Next Article in Journal
DNA Barcoding of Penaeidae (Decapoda; Crustacea): Non-Distance-Based Species Delimitation of the Most Economically Important Shrimp Family
Next Article in Special Issue
High Diversity and Abundance of Foraminifera Associated with Mediterranean Benthic Red Algae Mats
Previous Article in Journal
A Mysterious World Revealed: Larval-Adult Matching of Deep-Sea Shrimps from the Gulf of Mexico
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A First Estimate of Species Diversity for Benthic Diatom Assemblages from the Revillagigedo Archipelago, Mexico

by
David A. Siqueiros Beltrones
1,
Francisco Omar López-Fuerte
2,*,
Yuriko Jocselin Martínez
1 and
María del Carmen Altamirano-Cerecedo
3
1
Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Departamento Plancton y Ecología Marina, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz C.P. 23096, Baja California Sur, Mexico
2
Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur, km. 5.5, La Paz C.P. 23080, Baja California Sur, Mexico
3
Departamento Académico de Economía, Universidad Autónoma de Baja California Sur, Carretera al Sur, km. 5.5, La Paz C.P. 23080, Baja California Sur, Mexico
*
Author to whom correspondence should be addressed.
Diversity 2021, 13(10), 458; https://doi.org/10.3390/d13100458
Submission received: 1 August 2021 / Revised: 15 September 2021 / Accepted: 20 September 2021 / Published: 23 September 2021
(This article belongs to the Special Issue Marine Biodiversity and Ecosystems Management)

Abstract

:
Recent investigations at previously unexplored localities on the Mexican coast have confirmed the high taxonomic potential of benthic marine diatom assemblages (BMDA) in the region. An exploratory study of epiphytic diatoms of macroalgae in the Revillagigedo Archipelago (RA) suggested that further studies would yield many more taxa, prompting the hypothesis that diversity measurements, based on ecological indices, would be among the highest in pristine environments. Thus, the aim of this research was to enrich the record of epiphytic diatom floristics of the RA, and to estimate species diversity based on information theory (H′). Floristically, 167 identified taxa are added here to the BMDA species list of the RA, bringing the total to 397 taxa overall, including 52 taxa that are potentially new records for the Mexican Pacific coast. Among the most conspicuous genera are Mastogloia with five new taxa and it remains the most diverse genus with 55 taxa overall, followed by Cocconeis (27), Nitzschia (24), Amphora (23), Navicula (19), Diploneis (17) and Grammatophora (15). As expected for a pristine environment, the computed species diversity values for the BMDA were high, ranging from H′ = 3.92–5.2, depicting stability. Future surveys are expected to further increase the species richness of BMDA for the RA.

1. Introduction

The ecological significance of benthic diatoms has distinguished them as a suitable referential for estimating biodiversity in marine protected areas [1] and as useful references for assessing environmental impact [2]. Thus, both diversity and ecological aspects of benthic diatoms should be considered essential in order to have an adequate ecological prospect of any aquatic ecosystem, particularly when developing management plans for protected areas. The high floristic potential of benthic diatoms (Bacillariophyceae) for Mexican littorals has recently been confirmed through surveying new substrata and by studies in hitherto unexplored areas that have yielded numerous new records for the region [3,4,5,6,7] and have enriched the overall species list for the region [6]. According to [8], in some parts of the biosphere where diatoms are abundant, there is very little known about them. Thus, a good case can be made that at least some diatom species and even a few genera are endemics, but many such claims are still weak. Such claims about diatom distributions and endemism must be treated with skepticism.
In this sense, the potential endemism and particularities of benthic diatom taxocenoses from remote locations such as the Revillagigedo Archipelago (RA) encouraged the first floristic study of epiphytic diatom assemblages on macroalgae from that region, yielding a species richness of 208 diatom taxa [6].
Although macroalgal surfaces harbor numerous species of epiphytic diatoms, the above study relied on the inspection of only two macroalgae specimens of Laurencia sp. (Rhodophyta). Thus, it was assumed that further observations comprising a larger sample of macroalgae hosts would yield at least twice the number of diatom taxa [6]. However, in spite of the fact that most taxa had been recorded elsewhere [9], it comprised of 50 additions to the benthic diatom flora for Mexican littorals, including 16 undetermined taxa that are likely new species. In addition, because certain diatom taxa may constitute useful references while addressing various ecological and biogeographical issues, the Mastogloia species, which were the most diverse diatom taxa in the above study in the RA, were surveyed separately [10] yielding 23 new records, i.e., an increase of approximately 75%, adding up to 50 Mastogloia taxa and 231 taxa overall. Thus, a similar increase could be expected for the overall diatom floristics. In this way, further research on diatom floristics in the RA could eventually lead to finding over 500 epiphytic taxa for the 190 macroalgae taxa documented [11], including a significant number of new and likely endemic diatom taxa, which would imply a formal taxonomic endeavor.
After constructing reliable diatom floristics, estimating relative or proportional abundances of the recorded taxa can be used for the calculation of ecological parameters to better describe the assemblages. Ecological studies through the joint analyses of classical parameters such as species richness, diversity, dominance and equitability, aid in detecting patterns in taxocenoses that can reflect the ecological status in pristine environments or reflect various types of impact [2]. Unlike species richness alone, species diversity analysis depicts a structure in communities. Comparing the structure of benthic diatom assemblages (species richness, diversity, dominance) may serve to assess environmental conditions in protected areas [4].
So, because diversity (H′) values estimated in undisturbed environments and protected areas have been observed to surpass those comprised within usual intervals of statistical parameters such as average, median and mode [4,12], our hypothesis dictated that diversity estimates (H′) would vary between 4–5 bits/taxon and species richness (S) may approximate 400 taxa overall in the RA. Thus, the aim of this study was to make the first numerical estimate of species diversity for epiphytic diatoms sampled from macroalgal hosts in the RA resorting to ecological indices and concomitantly seeking to estimate the overall species richness while adding to the taxonomic list of nonrecorded species in Mexican waters.

2. Materials and Methods

The Revillagigedo Archipelago comprises San Benedicto, Socorro, Roca Partida and the Clarion islands located 386 km south of Cabo San Lucas, Baja California Sur, under the jurisdiction of the state of Colima, México. In July 2016, UNESCO declared it a World Heritage Site [13], and recently there was an ex professo study for justifying its declaration as a national park [14,15]. Seasonal variations in the RA region seem to be determined by the alternating influence of the California Current and the North Equatorial Current, whilst the rest of the year a transition between both states may be observed [16]. The archipelago rocky coasts harbor a rich macroalgal community of 190 to 200 macroalgae taxa [11,17], and on the surfaces of these macroalgae, floristic rich assemblages of epiphytic diatoms have been identified [6]. Environmental conditions suggest that the biogeographical affinity of the epiphytic diatom taxocenoses is strongly tropical, although has important temperate components [6].
During an opportune (recreational) trip to the Revillagigedo Islands, from 10 to 15 February 2019, 15 macroalgae thalli were collected manually by scuba diving at 7–27 m depths on the rocky shore of San Benedicto and the Socorro islands (RA).
Specific sampling points included El Boiler (19°19′38.30″ N, 110°48′17.16″ W) and El Cañon (19°17′40.48″ N, 110°48′40.92″ W) on San Benedicto, and Cabo Pearce (18°45′57.24″ N, 110°54′00.30″ W) and Punta Tosca (18°46′33.46″ N, 111°03′26.01″ W) on Socorro Island (Figure 1). The macroalgae specimens were sun dried, transported in plastic Ziploc bags, and identified in the laboratory following [18]. Diatoms were brushed off from each algae specimen while rinsing with purified water, washing the brush after each use. The brushed-off material was placed in a 150 mL test tube and left to settle. Thereafter, the precipitates were collected and oxidized using a mixture of commercial alcohol and nitric acid at a ratio of 1 (sample): 2 (alcohol): 5 (acid), according to [2]. Thereafter, the oxidized material was rinsed repeatedly with purified water until it reached a pH ≥ 6. After that, for each sample, two double permanent slides were mounted using the synthetic resin Pleurax (RI = 1.7). The slides were inspected under several magnifications (including 250×, 400×, 630× and 1000×) for general recognizance of diatom taxa and forms. Diatom identification was conducted at 1000× under an Olympus CH-2 compound microscope with brightfield illumination, following [1,2,6,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45]. Taxonomic status was updated according to the Algaebase Web site at http://algaebase.org/search/species/ (accessed on 1 August 2021) [46]. Images of selected specimens were captured with a CMOS Konus digital lens at 630× (oil) and 1000× (oil) and used to construct an iconographic catalog to back the reliability of the identifications. Thus, images of previously recorded taxa in [6] were also included that show no correspondence with the list of new additions to the Revillagigedo diatomological flora but were observed during the quantitative analysis.
Species diversity estimations of the epiphytic diatom assemblages were based on information theory [47,48]. Values of Shannon’s index H′ using log2 in the form of bits/taxon were computed, supported by species richness and values of other diversity indices such as Pielou’s equitability (J′), Simpson’s dominance (λ) and diversity (1 − λ) [12]. For this, based on diatom abundances observed in the mounted slides, the samples from 12 sites were selected, and relative abundances of all diatom taxa estimated based on a sample size (N) of 500 valves per mounted slide (sub-sample), including a replicate. Finally, the similarity between all the samples and their replicates was measured using the Bray–Curtis indices to gain an insight into the taxa distribution among the sampling sites relying first on solely the presence/absence of taxa and considering their relative abundances. Clusters were derived from the Bray–Curtis similarity values from each matrix. All calculations were performed using program Primer 6 [49].

