The Permeability of Natural versus Anthropogenic Forest Edges Modulates the Abundance of Ground Beetles of Different Dispersal Power and Habitat Affinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Search and Selection
2.2. Classification of Edges Based on Their Maintaining Process
2.3. Data Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory and Practice. Pattern and Process, 2nd ed.; Springer: New York City, NY, USA, 2015. [Google Scholar]
- Murcia, C. Edge effects in fragmented forests: Implications for conservation. Trends Ecol. Evol. 1995, 10, 58–62. [Google Scholar] [CrossRef]
- Ewers, R.M.; Didham, R.K. Continuous response functions for quantifying the strength of edge effects. J. Appl. Ecol. 2006, 43, 527–536. [Google Scholar] [CrossRef]
- Ries, L.; Fletcher, R.J.; Battin, J.; Sisk, T.D. Ecological responses to habitat edges: Mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 491–522. [Google Scholar] [CrossRef] [Green Version]
- Ries, L.; Sisk, T.D. A predictive model of edge effects. Ecology 2004, 85, 2917–2926. [Google Scholar] [CrossRef] [Green Version]
- Hardt, E.; Pereira-Silva, E.F.L.; Dos Santos, R.F.; Tamashiro, J.Y.; Ragazzi, S.; Lins, D.B.D.S. The influence of natural and anthropogenic landscapes on edge effects. Landsc. Urban. Plan. 2013, 120, 59–69. [Google Scholar] [CrossRef]
- Peyras, M.; Vespa, N.I.; Bellocq, M.I.; Zurita, G.A. Quantifying edge effects: The role of habitat contrast and species specialization. J. Insect Conserv. 2013, 17, 807–820. [Google Scholar] [CrossRef]
- Carvajal-Cogollo, J.E.; Urbina-Cardona, N. Ecological grouping and edge effects in tropical dry forest: Reptile-microenvironment relationships. Biodivers. Conserv. 2015, 24, 1109–1130. [Google Scholar] [CrossRef]
- Strayer, D.L.; Power, M.E.; Fagan, W.F.; Pickett, S.T.A.; Belnap, J. A classification of ecological boundaries. Bioscience 2003, 53, 723–729. [Google Scholar] [CrossRef] [Green Version]
- Magura, T.; Lövei, G.L.; Tóthmérész, B. Edge responses are different in edges under natural versus anthropogenic influence: A meta-analysis using ground beetles. Ecol. Evol. 2017, 7, 1009–1017. [Google Scholar] [CrossRef]
- Koivula, M.; Hyyryläinen, V.; Soininen, E. Carabid beetles (Coleoptera: Carabidae) at forest-farmland edges in southern Finland. J. Insect Conserv. 2004, 8, 297–309. [Google Scholar] [CrossRef]
- Brigić, A.; Starčević, M.; Hrašovec, B.; Elek, Z. Old forest edges may promote the distribution of forest species in carabid assemblages (Coleoptera: Carabidae) in Croatian forests. Eur. J. Entomol. 2014, 111, 715–725. [Google Scholar] [CrossRef] [Green Version]
- Magura, T. Ignoring functional and phylogenetic features masks the edge influence on ground beetle diversity across forest-grassland gradient. For. Ecol. Manag. 2017, 384, 371–377. [Google Scholar] [CrossRef] [Green Version]
- den Boer, P.J. Dispersal Power and Survival: Carabids in a Cultivated Countryside, 1st ed.; H. Veenman & Zonen, B. V.: Wageningen, The Netherlands, 1977. [Google Scholar]
- Homburg, K.; Homburg, N.; Schäfer, F.; Schuldt, A.; Assmann, T. Carabids.org–A dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 2014, 7, 195–205. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis, 1st ed.; John Wiley & Sons Ltd.: Chichester, UK, 2009. [Google Scholar]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Del Re, A.C.; Hoyt, W.T. MAd: Meta-Analysis with Mean Differences. Available online: https://cran.r-project.org/web/packages/MAd/MAd.pdf (accessed on 14 February 2020).
