCR-RFLP-SSCP (PRS) and sequencing. Environ. Microbiol. 2001, 3, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, C.; Tentchev, D.; Prin, Y.; Goh, D.; Japarudin, Y.; Perrineau, M.M.; Galiana, A. Bradyrhizobia nodulating the Acacia mangium× A. auriculiformis interspecific hybrid are specific and differ from those associated with both parental species. Appl. Environ. Microbiol. 2009, 75, 7752–7759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrineau, M.M.; Le Roux, C.; De Faria, S.M.; De Carvalho Balieiro, F.; Galiana, A.; Prin, Y.; Béna, G. Genetic diversity of symbiotic Bradyrhizobium elkanii populations recovered from inoculated and non-inoculated Acacia mangium field trials in Brazil. Syst. Appl. Microbiol. 2011, 34, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Perrineau, M.M.; Le Roux, C.; Galiana, A.; Faye, A.; Duponnois, R.; Goh, D.; Béna, G. Differing courses of genetic evolution of Bradyrhizobium inoculants as revealed by long-term molecular tracing in Acacia mangium plantations. Appl. Environ. Microbiol. 2014, 80, 5709–5716. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.M.S.; Haukka, K.; Young, J.P.W. Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Mol. Ecol. 1998, 7, 889–895. [Google Scholar] [CrossRef]
- Bray, R.A. Diversity within tropical tree and shrub legumes. In Forage Tree Legumes in Tropical Agriculture; Mathison, G.W., Ed.; CAB International: Wallingford, UK, 1994; pp. 101–106. [Google Scholar]
- Batish, D.R.; Kohli, R.K.; Jose, S.; Singh, H.P. (Eds.) Ecological Basis of Agroforestry; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Acosta-Durán, C.; Martínez-Romero, E. Diversity of rhizobia from nodules of the leguminous tree Gliricidia sepium, a natural host of Rhizobium tropici. Arch. Microbiol. 2002, 178, 161–164. [Google Scholar] [CrossRef]
- Florentino, L.A.; Rezende, A.V.; Mesquita, A.C.; Lima, A.R.; Marques, D.J.; Miranda, J.M. Diversidade e potencial de utilização dos rizóbios isolados de nódulos de Gliricidia sepium. Revista de Ciências Agrárias 2014, 37, 320–338. [Google Scholar]
- Degefu, T.; Wolde-Meskel, E.; Frostegård, Å. Phylogenetic diversity of Rhizobium strains nodulating diverse legume species growing in Ethiopia. Syst. Appl. Microbiol. 2013, 36, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, H. Árvores brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil; Plantarum: Nova Odessa, Brazil, 1992. [Google Scholar]
- Leite, A.A.L.; Ferraz Junior, A.S.L.; Moura, E.G.; Aguiar, A.C.F. Comportamento de dois genótipos de milho cultivados em sistema de aléias pré-estabelecidos com diferentes leguminosas arbóreas. Bragantia 2008, 67, 875–882. [Google Scholar] [CrossRef] [Green Version]
Family | Genus/Type Species | Species of Rhizobia within the Genus, According to List of Prokaryotic Names with Standing in Nomenclature (2018) | References |
---|---|---|---|
Rhizobiaceae | Rhizobium. Type species: R. leguminosarum | 133 species | [66] |
Ensifer/ Sinorhizobium Type species: E. adhaerens; S. fredii; S. xinjiangensis. | The genus Ensifer/Sinorhizobium covers about 24 species | [67,68] | |
Allorhizobium. Type species: A. undicola | 9 species | [69] | |
Pararhizobium. Type species: P. giardinii. | P. giardinii; P. herbae | [70] | |
Shinella. Type species: S. granuli | S. kummerowiae | [71,72] | |
Neorhizobium. Type species: N. galegae | N. alkalisoli, N. galegae and N. huautlense | [73] | |
Hyphomicrobiaceae | Azorhizobium. Type species: A. caulinodans | A. caulinodans, A. doebereinerae and A. oxalatiphilum | [74,75,76] |
Devosia. Type species: D. riboflavina | D. neptuniae | [77,78] | |
Bradyrhizobiaceae | Bradyrhizobium Type species: B. japonicum | 60 species | [79,80,81] |
Blastobacter. Type species: B. tienricii | B. denitrificans | [82] | |
Phylobacteriaceae | Mesorhizobium. Type species: M. loti | 59 species | [83,84] |
Aminobacter. Type species: A. aminovorans | A. anthyllidis | [85,86] | |
Phyllobacterium Type species: P. myrsinacearum | 8 species: P. ifriqiyense, P. leguminum, P. bourgognense, P. brassicacearum, P. endophyticum, P. loti, P. sophorae, P. trifolii | [87,88] | |
Methylobacteriaceae | Methylobacterium. Type species: M. organophilum | M. nodulans | [89,90] |
Microvirga Type species: M. subterrânea | M. lupini, M. lotonononidis, M. zambiensis and M. vignae | [91,92] | |
Brucellaceae | Ochrobactrum. Type species: O. anthropi | O. lupini, (synonym of O. anthropic); O. cytisi | [93,94,95,96] |
Burkholderiaceae | Burkholderia. Type species: B. cepacian. Sawana et al. (2015) proposed the division of the genus into Burkholderia and Paraburkholderia, | The genus Burkholderia has 32 species and Paraburkholderia has 69 species | [97,98,99] |
Cupriavidus. Type species: C. necator | C. taiwanenses | [100,101,102] | |
Ralstonia. Type species: R. pickettii, | R. taiwanensis (Sinonimous: Cupriavidus taiwanensis; Wautersia taiwanensis) | [103,104] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, E.G.; Carvalho, C.S.; Bucher, C.P.C.; Souza, J.L.B.; Aguiar, A.C.F.; Ferraz Junior, A.S.L.; Bucher, C.A.; Coelho, K.P. Diversity of Rhizobia and Importance of Their Interactions with Legume Trees for Feasibility and Sustainability of the Tropical Agrosystems. Diversity 2020, 12, 206. https://doi.org/10.3390/d12050206
Moura EG, Carvalho CS, Bucher CPC, Souza JLB, Aguiar ACF, Ferraz Junior ASL, Bucher CA, Coelho KP. Diversity of Rhizobia and Importance of Their Interactions with Legume Trees for Feasibility and Sustainability of the Tropical Agrosystems. Diversity. 2020; 12(5):206. https://doi.org/10.3390/d12050206
Chicago/Turabian StyleMoura, Emanoel G., Cristina S. Carvalho, Cassia P. C. Bucher, Juliana L. B. Souza, Alana C. F. Aguiar, Altamiro S. L. Ferraz Junior, Carlos A. Bucher, and Katia P. Coelho. 2020. "Diversity of Rhizobia and Importance of Their Interactions with Legume Trees for Feasibility and Sustainability of the Tropical Agrosystems" Diversity 12, no. 5: 206. https://doi.org/10.3390/d12050206
APA StyleMoura, E. G., Carvalho, C. S., Bucher, C. P. C., Souza, J. L. B., Aguiar, A. C. F., Ferraz Junior, A. S. L., Bucher, C. A., & Coelho, K. P. (2020). Diversity of Rhizobia and Importance of Their Interactions with Legume Trees for Feasibility and Sustainability of the Tropical Agrosystems. Diversity, 12(5), 206. https://doi.org/10.3390/d12050206