3. Results

The inspected macroalgae specimens from the Revillagigedo Archipelago included phaeophytes (Canistrocarpus cervicornis (J.V. Lamouroux) De Paula and De Clerck; Dictyota crenulata J. Agardh; D. dichotoma (Hudson) J.V. Lamouroux; Sargassum liebmannii J. Agardh); and rhodophytes (Amphiroa beauvoisii J.V. Lamouroux, Asparagopsis sp. and cf. Laurencia sp.); besides which there were several other macroalgae specimens not identified to a genus or species level but as either phaeophytes or rhodophytes.
The floristic survey of diatoms collected from the inspected macroalgae thalli yielded 167 taxa (Table 1; Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, Figure 22, Figure 23, Figure 24, Figure 25, Figure 26, Figure 27, Figure 28, Figure 29, Figure 30, Figure 31, Figure 32, Figure 33, Figure 34 and Figure 35) which constitute new records for the RA, and 52 potential new records for the Mexican Pacific coast. The genera with most taxa were: Amphora (14), Navicula (14), Cocconeis (10), Diploneis (10), Nitzschia (7), Halamphora (7) and Grammatophora (6). Additionally, six new Diploneis and five Mastogloia taxa were recorded during the quantitative phase. Overall, 29 taxa could not be identified to species level, 13 were proposed as cf. and 17 remained as sp., such as Planothidium sp. 1, Achnanthes sp. 2, Caloneis sp. 6, Mastogloia sp. 1. Others, such as one identified as cf. Staurosirella martyana, were not comparable within the available literature consulted.
During the quantitative analysis, it was noted that the abundance of valves in all the mounted preparations was low. Notwithstanding, 12,443 valves were counted, and 276 taxa were included, 47 of which were Mastogloia species. Eighty percent of the counted valves belonged to only 35 taxa (Table 2), while 20% of the valves comprised the other 241 taxa. The most frequent were Achnanthidium exiguum var. heterovalvata, Cocconeis krammeri, Mastogloia crucicula, Cocconeis scutellum var. parva and Epithemia pacifica (Table 2). The number of taxa per sub-sample (replicate) ranged from 47 to 87 taxa, with a maximum spread of 16 between sub-samples from the same locality. According to their relative abundances, either as independent taxocenoses of each sampling locality or an overall taxocenoses, the diatom assemblages showed a typical structure of a few abundant taxa, more common taxa and many uncommon and rare taxa. Said classification is arbitrary in terms of the number of valves for each category but fits the whole species list with most of the taxa being uncommon and rare (88%), and thus excluded from Table 2.
Notwithstanding the depicted distribution, the average species diversity value was H′ = 4.68 bits/taxon, ranging from high H′ = 3.92 (S = 55) to very high 5.2 (S = 87). Furthermore, between the lowest and richest sub-samples (replicates) the H′ values were both high, 4.11 (S = 57) vs. 4.62 (S = 73), with all community parameter values showing good correspondence between them, particularly with low values of dominance, high values of equitability and species richness (Table 3).
In terms of similarity, measurements for all the collected samples indicate a dissimilarity between the different diatom assemblages, showing around or over 50% similarity based on the presence/absence of taxa; this is compared to the values between replicates that depict the same assemblage and varied at around 0.7 similarity (Figure 36). Whilst, based on the taxa relative abundances, values ranged from just below to just above 0.3 (Figure 37), this is compared to the similarity between replicates which varied at around 0.8. All this indicates that much of the taxa, which compose the assemblages, are different including the most numerous ones.

4. Discussion

With the new records from this study (167), the species richness of diatoms found on macroalgae from the Revillagigedo Archipelago reaches a total of 397 taxa. This implies an increase of >75% in this report alone, not including the independently recorded species of the genus Mastogloia whose species richness had previously increased by approximately 75% [10]. Thus, an overall increase in species richness of 90%, including the previously recorded Mastogloia taxa, is attained.
Considering the previous study of the RA [6], the five new Mastogloia taxa recorded make this genus the most diverse, with 55 taxa in the study area, followed by the Cocconeis (27), Nitzschia (24), Amphora (23), Navicula (18), Diploneis (17) and Grammatophora (15). It does seem valid to remark that such an increase in species richness, which is only four less than the predicted number, supports our hypothesis on the potential species richness of benthic diatoms in the RA. Moreover, some of the taxa were also recorded recently from the Gulf of California, such as Achnanthes apiculata, Caloneis egena, Coronia ambigua, Grammatophora undulata var. gallopagensis, Gyrosigma parvulum, Psammodictyon pustulatum, Psammodictyon roridum, Seminavis basilica, Trachyneis aspera var. oblonga and Tryblionella nicobarica, among others [7,50]. This indicates a biogeographical connectivity between regions where warm conditions determine the presence of species with a tropical affinity. It thus seems that long-distance dispersal is, in many cases, effective enough for species to establish across large geographic areas [8]. This, however, should also be examined relying on the Mastogloia taxa that they share.
Moreover, the unidentified species such as Planothidium sp. 1, Achnanthes sp. 2, Caloneis sp. 6 (Caloneis species 1–5 in [6]) and Mastogloia sp. 1, including the one identified as cf. Staurosirella martyana and 13 others, are likely new (undetermined) taxa and, added to the previous 16 in [6], require formal taxonomic treatment.
Regarding other taxonomic issues, in certain cases apparent synonymies in the identified taxa were not updated and the names from the literature were kept. These included Amphora novaecaledonica, which is deemed a synonymy of Amphora ostrearia var. vitrea Cleve [46]. Our specimen, however, closely resembles the A. novaecaledonica in [39] but differs from A. ostrearia var. vitrea in several modern references. Additionally, our Nitzschia punctata var. coarctata is considered synonymous with Tryblionella coarctata (Grunow) D.G. Mann, which was recorded in the previous floristics for the RA [6]; the forms were different, and the assigned names were consistent with several modern references. Furthermore, in the case of Thalassionema nitzschioides var. parvus, we opted for this authority vs. Heiden and Kolbe 1928 [46], provisionally.
On the other hand, also backing our hypothesis are the species diversity values which ranged from H′ = 3.92–5.2 bit/taxon, with an average value of 4.68. Typical diatom assemblages are shaped by a few abundant and very common species, and many rare and uncommon species. Variations in this distribution pattern are reflected in the mathematical values of diversity derived from information theory calculated with Shannon’s index (H′). Estimated values of H′ have been observed to vary mainly between (modal) values of 2.6–3.8 bits/taxon (median, 2.4–4.6) benthic diatom assemblages [51] and have been interpreted as usual or moderately high values of diversity that indicate stability of the assemblages. Although higher (H′ ≈ 5) and lower (H′ < 2) values are not uncommon, these have been interpreted as indicative of a tendency towards an improbable and thus unstable state of the assemblages in nature [12]. Thus, the primary high estimates of species diversity for the inspected benthic (epiphytic) diatom assemblages of the RA may reflect the pristine conditions of the islands due to the combined factors of remoteness and enforced policies as a protected natural area. When compared to diversity values from other protected areas, such as the Guerrero Negro lagoon, certain equivalence is noted with the average values of H′ = 4.96 bits/taxon, and range of 3.7–5.9, computed for the epipelic diatom assemblages of that lagoon [3]. So, according to the latter study, the high values of diversity depict pristine or undisturbed conditions (independent of whether the habitat is protected or not), but species richness and the corresponding diversity values are expected to be as high as those in both studies. Whatever the case, the assessed attributes of the diatom assemblages inspected indicate that the Revillagigedo Archipelago is free from any environmental impact.
Finally, the low similarity between various compared samples is typical of benthic diatom taxocenosis that exhibit a patchy or aggregate distribution in which the species composition and the main taxa that they are composed of are both different and are most likely alternating these components on a successional basis [2]. More precise descriptions of space distribution require a hypothesis-based sampling design, preferably coupled with temporal variations of the diatom assemblages.
In terms of limitations of this study, the 29 taxa that could not be identified are added to those in the previous survey [4], making a total of 61 taxa for the RA that are expected to be undetermined species requiring formal taxonomic treatment. Some of the reference images are deemed in need to of improving and further sampling is likely to provide better specimens to replace them. Meanwhile, they are considered to adequately serve as backup for the identifications made.
On the other hand, the generated ecological parameter estimates are based on the inspection of a few host specimens with very few macroalgal taxa (<10) out of the >200 macroalgal taxa recorded from the RA [17]. Besides this, other substrates such as sediments or rock or a number of other localities in the area were not considered. Thus, the potential number of taxa [6] and concomitant ecological diversity parameter values that can be expected by inspecting a more representative number of samples from the aforementioned substrates may surpass the S and H values observed in this study.
Furthermore, the taxonomic relevance on classification, determination and identification issues of benthic diatoms in these types of environments show the benefits of focusing on remote protected areas worldwide. The bearing that this observation can have on ecological and biogeographical topics clearly justifies further research of benthic diatoms in these protected areas.

Author Contributions

The first author (D.A.S.B.) contributed to the conceptualization of the research problem, contextualization of the scientific perspective of the taxonomic problem, the identification of all taxa, plus the writing and translation of the manuscript. The second author (F.O.L.-F.) participated in the implementation of methodology for formal taxonomic analysis, reviewing identified taxa and writing the manuscript. The third author (Y.J.M.) contributed by processing all the samples in the laboratory and editing and arranging the diatom images on the plates. The fourth author (M.d.C.A.-C.) identified the macroalgal specimens, reviewed and formatted the original draft. All authors have read and agreed to the published version of the manuscript.