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2017. Available online: http://www.R-project.org/ (accessed on 14 February 2020).
- Evans, M.J.; Banks, S.C.; Davies, K.F.; Mcclenahan, J.; Melbourne, B.; Driscoll, D.A. The use of traits to interpret responses to large scale—Edge effects: A study of epigaeic beetle assemblages across a Eucalyptus forest and pine plantation edge. Landsc. Ecol. 2016, 31, 1815–1831. [Google Scholar] [CrossRef]
- Magura, T.; Lövei, G.L. Environmental filtering is the main assembly rule of ground beetles in the forest and its edge but not in the adjacent grassland. Insect Sci. 2018, 26, 154–163. [Google Scholar] [CrossRef]
- Magura, T.; Lövei, G.L. The type of forest edge governs the spatial distribution of different-sized ground beetles. Acta Zool. Acad. Sci. Hung. 2020, submitted. [Google Scholar]
- Magura, T.; Lövei, G.L.; Tóthmérész, B. Various edge response of ground beetles in edges under natural versus anthropogenic influence: A meta-analysis using life-history traits. Acta Zool. Acad. Sci. Hung. 2019, 65, 3–20. [Google Scholar] [CrossRef]
- Harper, K.A.; Macdonald, S.E.; Mayerhofer, M.S.; Biswas, S.R.; Esseen, P.-A.; Hylander, K.; Stewart, K.J.; Mallik, A.U.; Drapeau, P.; Jonsson, B.-G.; et al. Edge influence on vegetation at natural and anthropogenic edges of boreal forests in Canada and Fennoscandia. J. Ecol. 2015, 103, 550–562. [Google Scholar] [CrossRef]
- Bowersox, M.A.; Brown, D.G. Measuring the abruptness of patchy ecotones: A simulation-based comparison of landscape pattern statistics. Plant. Ecol. 2001, 156, 89–103. [Google Scholar] [CrossRef]
- Larrivée, M.; Drapeau, P.; Fahrig, L. Edge effects created by wildfire and clear-cutting on boreal forest ground-dwelling spiders. For. Ecol. Manag. 2008, 255, 1434–1445. [Google Scholar] [CrossRef]
- Magura, T. Carabids and forest edge: Spatial pattern and edge effect. For. Ecol. Manag. 2002, 157, 23–37. [Google Scholar] [CrossRef]
- Harper, K.A.; Drapeau, P.; Lesieur, D.; Bergeron, Y. Forest structure and composition at fire edges of different ages: Evidence of persistent structural features on the landscape. For. Ecol. Manag. 2014, 314, 131–140. [Google Scholar] [CrossRef]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batáry, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F.; et al. Landscape moderation of biodiversity patterns and processes—Eight hypotheses. Biol. Rev. 2012, 87, 661–685. [Google Scholar] [CrossRef]
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Magura, T.; Lövei, G.L.; Tóthmérész, B. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Glob. Ecol. Biogeogr. 2010, 19, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Kromp, B. Carabid beetles in sustainable agriculture: A review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 1999, 74, 187–228. [Google Scholar] [CrossRef]
- Fenoglio, M.S.; Rossetti, M.R.; Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 2020, 29, 1412–1429. [Google Scholar] [CrossRef]
- Lövei, G.L.; Magura, T. Ground beetle (Coleoptera: Carabidae) diversity is higher in narrow hedges composed of a native compared to non-native trees in a Danish agricultural landscape. Insect Conserv. Divers. 2017, 10, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Magura, T.; Ferrante, M.; Lövei, G.L. Only habitat specialists become smaller with advancing urbanisation. Glob. Ecol. Biogeogr. 2020, 29, in. [Google Scholar] [CrossRef]