Funding

Partial financing was received through project SIP-20201848 (Instituto Politécnico Nacional).

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Data are available from the first author.

Acknowledgments

Macroalgae thalli were collected by Georgina Ramírez Ortiz. D.A.S.B. is COFAA and EDI fellow of the IPN. F.O.L.-F. thanks the support of PRODEP and SNI-CONACYT programs. Y.J.M. received a PhD scholarship extension by Conacyt. Finally, we acknowledge the thorough reviews by three anonymous referees that helped to make this a better paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. López-Fuerte, F.O.; Siqueiros Beltrones, D.A.; Navarro, J.N. Benthic Diatoms Associated with Mangrove Environments in the Northwest Region of Mexico; CONABIO-UABCS-IPN: La Paz, Mexico, 2010; p. 217. [Google Scholar]
  2. Siqueiros-Beltrones, D.A. Diatomeas Bentónicas de la Península de Baja California, Diversidad y Potencial Ecológico; IPN-CICIMAR: La Paz, Mexico, 2002; pp. 1–102. [Google Scholar]
  3. Siqueiros Beltrones, D.A.; Argumedo-Hernández, U.; Hernández-Almeida, O.U. High species diversity (H′) of benthic diatoms in a coastal lagoon located within a natural protected area. Hidrobiológica 2017, 27, 293–300. [Google Scholar] [CrossRef]
  4. Siqueiros Beltrones, D.A.; Martínez, Y.J. Prospective floristics of epiphytic diatoms on Rhodophyta from the southern Gulf of Mexico. CICIMAR Oceán 2017, 32, 35–49. [Google Scholar] [CrossRef]
  5. Martínez, Y.J.; Siqueiros Beltrones, D.A. New records of benthic diatoms (Bacillariophyceae) taxa for Mexican coasts from the Gulf of California. Hidrobiológica 2018, 28, 141–145. Available online: http://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/1229/817 (accessed on 1 November 2020).
  6. Siqueiros Beltrones, D.A.; Martínez, Y.J.; Aldana-Moreno, A. Florística exploratoria de diatomeas epifitas en Rhodophyta de Islas Revillagigedo. Cymbella 2019, 5, 98–123. [Google Scholar]
  7. López-Fuerte, F.O.; Siqueiros Beltrones, D.A.; Altamirano-Cerecedo, M.C. Species Composition and New Records of Diatom Taxa on Phyllodictyon pulcherrimum (Chlorophyceae) from the Gulf of California. Diversity 2020, 12, 339. [Google Scholar] [CrossRef]
  8. Mann, D.G.; Vanormelinge, P. An Inordinate Fondness? The Number, Distributions, and Origins of Diatom Species. J. Eukaryot. Microbiol. 2013, 60, 414–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  9. López-Fuerte, F.O.; Siqueiros Beltrones, D.A. A checklist of marine benthic diatoms (Bacillariophyta) from Mexico. Phytotaxa 2016, 283, 201–258. [Google Scholar] [CrossRef]
  10. Siqueiros Beltrones, D.A.; López-Fuerte, F.O.; Martínez, Y.J.; Altamirano-Cerecedo, M.C. Additions to the Mastogloia (Bacillariophyceae: Mastogloiales) of the Revillagigedo Archipelago, Mexico. Rev. Mex. Biodivers 2021. accepted for publication. [Google Scholar]
  11. Serviere-Zaragoza, E.; Riosmena-Rodríguez, R.; León-Tejera, H.; González-González, J. Distribución espacial de macroalgas marinas en las islas Revillagigedo, México. Cienc. Mar. 2007, 11, 3–13. [Google Scholar]
  12. Siqueiros Beltrones, D.A. Una paradoja sobre uniformidad vs. orden y estabilidad en la medida de la diversidad de especies según la teoría de la información. Ludus Vitalis 2005, 13, 1–10. [Google Scholar]
  13. Unesco. Archipiélago de Revillagigedo. Available online: http://whc.unesco.org/en/list/1510 (accessed on 29 July 2018).
  14. Conanp. Estudio Previo Justificativo para la Declaratoria del Parque Nacional Revillagigedo; Comisión Nacional de Áreas Naturales Protegidas, Secretaría de Medio Ambiente y Recursos Naturales: Ciudad de Mexico, Mexico, 2017; p. 214. [Google Scholar]
  15. Conanp-Semarnat. Formulario de Nominación del Bien Natural Archipiélago de Revillagigedo para su Inscripción en la Lista del Patrimonio Mundial; Comisión Nacional de Áreas Naturales Protegidas—Secretaria de Medio Ambiente y Recursos Naturales: Ciudad de Mexico, Mexico, 2015; p. 214. [Google Scholar]
  16. Lluch-Cota, S.E.; Lluch-Cota, D.B.; Lluch-Belda, D.; Bautista-Romero, J. Oceanografía. In La Isla Socorro, Reserva de la Biosfera Archipiélago de Revillagigedo, México; Ortega-Rubio, A., Castellanos-Vera, A., Eds.; Centro de Investigaciones Biológicas del Noroeste, S.C.: La Paz, Mexico; WWF: Ciudad de Mexico, Mexico, 1994; pp. 77–111. [Google Scholar]
  17. León-Tejera, H.; Serviere-Zaragoza, E.; González-González, J. Affinities of the marine flora of the Revillagigedo Islands, Mexico. Hydrobiologia 1996, 326, 159–168. [Google Scholar] [CrossRef]
  18. Abbott, I.A.; Hollenberg, G.J. Marine Algae of California; Stanford University Press: Stanford, CA, USA, 1976; p. 827. [Google Scholar]
  19. Desikachary, T.V. Marine diatoms from the Indian Ocean. In Atlas of Diatoms, Fasc. V.; Desikachary, T.V., Ed.; Madras Science Foundation: Madras, India, 1988; pp. 1–10. [Google Scholar]
  20. Desikachary, T.V. Marine diatoms from the Indian Ocean. In Atlas of Diatoms, Fasc. VI.; Desikachary, T.V., Ed.; Madras Science Foundation: Madras, India, 1989; pp. 1–27. [Google Scholar]
  21. Desikachary, T.V.; Prema, P. Diatoms from the Bay of Bengal. In Atlas of Diatoms, Fasc. III et IV.; Desikachary, T.V., Ed.; Madras Science Foundation: Madras, India, 1987; pp. 1–10. [Google Scholar]
  22. Desikachary, T.V.; Gowthaman, S.; Latha, Y. Diatom flora of some sediments from the Indian Ocean region. In Atlas of Diatoms, Fasc. II.; Desikachary, T.V., Ed.; Madras Science Foundation: Madras, India, 1987; pp. 1–10. [Google Scholar]
  23. Foged, N. Some littoral diatoms from the coasts of Tanzania. Biblioth. Phycol. 1975, 16, 1–127. [Google Scholar]
  24. Foged, N. Diatoms in Eastern Australia. Biblioth. Phycol. 1978, 41, 1–243. [Google Scholar]
  25. Foged, N. Freshwater and littoral diatoms from Cuba. Biblioth. Diatom. 1984, 5, 1–243. [Google Scholar]
  26. Hernández-Almeida, O.U.; Herrera-Silveira, J.A.; Merino-Virgilio, F. Nueve nuevos registros de diatomeas bentónicas de los géneros Climaconeis, Cocconeis, Licmophora, Talaroneis, Oestrupia, Petroneis y Synedrosphenia en la costa norte de la Península de Yucatán, México. Hidrobiológica 2013, 23, 154–168. [Google Scholar]
  27. Hernández-Almeida, O.U.; Siqueiros Beltrones, D.A. Variaciones en asociaciones de diatomeas epifitas de macroalgas en una zona subtropical. Hidrobiológica 2008, 18, 51–61. [Google Scholar]
  28. Hernández-Almeida, O.U.; Siqueiros Beltrones, D.A. Substrate dependent differences in the structure of epiphytic vs. epilithic diatom assemblages from the southwestern coast of the Gulf of California. Bot. Mar. 2012, 55, 149–159. [Google Scholar]
  29. Hustedt, F. Marine littoral diatoms of Beaufort, North Carolina. Duke Univ. Mar. Stn. Bull. 1955, 6, 67. [Google Scholar]
  30. Hustedt, F. Die kieselalgen Deutschlands, Osterreichs and der Schweis. In Kryptogammen-Flora; VII Band, II Teil; Rabenhorts, L., Ed.; Koeltz Scientific Book: Leipzig, Germany, 1959; p. 845. [Google Scholar]
  31. Hustedt, F. Die kieselalgen Deutschlands, Osterreichs and der Schweis. In Kryptogammen-Flora; VII Band, III Teil; Rabenhorst, L., Ed.; Koeltz Scientific Book: Leipzig, Germany, 1966; p. 816. [Google Scholar]
  32. Joon Sang, P.; Lobban, C.S.; Lee, K.W. Diatoms associated with seaweeds from Moen Island in Chuuk Lagoon, Micronesia. Phytotaxa 2018, 351, 101–140. [Google Scholar] [CrossRef]
  33. Hein, M.K.; Winsborough, B.M.; Sullivan, M.J. Bacillariophyta (Diatoms) of the Bahamas; Gantner Publishing: Ruggell, Liechtenstein, 2008; p. 302. [Google Scholar]
  34. Lobban, C.S.; Schefter, M.; Jordan, R.W.; Arai, Y.; Sasaki, A.; Theriot, E.C.; Ashworth, M.; Ruck, E.C.; Pennesi, C. Coral-reef diatoms (Bacillariophyta) from Guam: New records and preliminary checklist, with emphasis on epiphytic species from farmer-fish territories. Micronesica 2012, 43, 237–479. [Google Scholar]
  35. Loir, M.; Novarino, G. Marine Mastogloia Thwaites ex W. Sm. and Stigmaphora Wallich Species from the French Lesser Antille, Diatom Monographs; Koeltz Scientific Books: Königstein im Taunus, Germany, 2013; Volume 16, p. 133. [Google Scholar]
  36. Moreno, J.L.; Licea, S.; Santoyo, H. Diatomeas del Golfo de California; Universidad Autónoma de Baja California Sur-Sep-Fomes-Promarco: Tijuana, Mexico, 1996; p. 273. [Google Scholar]
  37. Peragallo, H.; Peragallo, M. Diatomées Marines de France et des Districts Maritimes Voisins; Tempère, J., Ed.; Micrographe-Editeur: à Grez-sur-Loing, France, 1908. [Google Scholar]
  38. Schmidt, A.; Schmidt, M.V.; Fricke, F.V.; Heiden, H.; Muller, O.; Hustedt, F. Atlas der Diatomaceenkunde; Heft 1–120, Tafeln 1–460; Reisland: Leipzig, Germany, 1874–1959. [Google Scholar]
  39. Siqueiros Beltrones, D.A. Diatomeas bentónicas asociadas a trombolitos vivos registrados por primera vez en México. CICIMAR Oceán 2006, 21, 113–143. [Google Scholar] [CrossRef]
  40. Siqueiros Beltrones, D.A.; Hernández Almeida, O.U. Florística de diatomeas epifitas en macroalgas de un manchón subtropical. CICIMAR Oceán 2006, 21, 11–61. [Google Scholar] [CrossRef]
  41. Siqueiros Beltrones, D.A.; Argumedo-Hernández, U. Particular structure of an epiphytic diatom assemblage living on Ploclamium cartilagineum (Lamoroux) Dixon (Rhodophyceae: Gigartinales). CICIMAR Oceán 2014, 29, 11–24. [Google Scholar] [CrossRef]
  42. Siqueiros Beltrones, D.A.; Argumedo-Hernández, U.; López-Fuerte, F.O. New records and combinations of Lyrella (Bacillariophyceae; Lyrellales) in a coastal lagoon of the NW Mexican Pacific. Rev. Mex. Biodivers. 2017, 88, 1–20. [Google Scholar] [CrossRef]
  43. Stidolph, S.R.; Sterrenburg, F.A.S.; Smith, K.E.L.; Kraberg, A.; Stuart, R. Stidolph Diatom Atlas. U. S. Geol. Surv. Open File Rep. 2012, 1163, 199. Available online: http://pubs.usgs.gov/of/2012/1163/ (accessed on 1 February 2021).
  44. Van Heurck, H. Synopsis des Diatomees de Belgique; Atlas, Plates 31–77; Ducaju and Cie: Antwerp, Belgium, 1881. [Google Scholar]
  45. Witkowski, A.; Lange-Bertalot, H.; Metzeltin, D. Diatom Flora of Marine Coasts. In Iconographia Diatomologica; Lange-Bertalot, H., Ed.; Koeltz Scientific Books: Königstein im Taunus, Germany, 2002; pp. 1–925. [Google Scholar]
  46. Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication; National University of Ireland: Galway, Ireland; Available online: http://www.algaebase.org (accessed on 1 August 2021).
  47. Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Champaing, IL, USA, 1963; pp. 29–125. [Google Scholar]
  48. Siqueiros Beltrones, D.A. A view of the indices used to assess species diversity, in benthic diatoms associations. Cienc. Mar. 1990, 16, 91–99. [Google Scholar] [CrossRef] [Green Version]
  49. Clarke, K.R.; Gorley, R.N. PRIMER-E v6: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research); Plymouth University: Plymouth, UK, 2006; p. 190. [Google Scholar]
  50. López-Fuerte, F.O.; Siqueiros Beltrones, D.A.; Jakes-Cota, U.; Tripp-Valdéz, A. New records of epizoic diatoms from the skin of stone scorpionfish Scorpaena mystes in Mexican waters. Open J. Mar. Sci. 2019, 9, 98–112. [Google Scholar] [CrossRef]
  51. Siqueiros Beltrones, D.A. Statistical treatment of Shannon-Wiener’s diversity index; tests of normality for sample values of diatom assemblages. Oceanides 1998, 13, 1–11. [Google Scholar]
Figure 1. Location of sampling sites at the Revillagigedo Archipelago.
Figure 1. Location of sampling sites at the Revillagigedo Archipelago.
Diversity 13 00458 g001
Figure 2. (a) Triceratium formosum var. quinquelobatum; (b) Trigonium diaphanum; (c,d) Triceratium biquadratum; (e) Trigonium formosum f. quadrangularis; (f) Pseudotriceratium punctatum. Scale bars: (ad,f) = 10 μm, (e) = 15 μm.
Figure 2. (a) Triceratium formosum var. quinquelobatum; (b) Trigonium diaphanum; (c,d) Triceratium biquadratum; (e) Trigonium formosum f. quadrangularis; (f) Pseudotriceratium punctatum. Scale bars: (ad,f) = 10 μm, (e) = 15 μm.
Diversity 13 00458 g002
Figure 3. (a) Biddulphia biddulphiana; (b,c) Odontella aurita; (d) Biddulphia subaequa; (e) Psammodiscus nitidus; (f) Coscinodiscus sp. 1; (gi) Pseudodictyota dubia. Scale bars: (bd,ei) = 10 μm; (a) = 15 μm.
Figure 3. (a) Biddulphia biddulphiana; (b,c) Odontella aurita; (d) Biddulphia subaequa; (e) Psammodiscus nitidus; (f) Coscinodiscus sp. 1; (gi) Pseudodictyota dubia. Scale bars: (bd,ei) = 10 μm; (a) = 15 μm.
Diversity 13 00458 g003
Figure 4. (a) Actinocyclus octonarius var. ralfsii; (b) Actinocyclus octonarius; (c) Azpeitia nodulifera; (d,e) Azpeitia neocrenulata; (f) Hyalodiscus scoticus; (g) Paralia sulcata; (hj) Roperia tesselata. Scale bars = 10 μm.
Figure 4. (a) Actinocyclus octonarius var. ralfsii; (b) Actinocyclus octonarius; (c) Azpeitia nodulifera; (d,e) Azpeitia neocrenulata; (f) Hyalodiscus scoticus; (g) Paralia sulcata; (hj) Roperia tesselata. Scale bars = 10 μm.
Diversity 13 00458 g004
Figure 5. (a) Hyalodiscus ambiguus; (b) Coscinodiscus oculus-iridis; (c,d) Actinocyclus alienus; (e) Margaritum terebro; (f) Ehrenbergiulva hauckii; (g) E. granulosa. Scale bars = 10 μm.
Figure 5. (a) Hyalodiscus ambiguus; (b) Coscinodiscus oculus-iridis; (c,d) Actinocyclus alienus; (e) Margaritum terebro; (f) Ehrenbergiulva hauckii; (g) E. granulosa. Scale bars = 10 μm.
Diversity 13 00458 g005
Figure 6. (a) Hemidiscus sp.?; (b) Podosira baldjickiana; (c) resting spore; (d) Actinocyclus subtilis; (e) Thalassiosira eccentrica; (f,g) A. octonarius; (hj) Podosira montagnei. Scale bars: (c) = 15 μm; rest = 10 μm.
Figure 6. (a) Hemidiscus sp.?; (b) Podosira baldjickiana; (c) resting spore; (d) Actinocyclus subtilis; (e) Thalassiosira eccentrica; (f,g) A. octonarius; (hj) Podosira montagnei. Scale bars: (c) = 15 μm; rest = 10 μm.
Diversity 13 00458 g006
Figure 7. (ac) Rhabdonema adriaticum; (d) Diatom sp.; (e,f) Toxarium hennedyanum; (g) Ardissonea fulgens; (h) Synedra bacillaris; (i) Rhaphoneis elegantula; (j,k) Glyphodesmis sp.; (l) Plagiogramma interruptum; (m) Plagiogramma cf. gregorianum; (n,o) Dimeregramma minor var. nana; (p) Eunotogramma laevis; (q) E. variabile; (r) Talaroneis sp.; (s) Cyclophora tenuis. Scale bars = 5 μm.
Figure 7. (ac) Rhabdonema adriaticum; (d) Diatom sp.; (e,f) Toxarium hennedyanum; (g) Ardissonea fulgens; (h) Synedra bacillaris; (i) Rhaphoneis elegantula; (j,k) Glyphodesmis sp.; (l) Plagiogramma interruptum; (m) Plagiogramma cf. gregorianum; (n,o) Dimeregramma minor var. nana; (p) Eunotogramma laevis; (q) E. variabile; (r) Talaroneis sp.; (s) Cyclophora tenuis. Scale bars = 5 μm.