- Paillet, Y.; Bergès, L.; Hjältén, J.; Ódor, P.; Avon, C.; Bernhardt-Römermann, M.; Bijlsma, R.-J.; De Bruyn, L.; Fuhr, M.; Grandin, U.; et al. Biodiversity differences between managed and unmanaged forests: Meta-analysis of species richness in Europe. Conserv. Biol. 2010, 24, 101–112. [Google Scholar] [CrossRef]
- Magura, T.; Lövei, G.L.; Tóthmérész, B. Conversion from environmental filtering to randomness as assembly rule of ground beetle assemblages along an urbanization gradient. Sci. Rep. 2018, 8, 16992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gayer, C.; Lövei, G.L.; Magura, T.; Dieterich, M.; Batáry, P. Carabid functional diversity is enhanced by conventional flowering fields, organic winter cereals and edge habitats. Agric. Ecosyst. Environ. 2019, 284, 106579. [Google Scholar] [CrossRef] [Green Version]
- Eötvös, C.B.; Magura, T.; Lövei, G.L. A meta-analysis indicates reduced predation pressure with increasing urbanization. Landsc. Urban. Plan. 2018, 180, 54–59. [Google Scholar] [CrossRef]
- Eötvös, C.B.; Lövei, G.L.; Magura, T. Predation pressure on sentinel insect prey along a riverside urbanization gradient in Hungary. Insects 2020, 11, 97. [Google Scholar] [CrossRef] [Green Version]
- Ferrante, M.; González, E.; Lövei, G.L. Predators do not spill over from forest fragments to maize fields in a landscape mosaic in central Argentina. Ecol. Evol. 2017, 7, 7699–7707. [Google Scholar] [CrossRef]
- Samways, M.J. Insect conservation: A synthetic management approach. Annu. Rev. Entomol. 2007, 52, 465–487. [Google Scholar] [CrossRef] [Green Version]
- Harper, K.A.; Macdonald, S.E. Structure and composition of edges next to regenerating clear-cuts in mixed-wood boreal forest. J. Veg. Sci. 2002, 13, 535–546. [Google Scholar] [CrossRef]
- Magura, T.; Bogyó, D.; Mizser, S.; Nagy, D.D.; Tóthmérész, B. Recovery of ground-dwelling assemblages during reforestation with native oak depends on the mobility and feeding habits of the species. For. Ecol. Manag. 2015, 339, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Pawson, S.M.; Brockerhoff, E.G.; Watt, M.S.; Didham, R.K. Maximising biodiversity in plantation forests: Insights from long-term changes in clearfell-sensitive beetles in a Pinus radiata plantation. Biol. Conserv. 2011, 144, 2842–2850. [Google Scholar] [CrossRef]
- Jung, J.-K.; Lee, J.-H. Trait-specific responses of carabid beetle diversity and composition in Pinus densiflora forests compared to broad-leaved deciduous forests in a temperate region. Diversity 2020, 12, 275. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magura, T.; Lövei, G.L. The Permeability of Natural versus Anthropogenic Forest Edges Modulates the Abundance of Ground Beetles of Different Dispersal Power and Habitat Affinity. Diversity 2020, 12, 320. https://doi.org/10.3390/d12090320
Magura T, Lövei GL. The Permeability of Natural versus Anthropogenic Forest Edges Modulates the Abundance of Ground Beetles of Different Dispersal Power and Habitat Affinity. Diversity. 2020; 12(9):320. https://doi.org/10.3390/d12090320
Chicago/Turabian StyleMagura, Tibor, and Gábor L. Lövei. 2020. "The Permeability of Natural versus Anthropogenic Forest Edges Modulates the Abundance of Ground Beetles of Different Dispersal Power and Habitat Affinity" Diversity 12, no. 9: 320. https://doi.org/10.3390/d12090320
APA StyleMagura, T., & Lövei, G. L. (2020). The Permeability of Natural versus Anthropogenic Forest Edges Modulates the Abundance of Ground Beetles of Different Dispersal Power and Habitat Affinity. Diversity, 12(9), 320. https://doi.org/10.3390/d12090320