Diversity 13 00458 g007
Figure 8. (a) Podocystis spathulata; (bd) P. americana; (e) Thalassionema nitzschioides; (f) T. nitzschioides var. parvus; (g) Hyalosira tropicalis; (h,i) Rhaphoneis amphiceros; (j,k) Delphineis minutissima; (l) Neodelphineis silenda; (m,n) cf. Staurosirella martyi; (o) Cymatosira lorenziana; (ps) Anaulus cf. balticus. Scale bars = 5 μm.
Figure 8. (a) Podocystis spathulata; (bd) P. americana; (e) Thalassionema nitzschioides; (f) T. nitzschioides var. parvus; (g) Hyalosira tropicalis; (h,i) Rhaphoneis amphiceros; (j,k) Delphineis minutissima; (l) Neodelphineis silenda; (m,n) cf. Staurosirella martyi; (o) Cymatosira lorenziana; (ps) Anaulus cf. balticus. Scale bars = 5 μm.
Diversity 13 00458 g008
Figure 9. (a,b) Synedrosphenia cuneata; (c) Hyalosynedra laevigata; (d,e) Ardissonea robusta; (f,h) Ardissonea crystallina; (g) Climacosphenia moniligera; (i) Neosynedra tortuosa; (j) Tabularia fasciculata; (k) Licmophora debilis; (l) L. gracilis; (m) L. flabellata; (n) L. paradoxa. Scale bars = 5 μm.
Figure 9. (a,b) Synedrosphenia cuneata; (c) Hyalosynedra laevigata; (d,e) Ardissonea robusta; (f,h) Ardissonea crystallina; (g) Climacosphenia moniligera; (i) Neosynedra tortuosa; (j) Tabularia fasciculata; (k) Licmophora debilis; (l) L. gracilis; (m) L. flabellata; (n) L. paradoxa. Scale bars = 5 μm.
Diversity 13 00458 g009
Figure 10. (a,b,q,r) Grammatophora monilifera; (cf) G. undulata; (g,h) G. undulata var. gallopagensis; (i,j) G. undulata var. gibba; (k,l) G. merletta; (m) G. marina var. subundulata; (n,o) G. caribaensis; (p) G. ovalauensis. Scale bar: (p) = 7.5 μm; all others = 5 μm.
Figure 10. (a,b,q,r) Grammatophora monilifera; (cf) G. undulata; (g,h) G. undulata var. gallopagensis; (i,j) G. undulata var. gibba; (k,l) G. merletta; (m) G. marina var. subundulata; (n,o) G. caribaensis; (p) G. ovalauensis. Scale bar: (p) = 7.5 μm; all others = 5 μm.
Diversity 13 00458 g010
Figure 11. (a,b) Grammatophora macilenta; (c,d) G. oceanica; (e,f) G. marina; (g,h) G. maxima; (i,j) G. oceanica var. subtilissima; (k,l) G. hamulifera; (mo) G. serpentina. Scale bar = 5 μm.
Figure 11. (a,b) Grammatophora macilenta; (c,d) G. oceanica; (e,f) G. marina; (g,h) G. maxima; (i,j) G. oceanica var. subtilissima; (k,l) G. hamulifera; (mo) G. serpentina. Scale bar = 5 μm.
Diversity 13 00458 g011
Figure 12. (a) Cocconeis caribensis; (b,c) C. comis; (d) C. hoffmannii; (e) C. heteroidea; (f,g) C. krammeri; (h) C. pinnata; (i,j) C. pseudodiruptoides; (k) C. diruptoides. Scale bar = 5 μm.
Figure 12. (a) Cocconeis caribensis; (b,c) C. comis; (d) C. hoffmannii; (e) C. heteroidea; (f,g) C. krammeri; (h) C. pinnata; (i,j) C. pseudodiruptoides; (k) C. diruptoides. Scale bar = 5 μm.
Diversity 13 00458 g012
Figure 13. (ac,f) Cocconeis convexa; (d,e,i,j) C. dirupta; (g) C. dirupta var. flexella; (h) C. contermina; Scale bar = 5 μm.
Figure 13. (ac,f) Cocconeis convexa; (d,e,i,j) C. dirupta; (g) C. dirupta var. flexella; (h) C. contermina; Scale bar = 5 μm.
Diversity 13 00458 g013
Figure 14. (ag) Cocconeis guttata; (h) C. hauniensis; (i) C. latecostata; (j,k,p) C. speciosa; (ln) C. placentula; (o) C. scutellum var. parva; (q,r) C. peltoides; (s) Amphicocconeis disculoides; (t,u) A. debesii. Scale bar = 5 μm.
Figure 14. (ag) Cocconeis guttata; (h) C. hauniensis; (i) C. latecostata; (j,k,p) C. speciosa; (ln) C. placentula; (o) C. scutellum var. parva; (q,r) C. peltoides; (s) Amphicocconeis disculoides; (t,u) A. debesii. Scale bar = 5 μm.
Diversity 13 00458 g014
Figure 15. (ad) Achnanthes trachyderma; (e,f) A. apiculata. Scale bar = 5 μm.
Figure 15. (ad) Achnanthes trachyderma; (e,f) A. apiculata. Scale bar = 5 μm.
Diversity 13 00458 g015
Figure 16. (a,b) Achnanthes sp. 2; (cf,h,i) Planothidium sp. 1; (km) Achnanthidium exiguum var. heterovalvata; (g) Cocconeis hoffmannii; (j) Achnanthes pseudogroenlandica. Scale bar = 5 μm.
Figure 16. (a,b) Achnanthes sp. 2; (cf,h,i) Planothidium sp. 1; (km) Achnanthidium exiguum var. heterovalvata; (g) Cocconeis hoffmannii; (j) Achnanthes pseudogroenlandica. Scale bar = 5 μm.
Diversity 13 00458 g016
Figure 17. (a,e,f) Lyrella abrupta; (b,c) Navicula sparsistriata; (d) Lyrella rudiformis; (g) Fallacia oculiformis; (h) Fallacia ny; (i) Fallacia forcipata; (j) Navicula (Lyrella) clavata var. proxima; (k) Mastogloia peragalli; (l) Mastogloia ovalis; (m,n) Mastogloia manokwariensis. Scale bars = 5 μm.
Figure 17. (a,e,f) Lyrella abrupta; (b,c) Navicula sparsistriata; (d) Lyrella rudiformis; (g) Fallacia oculiformis; (h) Fallacia ny; (i) Fallacia forcipata; (j) Navicula (Lyrella) clavata var. proxima; (k) Mastogloia peragalli; (l) Mastogloia ovalis; (m,n) Mastogloia manokwariensis. Scale bars = 5 μm.
Diversity 13 00458 g017
Figure 18. (a) Mastogloia sp. 1; (b,c) M. cannii; (d,e) Mastogloia cf. latericia; (f,g) Mastogloia punctifera; (h,i) M. subaffirmata; (jl) M. corsicana; (m,n) M. delicatissima; (o,p) Mastogloia acutiuscula var. elliptica; (q,r) M. jelinecki. Scale bars = 5 μm.
Figure 18. (a) Mastogloia sp. 1; (b,c) M. cannii; (d,e) Mastogloia cf. latericia; (f,g) Mastogloia punctifera; (h,i) M. subaffirmata; (jl) M. corsicana; (m,n) M. delicatissima; (o,p) Mastogloia acutiuscula var. elliptica; (q,r) M. jelinecki. Scale bars = 5 μm.
Diversity 13 00458 g018
Figure 19. (af) Mastogloia pseudoexigua; (g,h) M. cribrosa; (i) M. acutiuscula var. elliptica; (j,k) M. pseudolatecostata. Scale bars: (j,k) = 5 μm; all others = 4 μm.
Figure 19. (af) Mastogloia pseudoexigua; (g,h) M. cribrosa; (i) M. acutiuscula var. elliptica; (j,k) M. pseudolatecostata. Scale bars: (j,k) = 5 μm; all others = 4 μm.
Diversity 13 00458 g019
Figure 20. (ad) Mastogloia ovata; (eg) M. ovum-paschale; (h) M. pseudolatecostata; (i,j) M. parva; (k,l) M. decipiens. Scale bar = 5 μm.
Figure 20. (ad) Mastogloia ovata; (eg) M. ovum-paschale; (h) M. pseudolatecostata; (i,j) M. parva; (k,l) M. decipiens. Scale bar = 5 μm.
Diversity 13 00458 g020
Figure 21. (a) Caloneis maxima var. bicuneata; (b,c) C. linearis; (d) Caloneis sp. 3; (e,f) Caloneis sp. 6; (g) C. liber; (h) Biremis ambigua; (i) Trachyneis aspera; (j) T. velata; (k) T. aspera var. oblonga; (l) Diploneis papula; (m) D. papula var. constricta; (n) Diploneis sp. 2; (o) Diploneis cf. petersenii; (p) D. litoralis var.? (lanceolate form). Scale bar = 10 μm.
Figure 21. (a) Caloneis maxima var. bicuneata; (b,c) C. linearis; (d) Caloneis sp. 3; (e,f) Caloneis sp. 6; (g) C. liber; (h) Biremis ambigua; (i) Trachyneis aspera; (j) T. velata; (k) T. aspera var. oblonga; (l) Diploneis papula; (m) D. papula var. constricta; (n) Diploneis sp. 2; (o) Diploneis cf. petersenii; (p) D. litoralis var.? (lanceolate form). Scale bar = 10 μm.
Diversity 13 00458 g021
Figure 22. (a,b) Trachyneis aspera; (ce) T. velata; (f) Caloneis egena; (g) Diploneis smithii; (h) D. suborbicularis; (i) D. vacillans var. renitens; (j) D. vacillans var. vacillans; (k) Diploneis parca; (l) D. litoralis var. clathrata. Scale bar = 5 μm.
Figure 22. (a,b) Trachyneis aspera; (ce) T. velata; (f) Caloneis egena; (g) Diploneis smithii; (h) D. suborbicularis; (i) D. vacillans var. renitens; (j) D. vacillans var. vacillans; (k) Diploneis parca; (l) D. litoralis var. clathrata. Scale bar = 5 μm.
Diversity 13 00458 g022
Figure 23. (a,b) Diploneis bombus; (c) D. chersonensis; (dh) D. crabro; (i) D. gruendleri; (j,k) Diploneis cf. didyma; (l) Caloneis maxima var. bicuneata; (m) C. elongata. Scale bar = 6 μm.
Figure 23. (a,b) Diploneis bombus; (c) D. chersonensis; (dh) D. crabro; (i) D. gruendleri; (j,k) Diploneis cf. didyma; (l) Caloneis maxima var. bicuneata; (m) C. elongata. Scale bar = 6 μm.
Diversity 13 00458 g023
Figure 24. (a) Progonoia musca; (b) Diploneis smithii var. recta; (c) D. litoralis var. clathrata; (d,e) D. smithii; (f) Diploneis sp. 1; (g) D. gemmata var. pristiophora. Scale bar = 5 μm.
Figure 24. (a) Progonoia musca; (b) Diploneis smithii var. recta; (c) D. litoralis var. clathrata; (d,e) D. smithii; (f) Diploneis sp. 1; (g) D. gemmata var. pristiophora. Scale bar = 5 μm.
Diversity 13 00458 g024
Figure 25. (a) Amphora crassa var. campechiana; (b,c) A. alternata; (d) A. novaecaledonica; (e) Amphora laevissima; (f) A. grevilleana var. campechiana; (g) Amphora cf. praelata; (h,i) A. capensis; (j) Halamphora clara; (k,l) Colliculoamphora minima. Scale bar = 5 μm.
Figure 25. (a) Amphora crassa var. campechiana; (b,c) A. alternata; (d) A. novaecaledonica; (e) Amphora laevissima; (f) A. grevilleana var. campechiana; (g) Amphora cf. praelata; (h,i) A. capensis; (j) Halamphora clara; (k,l) Colliculoamphora minima. Scale bar = 5 μm.
Diversity 13 00458 g025
Figure 26. (a,b,eg) Amphora immarginata; (c,d) A. mexicana; (h,i,l) A. marina; (j) Halamphora yundangensis; (k) H. coffaeiformis (m) H. turgida; (n,o) Amphora proteus; (p,q) Catenula adhaerens; (rt) Catenula sp.; (u,v) Seminavis delicatula. Scale bar = 5 μm.
Figure 26. (a,b,eg) Amphora immarginata; (c,d) A. mexicana; (h,i,l) A. marina; (j) Halamphora yundangensis; (k) H. coffaeiformis (m) H. turgida; (n,o) Amphora proteus; (p,q) Catenula adhaerens; (rt) Catenula sp.; (u,v) Seminavis delicatula. Scale bar = 5 μm.
Diversity 13 00458 g026
Figure 27. (a) Amphora bigibba var. interrupta; (b,c) A. bigibba; (d) A. biundulata; (e) Halamphora subangularis; (f,g) H. holsatica; (h) A. maletractata var. constricta; (i) H. acutiuscula; (j) H. terroris; (k) A. arenaria; (l) Tetramphora ostrearia; (m) Seminavis basilica; (n) Amphora cf. obtusa var. rectangulata. Scale bar = 5 μm.
Figure 27. (a) Amphora bigibba var. interrupta; (b,c) A. bigibba; (d) A. biundulata; (e) Halamphora subangularis; (f,g) H. holsatica; (h) A. maletractata var. constricta; (i) H. acutiuscula; (j) H. terroris; (k) A. arenaria; (l) Tetramphora ostrearia; (m) Seminavis basilica; (n) Amphora cf. obtusa var. rectangulata. Scale bar = 5 μm.
Diversity 13 00458 g027
Figure 28. (ac) Navicula longa; (d) N. pennata; (e) N. bipustulata; (f) N. zostereti; (g) Luticola mutica; (h) Navicula platyventris; (i) Dickieia sp.; (j) Navicula sp. 1; (k) N. digitoradiata; (l) Navicula sp. 3; (m) Navicula subrostellata; (n) Biremis ambigua; (o) Navicula inflexa; (p) N. digitoconvergens; (q) N. johanrossii; (r) Craticula halophila; (s) Navicula sp. 2; (t) Navicula athenae; (u) N. arenaria var. rostellata; (v) Parlibellus cf. phoebeae; (x) P. cf. delognei; (y) P. cruciculoides; (z) Halamphora pseudohyalina. Scale bar = 5 μm.
Figure 28. (ac) Navicula longa; (d) N. pennata; (e) N. bipustulata; (f) N. zostereti; (g) Luticola mutica; (h) Navicula platyventris; (i) Dickieia sp.; (j) Navicula sp. 1; (k) N. digitoradiata; (l) Navicula sp. 3; (m) Navicula subrostellata; (n) Biremis ambigua; (o) Navicula inflexa; (p) N. digitoconvergens; (q) N. johanrossii; (r) Craticula halophila; (s) Navicula sp. 2; (t) Navicula athenae; (u) N. arenaria var. rostellata; (v) Parlibellus cf. phoebeae; (x) P. cf. delognei; (y) P. cruciculoides; (z) Halamphora pseudohyalina. Scale bar = 5 μm.
Diversity 13 00458 g028
Figure 29. (ac) Psammodictyon roridum; (d) Tryblionella nicobarica; (e) Psammodictyon panduriforme; (f,g,k) P. constrictum; (h) Tryblionella persuadens; (i) Psammodictyon pustulatum; (j) Tryblionella coarctata; (l) Nitzschia jelineckii; (m,n) Psammodictyon panduriforme var. continuum; (o) P. rudum. Scale bar = 5 μm.
Figure 29. (ac) Psammodictyon roridum; (d) Tryblionella nicobarica; (e) Psammodictyon panduriforme; (f,g,k) P. constrictum; (h) Tryblionella persuadens; (i) Psammodictyon pustulatum; (j) Tryblionella coarctata; (l) Nitzschia jelineckii; (m,n) Psammodictyon panduriforme var. continuum; (o) P. rudum. Scale bar = 5 μm.
Diversity 13 00458 g029
Figure 30. (a,b) Tryblionella didyma; (c) Nitzschia bombiformis; (d) Gyrosigma cf. parvulum; (e) Pleurosigma barbadense; (f) Entomoneis punctulata. Scale bars: (e) = 10 μm; all others = 5 μm.
Figure 30. (a,b) Tryblionella didyma; (c) Nitzschia bombiformis; (d) Gyrosigma cf. parvulum; (e) Pleurosigma barbadense; (f) Entomoneis punctulata. Scale bars: (e) = 10 μm; all others = 5 μm.
Diversity 13 00458 g030
Figure 31. (a) Plagiotropis pusilla; (b) Alveus marinus; (ce) Pleurosigma intermedium; (f,g) P. angulatum; (h) Carinasigma minutum; (i) Tropidoneis sp. Scale bars: (ce,f,g) = 10 μm; all others = 5 μm.
Figure 31. (a) Plagiotropis pusilla; (b) Alveus marinus; (ce) Pleurosigma intermedium; (f,g) P. angulatum; (h) Carinasigma minutum; (i) Tropidoneis sp. Scale bars: (ce,f,g) = 10 μm; all others = 5 μm.
Diversity 13 00458 g031
Figure 32. (a) Nitzschia distans; (bd) N. behrei; (e) N. insignis; (f) Bacillaria socialis. Scale bar = 5 μm.
Figure 32. (a) Nitzschia distans; (bd) N. behrei; (e) N. insignis; (f) Bacillaria socialis. Scale bar = 5 μm.
Diversity 13 00458 g032
Figure 33. (a) Nitzschia sigma; (b,c) N. subacuta; (d,f) N. tubicola; (e) Cymbellonitzschia banzuensis; (g) Fragilariopsis doliolus; (h,i) Nitzschia sicula; (j) N. tenerifa; (k,l) N. angularis; (m) N. nienhuisii; (n) Plagiodiscus nervatus. Scale bar = 5 μm.
Figure 33. (a) Nitzschia sigma; (b,c) N. subacuta; (d,f) N. tubicola; (e) Cymbellonitzschia banzuensis; (g) Fragilariopsis doliolus; (h,i) Nitzschia sicula; (j) N. tenerifa; (k,l) N. angularis; (m) N. nienhuisii; (n) Plagiodiscus nervatus. Scale bar = 5 μm.
Diversity 13 00458 g033
Figure 34. (ad) Campylodiscus neofastuosus; (e,f) C. thuretii; (g) C. ralfsii; (h,i) Campylodiscus sp. 1; (j,k) Epithemia guettingeri; (l) Rhopalodia gibberula var. producta; (m) Epithemia pacifica. Scale bar = 5 μm.
Figure 34. (ad) Campylodiscus neofastuosus; (e,f) C. thuretii; (g) C. ralfsii; (h,i) Campylodiscus sp. 1; (j,k) Epithemia guettingeri; (l) Rhopalodia gibberula var. producta; (m) Epithemia pacifica. Scale bar = 5 μm.
Diversity 13 00458 g034
Figure 35. (ad,e,f) Coronia ambigua; (g) Campylodiscus simulans; (h) Epithemia pacifica. Scale bars: (e,f) = 10 μm; all others = 5 μm.
Figure 35. (ad,e,f) Coronia ambigua; (g) Campylodiscus simulans; (h) Epithemia pacifica. Scale bars: (e,f) = 10 μm; all others = 5 μm.
Diversity 13 00458 g035
Figure 36. Similarity between the epiphytic diatom assemblages from Revillagigedo Archipelago according to the Bray–Curtis index based on the presence/absence of taxa.
Figure 36. Similarity between the epiphytic diatom assemblages from Revillagigedo Archipelago according to the Bray–Curtis index based on the presence/absence of taxa.
Diversity 13 00458 g036
Figure 37. Similarity between the epiphytic diatom assemblages from Revillagigedo Archipelago according to the Bray–Curtis index based on the relative abundances of the shared taxa.
Figure 37. Similarity between the epiphytic diatom assemblages from Revillagigedo Archipelago according to the Bray–Curtis index based on the relative abundances of the shared taxa.
Diversity 13 00458 g037
Table 1. Floristic list of epiphytic diatoms (Bacillariophyceae) found on thalli of rhodophytes and phaeophytes collected at Revillagigedo Islands, Mexico, that constitute new records for the archipelago. Bold = potential new records for the Mexican Pacific coast. * Corrected synonymies from [6].
Table 1. Floristic list of epiphytic diatoms (Bacillariophyceae) found on thalli of rhodophytes and phaeophytes collected at Revillagigedo Islands, Mexico, that constitute new records for the archipelago. Bold = potential new records for the Mexican Pacific coast. * Corrected synonymies from [6].
Achnanthes apiculata Riaux-Gobin, Compère, Hinz and Ector (Figure 15e,f)
Achnanthes pseudogroenlandica Hendey (Figure 16j)
Planothidium sp. 1 (Figure 16c–f,h,i)
Achnanthes sp. 2 (Figure 16a,b)
Achnanthes trachyderma (F. Meister) Riaux-Gobin, Compère, Hinz and Ector (Figure 15a–d)
Achnanthidium exiguum var. heterovalvata (Krasske) Czarnecki (Figure 16k–m)
Actinocyclus cf. subtilis (W. Gregory) Ralfs No image
Actinocyclus octonarius (Ehrenberg) Kützing (Figure 4b; Figure 6f,g)
Actinocyclus octonarius var. ralfsii (W. Smith) Hendey (Figure 4a)
Actinocyclus subtilis (W. Gregory) Ralfs (Figure 6d)
Alveus marinus (Grunow) Kaczmarska and Fryxell (Figure 31b)
Amphicocconeis debesii (Hustedt) De Stefano (Figure 14t,u)
Amphicocconeis disculoides (Hustedt) Stefano and Marino (Figure 14s)
Amphora alternata A. Mann (Figure 25b,c)
Amphora arenaria Donkin (Figure 27k)
Amphora bigibba var. interrupta (Grunow) Cleve (Figure 27a)
Amphora biundulata Bérard-Therriault, Cardinal and Poulin (Figure 27d)
Amphora capensis A.W.F. Schmidt (Figure 25h,i)
Amphora cf. obtusa rectangulata H. Peragallo and M. Peragallo (Figure 27n)
Amphora cf. praelata Hendey (Figure 25g)
Amphora crassa var. campechiana Grunow (Figure 25a)
Amphora grevilleana var. campechiana Grunow (Figure 25f)
Amphora immarginata Nagumo (Figure 26a,b,e–g)
Amphora laevissima W. Gregory (Figure 25e)
Amphora marina W. Smith (Figure 26h,i,l)
Amphora mexicana A.W.F. Schmidt (Figure 26c,d)
Amphora novaecaledonica Grunow (Figure 25d)
Anaulus cf. balticus Simonsen (Figure 8p–s)
Ardissonea crystallina (C. Agardh) Grunow (Figure 9f,h)
Azpeitia neocrenulata (VanLandingham) Fryxell and T.P. Watkins (Figure 4d,e)
Azpeitia nodulifera (A.W.F. Schmidt) G.A. Fryxell and P.A. Sims (Figure 4c)
Bacillaria socialis (W. Gregory) Ralfs (Figure 32f)
Biremis ambigua (Cleve) D.G. Mann (Figure 21h; Figure 28n)
Biddulphia biddulphiana (J.E. Smith) Boyer (Figure 3a)
Biddulphia subaequa (Kützing) Ralfs (Figure 3d)
Caloneis egena (A.W.F. Schmidt) Cleve (Figure 22f)
Caloneis liber (W. Smith) Cleve (Figure 21g)
Caloneis maxima var. bicuneata (Grunow) Amoss (Figure 21a; Figure 23l)
Caloneis elongata (Grunow) Boyer (Figure 23m)
Caloneis sp. 6 (Figure 21e,f)
Campylodiscus ralfsii W. Smith (Figure 34g)
Campylodiscus simulans Gregory (Figure 35g)
Campylodiscus sp. 1 (Figure 34h,i)
Campyloneis sp. No image
Catenula sp. (Figure 26r–t)
Catenula pelagica Mereschkowski No image
Cocconeis hauniensis Witkowski (Figure 14h)
Cocconeis cf. placentula Ehrenberg No image
Cocconeis contermina A.W.F. Schmidt (Figure 13h)
Cocconeis guttata Hustedt and Aleem (Figure 14a–g)
Cocconeis hoffmannii Simonsen (Figure 12d; Figure 16g)
Cocconeis latecostata Hustedt (Figure 14i)
Cocconeis neodiminuta (Pantocsek) Hustedt * No image
Cocconeis peltoides Hustedt (Figure 14q,r)
Cocconeis pinnata W. Gregory ex Greville (Figure 12h)
Cocconeis speciosa W. Gregory (Figure 14j,k,p)
Colliculoamphora minima (Hustedt) D.M. Williams and G. Reid (Figure 25k,l)
Coronia ambigua (Greville) Ruck and Guiry (Figure 35a–f)
Coronia decora (Brébisson) Ruck and Guiry * No image
Coscinodiscus oculus-iridis (Ehrenberg) Ehrenberg (Figure 5b)
Coscinodiscus sp.1 (Figure 3f)
Cymatosira lorenziana Grunow (Figure 8o)
Delphineis surirella (Ehrenberg) G.W. Andrews No image
Delphineis surirelloides (Simonsen) G.W. Andrews No image
Diatom sp. (cf. Neosynedra) (Figure 7d)
Dickieia sp. (Figure 28i)
Diploneis bombus Ehrenberg (Figure 23a,b)
Diploneis cf. didyma Ehrenberg (Figure 23j,k)
Diploneis gemmata var. pristiophora (C. Janisch) Cleve (Figure 24g)
Diploneis litoralis (Donkin) Cleve var.? (lanceolate form) (Figure 21p)
Diploneis papula (A. Schmidt) Cleve (Figure 21l)
Diploneis papula var. constricta Hustedt (Figure 21m)
Diploneis smithii var. recta M. Peragallo (Figure 24b)
Diploneis sp. 1 (Figure 24f)
Diploneis sp. 2 (Figure 21n)
Diploneis suborbicularis (W. Gregory) Cleve (Figure 22h)
Carinasigma minutum (Donkin) G. Reid (Figure 31h)
Ehrenbergiulva hauckii (Grunow) Witkowski, Lange-Bertalot and Metzeltin (Figure 5f)
Entomoneis punctulata (Grunow) K. Osada and H. Kobayasi (Figure 30f)
Epithemia guettingeri (Krammer) Lobban and J.S. Park (Figure 34j,k)
Eunotogramma laevis Grunow (Figure 7p)
Eunotogramma variabile Grunow (Figure 7q)
Fallacia forcipata (Greville) Stickle and D.G. Mann (Figure 17i)
Fallacia ny (Cleve) D.G. Mann (Figure 17h)
Fallacia oculiformis (Hustedt) D.G. Mann (Figure 17g)
Fragilariopsis doliolus (Wallich) Medlin and P.A. Sims (Figure 33g)
Glyphodesmis sp. (Figure 7j,k)
Grammatophora hamulifera Kützing (Figure 11k,l)
Grammatophora marina var. subundulata Grunow (Figure 10m)
Grammatophora ovalauensis Grunow (Figure 10p)
Grammatophora serpentina Ehrenberg (Figure 11m–o)
Grammatophora oceanica var. subtilissima (Bailey) Grunow (Figure 11i,j)
Grammatophora undulata var. gibba (Ehrenberg) Grunow (Figure 10i,j)
Gyrosigma cf. parvulum Hustedt (Figure 30d)
Halamphora acutiuscula (Kützing) Levkov (Figure 27i)
Halamphora clara (A.W.F. Schmidt) Levkov (Figure 25j)
Halamphora holsatica (Hustedt) Levkov (Figure 27f,g)
Halamphora pseudohyalina (Simonsen) J.G. Stepanek and Kociolek (Figure 28z)
Halamphora subangularis (Hustedt) Levkov (Figure 27e)
Halamphora terroris (Ehrenberg) P. Wang (Figure 27j)
Halamphora yundangensis W.W. Wu, C.P. Chen and Y.H. Gao (Figure 26j)
Hemidiscus sp.? (Figure 6a)
Hyalodiscus ambiguus (Grunow) Tempère and Peragallo (Figure 5a)
Hyalodiscus scoticus (Kützing) Grunow (Figure 4f)
Luticola mutica (Kützing) D.G. Mann (Figure 28g)
Lyrella abrupta (W.Gregory) D.G. Mann (Figure 17a,e,f)
Lyrella rudiformis (Hustedt) E. Nevrova, A. Witkowski, M. Kulikovskiy and Lange-Bertalot (Figure 17d)
Margaritum terebro (Leuduger-Fortmorel) Moreira Filho (Figure 5e)
Mastogloia jelinecki Grunow (Figure 18q,r)
Mastogloia cf. latericia (A.W.F. Schmidt) Cleve (Figure 18d,e)
Mastogloia pseudoexigua Cholnoky (Figure 19a–f)
Mastogloia punctifera Brun (Figure 18f,g)
Mastogloia sp. 1 (Figure 18a)
Mastogloia subaffirmata Hustedt (Figure 18h,i)
Navicula arenaria var. rostellata Lange-Bertalot (Figure 28u)
Navicula athenae Witkowski, Lange-Bertalot and Metzeltin (Figure 28t)
Navicula bipustulata A. Mann (Figure 28e)
Navicula (Lyrella) clavata var. proxima (Janisch) Cleve (Figure 17j)
Navicula digitoconvergens Lange-Bertalot (Figure 28p)
Navicula digitoradiata (W. Gregory) Ralfs (Figure 28k)
Navicula inflexa (W. Gregory) Ralfs (Figure 28o)
Navicula pennata A.W.F. Schmidt (Figure 28d)
Navicula platyventris F. Meister (Figure 28h)
Navicula sp. 1 (Figure 28j)
Navicula sp. 2 (Figure 28s)
Navicula sp. 3 (Figure 28l)
Navicula sparsistriata Hustedt (Figure 17b,c)
Navicula subrostellata Hustedt (Figure 28m)
Neodelphineis silenda (M.H. Hohn and J. Hellerman) N. Desianti and M. Potapova (Figure 8l)
Neosynedra tortuosa (Grunow) D. M. Williams and Round (Figure 9i)
Nitzschia angularis W.S. Smith (Figure 33k,l)
Nitzschia behrei Hustedt (Figure 32b–d)
Nitzschia insignis W. Gregory (Figure 32e)
Nitzschia jelineckii Grunow (Figure 29l)
Nitzschia nienhuisii F.A.S. Sterrenburg and F.J.G. Sterrenburg (Figure 33m)
Nitzschia punctata var. coarctata (Grunow) Hustedt No image
Nitzschia tenerifa Lange-Bertalot (Figure 33j)
Odontella aurita (Lyngbye) C. Agardh (Figure 3b,c)
Paralia sulcata (Ehrenberg) Cleve (Figure 4g)
Parlibellus cf. delognei (Van Heurck) E.J. Cox (Figure 28x)
Plagiogramma cf. gregorianum Grevillei (Figure 7m)
Plagiogramma interruptum (W. Gregory) Ralfs (Figure 7l)
Pleurosigma angulatum (J.T. Quekett) W. Smith (Figure 31f,g)
Pleurosigma barbadense Grunow (Figure 30e)
Pleurosigma intermedium W. Smith (Figure 31c–e)
Podocystis spathulata (Shadbolt) Van Heurck (Figure 8a)
Podosira baldjickiana Grunow (Figure 6b)
Progonoia musca (W. Gregory) H.J. Schrader (Figure 24a)
Psammodictyon panduriforme (W. Gregory) D.G. Mann (Figure 29e)
Psammodictyon pustulatum (Voigt ex Meister) C.S. Lobban (Figure 29i)
Psammodictyon roridum (M.H. Giffen) D.G. Mann (Figure 29a–c)
Psammodiscus nitidus (W. Gregory) Round and D.G. Mann (Figure 3e)
Pseudodictyota dubia (Brightwell) P.A. Sims and D.M. Williams (Figure 3g–i)
Pseudotriceratium punctatum (Wallich) Simonsen (Figure 2f)
Rhabdonema adriaticum Kützing (Figure 7a–c)
Rhaphoneis amphiceros (Ehrenberg) Ehrenberg (Figure 8h,i)
Rhaphoneis elegantula Hustedt (Figure 7i)
Seminavis basilica D.B. Danielidis (Figure 27m)
cf. Staurosirella martyi (Héribaud) E.A. Morales and K.M. Manoylov (Figure 8m,n)
Synedra bacillaris (Grunow) Hustedt (Figure 7h)
Talaroneis sp. (Figure 7r)
Thalassionema nitzschioides var. parvus Moreno-Ruíz (Figure 8f)
Thalassiosira eccentrica (Ehrenberg) Cleve (Figure 6e)
Trachyneis velata (A.W.F. Schmidt) P.T. Cleve (Figure 21j; Figure 22c–e)
Triceratium biquadratum Janisch (Figure 2c,d)
Trigonium diaphanum A. Mann (Figure 2b)
Trigonium formosum f. quadrangularis (Greville) Desikachary and Sreelatha (Figure 2e)
Tryblionella didyma (Hustedt) D.G. Mann (Figure 30a,b)
Tryblionella nicobarica (Grunow) D.G. Mann (Figure 29d)
Table 2. Estimated relative abundances (RA) for the benthic marine diatom taxa found on macroalgae hosts from the Revillagigedo Archipelago, Mexico (N = 12,443). Taxa comprising 80% of the total valves counted. ARA = accumulative relative abundances.
Table 2. Estimated relative abundances (RA) for the benthic marine diatom taxa found on macroalgae hosts from the Revillagigedo Archipelago, Mexico (N = 12,443). Taxa comprising 80% of the total valves counted. ARA = accumulative relative abundances.
TAXAValvesRAARA
Achnanthidium exiguum var. heterovalvata10548.4718.471
Cocconeis krammeri9277.45015.921
Mastogloia crucicula8126.52622.446
Cocconeis scutellum var. parva8026.44528.892
Epithemia pacifica6705.38534.276
Mastogloia binotata4973.99438.271
Hyalosynedra laevigata4293.44841.718
Amphora exilitata3592.88544.603
Tabularia fasciculata3292.64447.247
Cocconeis comis3262.62049.867
Rhabdonema adriaticum3102.49152.359
Grammatophora oceanica2782.23454.593
Podocystis americana2211.77656.369
Mastogloia crucicula var. alternans2151.72858.097
Cocconeis pseudodiruptoides2051.64859.744
Bleakeleya notata2021.62361.368
Cocconeis placentula2001.60762.975
Cocconeis sp. 21841.47964.454
Mastogloia fimbriata1811.45565.909
Halamphora coffeaeformis1761.41467.323
Mastogloia cuneata1551.24668.569
Mastogloia emarginata1331.06969.638
Nitzschia bicapitelata1301.04570.682
Seminavis delicatula1301.04571.727
Cocconeis pediculus1251.00572.732
Navicula cincta1230.98973.720
Cocconeis convexa1200.96474.685
Cocconeis neodiminuta1140.91675.601
Toxarium undulatum1070.86076.461
Gomphonemopsis pseudexigua1030.82877.288
Mastogloia graciloides880.70777.996
Mastogloia tenuis840.67578.671
Cocconeis dirupta var. flexella780.62779.298
Cocconeis diruptoides700.56379.860
Mastogloia exilis700.56380.423
Table 3. Diversity values computed for the diatom taxa found on macroalgae hosts from the Revillagigedo Archipelago, Mexico.
Table 3. Diversity values computed for the diatom taxa found on macroalgae hosts from the Revillagigedo Archipelago, Mexico.
Sub-SamplesMacroalgal HostSNJ′H′λ1 − λ
1aSargassum liebmanii805350.795.010.060.94
1bSargassum liebmanii804610.795.010.060.94
2aAmphiroa beauvoisii835530.805.090.050.95
2bAmphiroa beauvoisii794830.805.070.050.95
4aDictyota crenulata875080.815.200.050.95
4bDictyota crenulata724910.794.900.060.94
5bIAsparagopsis sp.714970.724.450.100.90
5bIIAsparagopsis sp.745180.714.400.100.90
6aDictyota sp.735120.774.740.080.92
6bDictyota sp.595040.764.490.090.91
10aDictyota dichotoma825820.774.920.070.93
10bDictyota dichotoma775640.764.750.080.92
11aCanistrocarpus cervicornis855350.774.920.070.93
11bCanistrocarpus cervicornis735010.754.610.090.91
12aRhodophyte475470.794.390.070.93
12bRhodophyte515320.854.800.050.95
13aDictyota sp.755430.744.630.070.93
13bDictyota sp.664880.774.640.070.93
14aDictyota sp.645120.804.810.060.94
14bDictyota sp.705330.784.800.060.94
16aRhodophyte735150.754.620.090.91
16bRhodophyte575350.704.110.140.86
17aLaurencia sp.555000.683.920.180.82
17bLaurencia sp.574940.683.990.160.84
Range/Mean 47–87461–5820.764.680.0820.92
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Siqueiros Beltrones, D.A.; López-Fuerte, F.O.; Martínez, Y.J.; Altamirano-Cerecedo, M.d.C. A First Estimate of Species Diversity for Benthic Diatom Assemblages from the Revillagigedo Archipelago, Mexico. Diversity 2021, 13, 458. https://doi.org/10.3390/d13100458

AMA Style

Siqueiros Beltrones DA, López-Fuerte FO, Martínez YJ, Altamirano-Cerecedo MdC. A First Estimate of Species Diversity for Benthic Diatom Assemblages from the Revillagigedo Archipelago, Mexico. Diversity. 2021; 13(10):458. https://doi.org/10.3390/d13100458

Chicago/Turabian Style

Siqueiros Beltrones, David A., Francisco Omar López-Fuerte, Yuriko Jocselin Martínez, and María del Carmen Altamirano-Cerecedo. 2021. "A First Estimate of Species Diversity for Benthic Diatom Assemblages from the Revillagigedo Archipelago, Mexico" Diversity 13, no. 10: 458. https://doi.org/10.3390/d13100458

APA Style

Siqueiros Beltrones, D. A., López-Fuerte, F. O., Martínez, Y. J., & Altamirano-Cerecedo, M. d. C. (2021). A First Estimate of Species Diversity for Benthic Diatom Assemblages from the Revillagigedo Archipelago, Mexico. Diversity, 13(10), 458. https://doi.org/10.3390/d13100458

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop