Haplogroup Distribution of 309 Thais from Admixed Populations across the Country by HVI and HVII Sanger-Type Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Samples and Extraction
2.2. Amplification and Sequencing of HVI and HVII by STS
2.3. Data Analysis of mtDNA HVI and HVII
2.4. Classification of mtDNA Haplogroup and Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melton, T.; Dimick, G.; Higgins, B.; Yon, M.; Holland, C. Mitochondrial DNA analysis of 114 hairs measuring less than 1 Cm from a 19-year-old homicide. Investig. Genet. 2012, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Fridman, C.; Gonzalez, R.S.; Pereira, A.C.; Cardena, M.M.S.G. Haplotype diversity in mitochondrial DNA hypervariable region in a population of southeastern Brazil. Int. J. Leg. Med. 2014, 128, 589–593. [Google Scholar] [CrossRef]
- Amorim, A.; Fernandes, T.; Taveira, N. Mitochondrial DNA in human identification: A Review. PeerJ 2019, 7, e7314. [Google Scholar] [CrossRef] [PubMed]
- Lebo, M.S.; Hao, L.; Lin, C.-F.; Singh, A. Bioinformatics in Clinical Genomic Sequencing. Clin. Lab. Med. 2020, 40, 163–187. [Google Scholar] [CrossRef] [PubMed]
- Alexovič, M.; Urban, P.L.; Tabani, H.; Sabo, J. Recent advances in robotic protein sample preparation for clinical analysis and other biomedical applications. Clin. Chim. Acta. 2020, 507, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Samehsalari, S.; Reddy, K.R. Application control region of human mitochondrial DNA in forensic anthropology. Int. J. Mod. Anthropol. 2018, 2, 233–248. [Google Scholar] [CrossRef] [Green Version]
- Budowle, B.; Allard, M.W.; Wilson, M.R.; Chakraborty, R. Forensics and mitochondrial DNA: Applications, debates, and foundations. Annu. Rev. Genom. Hum. Genet. 2003, 4, 119–141. [Google Scholar] [CrossRef] [Green Version]
- Hayat, S.; Akhtar, T.; Siddiqi, M.H. Human mitochondrial DNA characterization and its applications. Eur. J. Pharm. Med. Res. 2016, 3, 206–214. [Google Scholar]
- Piccinini, A.; Coco, S.; Parson, W.; Cattaneo, C.; Gaudio, D.; Barbazza, R.; Galassi, A. World war one Italian and Austrian soldier identification project: DNA results of the first case. Forensic Sci. Int. Genet. 2010, 4, 329–333. [Google Scholar] [CrossRef]
- Mahajan, V.B.; Padale, V.; Kudekar, D.Y.; More, B.P.; Kulkarni, K.V. Hair—A Good Source of DNA to Solve the Crime. Arch Clin. Biomed Res. 2019, 3, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Ambers, A.D.; Churchill, J.D.; King, J.L.; Stoljarova, M.; Gill-King, H.; Assidi, M.; Abu-Elmagd, M.; Buhmeida, A.; Al-Qahtani, M.; Budowle, B. More comprehensive forensic genetic marker analyses for accurate human remains identification using massively parallel DNA sequencing. BMC Genom. 2016, 17, 750. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, B.D.; Newbold, J.E.; Sugino, A. Intraspecific nucleotide sequence variability surrounding the origin of replication in human mitochondrial DNA. Gene 1983, 21, 33–49. [Google Scholar] [CrossRef]
- Andrews, R.M.; Kubacka, I.; Chinnery, P.F.; Lightowlers, R.N.; Turnbull, D.M.; Howell, N. Reanalysis and revision of the Cambridge Reference Sequence for Human Mitochondrial DNA. Nat. Genet. 1999, 23, 147. [Google Scholar] [CrossRef]
- Fridman, C.; Gonzalez, R.S. HVIII discrimination power to distinguish HVI and HVII common sequence. Forensic Sci. Int. Genet. 2009, 2, 320–321. [Google Scholar] [CrossRef]
- Bodner, M.; Zimmermann, B.; Röck, A.; Kloss-Brandstätter, A.; Horst, D.; Horst, B.; Sengchanh, S.; Sanguansermsri, T.; Horst, J.; Krämer, T.; et al. Southeast Asian diversity: First insights into the complex mtDNA structure of Laos. BMC Evol. Biol. 2011, 11, 49. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Cai, X.; Winograd-Cort, E.R.; Wen, B.; Cheng, X.; Qin, Z.; Liu, W.; Liu, Y.; Pan, S.; Qian, J.; et al. Mitochondrial DNA diversity and population differentiation in southern East Asia. Am. J. Phys. Anthropol. 2007, 134, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Sultana, G.N.N.; Tuli, J.F.; Begum, R.; Tamang, R. Mitochondrial DNA control region variation from Bangladesh: Sequence analysis for the establishment of a forensic database. Forensic Med. Anat. Res. 2014, 2, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.J.; Li, Y.-Z.; Yu, X.-G.; Li, L.; Wu, D.-Y.; Zhou, J.; Man, T.-Y.; Yang, G.; Yan, J.-W.; Cai, D.-Q.; et al. Preliminary DNA identification for the Tsunami victims in Thailand. GPB 2005, 3, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, S.; Komuro, T.; Izawa, H.; Tsutsumi, H. Analysis of human mitochondrial DNA polymorphisms in the Japanese population. Biochem. Genet. 2013, 51, 33–70. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, W.H. The use of forensic DNA analysis in humanitarian forensic action: The development of a set of international standards. Forensic Sci. Int. 2017, 278, 221–227. [Google Scholar] [CrossRef]
- Yao, Y.-G.; Kong, Q.-P.; Bandelt, H.-J.; Kivisild, T.; Zhang, Y.-P. Phylogeographic differentiation of mitochondrial DNA in Han Chinese. Am. J. Hum. Genet. 2002, 70, 635–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, L.; Richards, M.; Goios, A.; Alonso, A.; Albarrán, C.; Garcia, O.; Behar, D.M.; Gölge, M.; Hatina, J.; Al-Gazali, L.; et al. High-resolution mtDNA evidence for the late-glacial resettlement of Europe from an Iberian refugium. Genome Res. 2005, 15, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.Y.; Yoo, J.E.; Park, M.J.; Chung, U.; Shin, K.J. Mitochondrial DNA control region sequences in Koreans: Identification of useful variable sites and phylogenetic analysis for mtDNA data quality control. Int. J. Leg. Med. 2006, 120, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Freitas, F.; Fernandes, V.; Pereira, J.B.; Costa, M.D.; Costa, S.; Máximo, V.; Macaulay, V.; Rocha, R.; Samuels, D.C. The diversity present in 5140 human mitochondrial genomes. Am. J. Hum. Genet. 2009, 84, 628–640. [Google Scholar] [CrossRef] [Green Version]
- Zarei, F.; Alipanah, H. Mitochondrial DNA variation, genetic structure and demographic history of Iranian populations. Mol. Biol. Res. Commun. 2014, 3, 45–65. [Google Scholar]
- Siddiqi, M.H.; Akhtar, T.; Rakha, A.; Abbas, G.; Ali, A.; Haider, N.; Ali, A.; Hayat, S.; Masooma, S.; Ahmad, J.; et al. Genetic characterization of the Makrani people of Pakistan from mitochondrial DNA control-region data. Leg. Med. 2015, 17, 134–139. [Google Scholar] [CrossRef]
- Rusu, I.; Modi, A.; Vai, S.; Pilli, E.; Mircea, C.; Radu, C.; Urduzia, C.; Pinter, Z.K.; Bodolică, V.; Dobrinescu, C.; et al. Maternal DNA lineages at the gate of Europe in the 10th Century AD. PLoS ONE 2018, 13, e0193578. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, B.; Bodner, M.; Amory, S.; Fendt, L.; Röck, A.; Horst, D.; Horst, B.; Sanguansermsri, T.; Parson, W.; Brandstätter, A. Forensic and phylogeographic characterization of mtDNA lineages from Northern Thailand (Chiang Mai). Int. J. Leg. Med. 2009, 123, 495–501. [Google Scholar] [CrossRef]
- Kutanan, W.; Ghirotto, S.; Bertorelle, G.; Srithawong, S.; Srithongdaeng, K.; Pontham, N.; Kangwanpong, D. Geography has more influence than language on maternal genetic structure of various Northeastern Thai ethnicities. J. Hum. Genet. 2014, 59, 512–520. [Google Scholar] [CrossRef]
- van Oven, M.; Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 2009, 30, E386–E394. [Google Scholar] [CrossRef]
- Peng, M.-S.; Palanichamy, M.; Yao, Y.-G.; Mitra, B.; Cheng, Y.-T.; Zhao, M.; Liu, J.; Wang, H.-W.; Pan, H.; Wang, W.; et al. Inland post-glacial dispersal in East Asia revealed by mitochondrial haplogroup M9a’b. BMC Biol. 2011, 9, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.-C.; Ye, W.-J.; Jiang, C.-G.; Zeng, Z.; Tian, J.-Y.; Yang, L.-Q.; Liu, K.-J.; Kong, Q.-P. River Valleys Shaped the Maternal Genetic Landscape of Han Chinese. Mol. Biol. Evol. 2019, 36, 1643–1652. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, Y.; Tao, R.; Jin, X.; Guo, Y.; Cui, W.; Chen, A.; Yang, Y.; Zhang, X.; Zhang, J.; et al. The Genetic Structure of Chinese Hui Ethnic Group Revealed by Complete Mitochondrial Genome Analyses Using Massively Parallel Sequencing. Genes 2020, 11, 352. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.P.; Sun, C.; Wang, H.-W.; Zhao, M.; Wang, W.-Z.; Zhong, L.; Hao, X.-D.; Pan, H.; Wang, S.-Y.; Cheng, Y.-T.; et al. Large-scale mtDNA screening reveals a surprising matrilineal complexity in East Asia and its implications to the peopling of the region. Mol. Biol. Evol. 2011, 28, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.B.; Kim, K.C.; Kim, W. Mitochondrial DNA haplogroups and homogeneity in the Korean population. Genes Genom. 2014, 36, 583–590. [Google Scholar] [CrossRef]
- Summerer, M.; Horst, J.; Erhart, G.; Weißensteiner, H.; Schönherr, S.; Pacher, D.; Forer, L.; Horst, D.; Manhart, A.; Horst, B.; et al. Large-scale mitochondrial DNA analysis in Southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar. BMC Evol. Biol. 2014, 14, 17. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Cabrera, V.M.; González, A.M.; Larruga, J.M.; Takeyasu, T.; Fuku, N.; Guo, L.-J.; Hirose, R.; Fujita, Y.; Kurata, M.; et al. Mitochondrial genome variation in Eastern Asia and the peopling of Japan. Genome Res. 2004, 14, 1832–1850. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.; Soares, P.; Mormina, M.; Macaulay, V.; Clarke, D.; Blumbach, P.B.; Vizuete-Forster, M.; Forster, P.; Bulbeck, D.; Oppenheimer, S.; et al. Mitochondrial stratigraphy for island southeast Asia. Am. J. Hum. Genet. 2007, 80, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Tabbada, K.A.; Trejaut, J.; Loo, J.-H.; Chen, Y.-M.; Lin, M.; Mirazon-Lahr, M.; Kivisild, T.; De Ungria, M.C.A. Philippine mitochondrial DNA diversity: A populated viaduct between Taiwan and Indonesia? Mol. Biol. Evol. 2010, 27, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, S.; Nohira-Koike, C.; Minaguchi, K.; Nambiar, P. MtDNA control region sequence polymorphisms and phylogenetic analysis of Malay population living in or around Kuala Lumpur in Malaysia. Int. J. Leg. Med. 2010, 124, 165–170. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, X.; Yang, Z.; Serey, B.; Sovannary, T.; Bunnath, L.; Seang Aun, H.; Samnom, H.; Zhang, H.; Lin, Q.; et al. Analysis of mitochondrial genome diversity identifies new and ancient maternal lineages in Cambodian aborigines. Nat. Commun. 2013, 4, 2599. [Google Scholar] [CrossRef] [Green Version]
- Shee, C.-Y.; Chong, M.S.M.; Ng, I.; Chia, T.-F. Mitochondrial DNA hypervariable region 1 polymorphism in Singapore Chinese population. Leg. Med. 2005, 7, 127–133. [Google Scholar] [CrossRef]
- Kampuansai, J.; Bertorelle, G.; Castri, L.; Nakbunlung, S.; Seielstade, M.; Kangwanponga, D. Mitochondrial DNA variation of Tai speaking peoples in Northern Thailand. Sci. Asia 2007, 33, 443–448. [Google Scholar] [CrossRef]
- Kutanan, W.; Kampuansai, J.; Colonna, V.; Nakbunlung, S.; Lertvicha, P.; Seielstad, M.; Bertorelle, G.; Kangwanpong, D. Genetic affinity and admixture of Northern Thai people along their migration route in Northern Thailand: Evidence from autosomal STR Loci. J. Hum. Genet. 2011, 56, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Kutanan, W.; Kampuansai, J.; Srikummool, M.; Brunelli, A.; Ghirotto, S.; Arias, L.; Macholdt, E.; Hübner, A.; Schröder, R.; Stoneking, M. Contrasting paternal and maternal genetic histories of Thai and Lao populations. Mol. Biol. Evol. 2019, 36, 1490–1506. [Google Scholar] [CrossRef] [PubMed]
- Besaggio, D.; Fuselli, S.; Srikummool, M.; Kampuansai, J.; Castrì, L.; Tyler-Smith, C.; Seielstad, M.; Kangwanpong, D.; Bertorelle, G. Genetic variation in Northern Thailand Hill Tribes: Origins and relationships with social structure and linguistic differences. BMC Evol. Biol. 2007, 7, S12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampuansai, J.; Kutanan, W.; Phuphanitcharoenkul, S.; Kangwanpong, D.A. A suggested Khmuic origin of the hunter-gatherer Mlabri in Northern Thailand: Evidence from maternal DNA lineages. Thai J. Genet. 2012, 5, 203–215. [Google Scholar] [CrossRef]
- Arauna, L.R.; Mendoza-Revilla, J.; Mas-Sandoval, A.; Izaabel, H.; Bekada, A.; Benhamamouch, S.; Fadhlaoui-Zid, K.; Zalloua, P.; Hellenthal, G.; Comas, D. Recent historical migrations have shaped the gene pool of Arabs and Berbers in North Africa. Mol. Biol. Evol. 2017, 34, 318–329. [Google Scholar] [CrossRef] [Green Version]
- Fucharoen, G.; Fucharoen, S.; Horai, S. Mitochondrial DNA polymorphisms in Thailand. J. Hum. Genet. 2001, 46, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.L.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]
- Budowle, B.; Polanskey, D.; Fisher, C.L.; Den Hartog, B.K.; Kepler, R.B.; Elling, J.W. Automated alignment and nomenclature for consistent treatment of polymorphisms in the human mitochondrial DNA control region. J. Forensic Sci. 2010, 55, 1190–1195. [Google Scholar] [CrossRef]
- Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 1983, 105, 437–460. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Kriengchutima, C.; Rodrussamee, N.; Kutanan, W.; Kampuansai, J. Increasing the discrimination power of a mitochondrial DNA control region by using hypervariable region 2 polymorphisms, as illustrated in Tai populations of Northern Thailand. Sci. Asia 2015, 41, 108. [Google Scholar] [CrossRef]
- Pembleton, L.W.; Cogan, N.O.I.; Forster, J.W. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 2013, 13, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Wright, S. The Genetical Structure of Populations. Ann. Hum. Genet. 1949, 15, 323–354. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Cockerham, C.C. Estimating F-Statistics for the Analysis of Population-Structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 18 September 2021).
- Alboukadel Kassambara and Fabian Mundt. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 18 September 2021).
- Weissensteiner, H.; Pacher, D.; Kloss-Brandstätter, A.; Forer, L.; Specht, G.; Bandelt, H.-J.; Kronenberg, F.; Salas, A.; Schönherr, S. HaploGrep 2: Mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 2016, 44, W58–W63. [Google Scholar] [CrossRef]
- Röck, A.W.; Dür, A.; van Oven, M.; Parson, W. Concept for estimating mitochondrial DNA haplogroups using a maximum likelihood approach (EMMA). Forensic Sci. Int. Genet. 2013, 7, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Parson, W.; Gusmão, L.; Hares, D.R.; Irwin, J.A.; Mayr, W.R.; Morling, N.; Pokorak, E.; Prinz, M.; Salas, A.; Schneider, P.M.; et al. DNA Commission of the International Society for Forensic Genetics: Revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet. 2014, 13, 134–142. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Fornarino, S.; Pala, M.; Battaglia, V.; Maranta, R.; Achilli, A.; Modiano, G.; Torroni, A.; Semino, O.; Santachiara-Benerecetti, S.A. Mitochondrial and Y-chromosome diversity of the Tharus (Nepal): A reservoir of genetic variation. BMC Evol. Biol. 2009, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Mona, S.; Grunz, K.E.; Brauer, S.; Pakendorf, B.; Castrì, L.; Sudoyo, H.; Marzuki, S.; Barnes, R.H.; Schmidtke, J.; Stoneking, M. Genetic admixture history of Eastern Indonesia as revealed by Y-chromosome and mitochondrial DNA analysis. Mol. Biol. Evol. 2009, 26, 1865–1877. [Google Scholar] [CrossRef] [Green Version]
- Sangthong, P.; Thongngam, P.; Leewattanapasuk, W.; Bhoopat, T. Nucleotide sequence analysis of mitochondrial DNA hypervariable region II and inter HVR in Thais. Aust. J. Forensic Sci. 2019, 1–9. [Google Scholar] [CrossRef]
- Imaizumi, K.; Parsons, T.J.; Yoshino, M.; Holland, M.M. A new database of mitochondrial DNA hypervariable regions I and II sequences from 162 Japanese individuals. Int. J. Leg. Med. 2002, 116, 68–73. [Google Scholar] [CrossRef]
- Wong, H.Y.; Tang, J.S.W.; Budowle, B.; Allard, M.W.; Syn, C.K.C.; Tan-Siew, W.F.; Chow, S.T. Sequence polymorphism of the mitochondrial DNA hypervariable regions I and II in 205 Singapore Malays. Leg. Med. 2007, 9, 33–37. [Google Scholar] [CrossRef]
- Irwin, J.A.; Saunier, J.L.; Strouss, K.M.; Diegoli, T.M.; Sturk, K.A.; O’Callaghan, J.E.; Paintner, C.D.; Hohoff, C.; Brinkmann, B.; Parsons, T.J. Mitochondrial control region sequences from a Vietnamese population sample. Int. J. Leg. Med. 2008, 122, 257–259. [Google Scholar] [CrossRef]
- Kutanan, W.; Kampuansai, J.; Srikummool, M.; Kangwanpong, D.; Ghirotto, S.; Brunelli, A.; Stoneking, M. Complete mitochondrial genomes of Thai and Lao populations indicate an ancient origin of Austroasiatic groups and demic diffusion in the spread of Tai–Kadai languages. Hum. Genet. 2017, 136, 85–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, P. Autonomy and subordination in Thai history: The case for semicolonial analysis. Inter-Asia Cult. Stud. 2007, 8, 329–348. [Google Scholar] [CrossRef]
- Hasan, S. European colonization and the Muslim majority countries: Antecedents, approaches, and impacts. In The Muslim World in the 21st Century: Space, Power, and Human Development; Springer: Dordrecht, The Netherlands, 2012; pp. 133–157. [Google Scholar] [CrossRef]
- Nohira, C.; Maruyama, S.; Minaguchi, K. Phylogenetic classification of Japanese mtDNA assisted by complete mitochondrial DNA sequences. Int. J. Leg. Med. 2010, 124, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, S.-Y.; Zhao, M.; Xu, Z.-Y.; Hu, Y.-H.; Chen, F.; Zhang, R.-Z.; Gao, G.-F.; Yu, Y.-S.; Kong, Q.-P. Mitochondrial DNA polymorphisms in Gelao ethnic group residing in Southwest China. Forensic Sci. Int. Genet. 2011, 5, e4–e10. [Google Scholar] [CrossRef]
- Basu, A.; Mukherjee, N.; Roy, S.; Sengupta, S.; Banerjee, S.; Chakraborty, M.; Dey, B.; Roy, M.; Roy, B.; Bhattacharyya, N.P.; et al. Ethnic India: A genomic view, with special reference to peopling and structure. Genome Res. 2003, 13, 2277–2290. [Google Scholar] [CrossRef] [Green Version]
- Koleth, E. Multiculturalism: A Review of Australian Policy Statements and Recent Debates in Australia and Overseas; Department of Parliamentary Services, Parliamentary Library: Canberra, Australia, 2010.
- Lembring, M.; van Oven, M.; Montelius, M.; Allen, M. Mitochondrial DNA analysis of Swedish population samples. Int. J. Leg. Med. 2013, 127, 1097–1099. [Google Scholar] [CrossRef]
- Jankova-Ajanovska, R.; Zimmermann, B.; Huber, G.; Röck, A.W.; Bodner, M.; Jakovski, Z.; Janeska, B.; Duma, A.; Parson, W. Mitochondrial DNA control region analysis of three ethnic groups in the Republic of Macedonia. Forensic Sci. Int. Genet. 2014, 13, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Just, R.S.; Scheible, M.K.; Fast, S.A.; Sturk-Andreaggi, K.; Röck, A.W.; Bush, J.M.; Higginbotham, J.L.; Peck, M.A.; Ring, J.D.; Huber, G.E.; et al. Full mtGenome reference data: Development and characterization of 588 forensic-quality haplotypes representing three U.S. populations. Forensic Sci. Int. Genet. 2015, 14, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Khrouthongkhieo, N.; Chularatana, J. The Siamese state and Lanna, 1874-1933. Int. J. Human Soc. Sci. Res. 2014, 6, 63–77. [Google Scholar]
- McKeown, A. Chinese emigration in global context, 1850–1940. J. Glob. Hist. 2010, 5, 95–124. [Google Scholar] [CrossRef]
- Parson, W.; Strobl, C.; Huber, G.; Zimmermann, B.; Gomes, S.M.; Souto, L.; Fendt, L.; Delport, R.; Langit, R.; Wootton, S.; et al. Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci. Int. Genet. 2013, 7, 543–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McElhoe, J.A.; Holland, M.M.; Makova, K.D.; Su, M.S.-W.; Paul, I.M.; Baker, C.H.; Faith, S.A.; Young, B. Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq. Forensic Sci. Int. Genet. 2014, 13, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Population Statistics | HVI and HVII Sequences |
---|---|
Thai populations (n = 309) | |
Haplotype | 264 |
Unique haplotype | 231 |
Diversity | 0.9985 |
Matching probability (%) | 0.4744 |
Power of discrimination | 0.9953 |
Region | North | Northeast | Central | South |
---|---|---|---|---|
North | - | 0.999 | 1.000 | 0.669 |
Northeast | −0.0069569 | - | 1.000 | 0.715 |
Central | −0.0115752 | −0.0051491 | - | 1.000 |
South | −0.0011671 | −0.0023083 | −0.0101708 | - |
Haplogroup (Macrohaplogroup M) | n | Frequency (%) | Haplogroup (Macrohaplogroup N) | n | Frequency (%) |
---|---|---|---|---|---|
C4a | 3 | 0.9709 | A | 1 | 0.3236 |
C4c | 1 | 0.3236 | A4 | 5 | 1.6181 |
C7 | 2 | 0.6472 | A4d | 1 | 0.3236 |
C7a | 8 | 2.5890 | A5b | 1 | 0.3236 |
D4 | 4 | 1.2945 | B2g | 1 | 0.3236 |
D4a | 1 | 0.3236 | B4 | 1 | 0.3236 |
D4b | 2 | 0.6472 | B4a | 9 | 2.9126 |
D4j | 1 | 0.3236 | B4b | 3 | 0.9709 |
D4g | 1 | 0.3236 | B4c | 11 | 3.5599 |
D5 | 1 | 0.3236 | B4g | 4 | 1.2945 |
D5b | 2 | 0.6472 | B5a | 26 | 8.4142 |
D6c | 1 | 0.3236 | B5b | 2 | 0.6472 |
G1a | 3 | 0.9709 | B6a | 1 | 0.3236 |
G2a | 7 | 2.2654 | F1a | 43 | 13.916 |
M | 7 | 2.2654 | F1b | 1 | 0.3236 |
M3a | 1 | 0.3236 | F1c | 1 | 0.3236 |
M3c | 1 | 0.3236 | F1d | 1 | 0.3236 |
M5c | 2 | 0.6472 | F1e | 1 | 0.3236 |
M7a | 1 | 0.3236 | F2d | 1 | 0.3236 |
M7B | 20 | 6.4725 | F3a | 5 | 1.6181 |
M7c | 9 | 2.9126 | F4b | 1 | 0.3236 |
M8a | 2 | 0.6472 | N7a | 1 | 0.3236 |
M9a | 4 | 1.2945 | N9a | 8 | 2.5890 |
M9b | 2 | 0.6472 | N10a | 5 | 1.6181 |
M10 | 2 | 0.6472 | N10b | 1 | 0.3236 |
M10a | 11 | 3.5599 | N11a | 1 | 0.3236 |
M11 | 1 | 0.3236 | N21 | 1 | 0.3236 |
M12a | 3 | 0.9709 | N22 | 2 | 0.6472 |
M12b | 4 | 1.2945 | R2 | 1 | 0.3236 |
M17c | 1 | 0.3236 | R5a | 1 | 0.3236 |
M20 | 4 | 1.2945 | R9b | 18 | 5.8252 |
M21d | 4 | 1.2945 | R9c | 8 | 2.5890 |
M26 | 2 | 0.6472 | R11 | 1 | 0.3236 |
M34a | 1 | 0.3236 | R22 | 4 | 1.2945 |
M38 | 2 | 0.6472 | U7a | 1 | 0.3236 |
M50 | 1 | 0.3236 | Y2 | 1 | 0.3236 |
M50a | 1 | 0.3236 | |||
M51a | 1 | 0.3236 | |||
M68a | 3 | 0.9709 | |||
M71 | 1 | 0.3236 | |||
M71a | 3 | 0.9709 | |||
M71b | 1 | 0.3236 | |||
M72 | 1 | 0.3236 | |||
M91a | 1 | 0.3236 | |||
Z | 1 | 0.3236 | |||
M26 | 2 | 0.6472 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Areesirisuk, P.; Srikulnath, K.; Onsod, P.; Jaroensuk, J.; Rerkamnuaychoke, B. Haplogroup Distribution of 309 Thais from Admixed Populations across the Country by HVI and HVII Sanger-Type Sequencing. Diversity 2021, 13, 496. https://doi.org/10.3390/d13100496
Areesirisuk P, Srikulnath K, Onsod P, Jaroensuk J, Rerkamnuaychoke B. Haplogroup Distribution of 309 Thais from Admixed Populations across the Country by HVI and HVII Sanger-Type Sequencing. Diversity. 2021; 13(10):496. https://doi.org/10.3390/d13100496
Chicago/Turabian StyleAreesirisuk, Prapatsorn, Kornsorn Srikulnath, Preyaporn Onsod, Juthamas Jaroensuk, and Budsaba Rerkamnuaychoke. 2021. "Haplogroup Distribution of 309 Thais from Admixed Populations across the Country by HVI and HVII Sanger-Type Sequencing" Diversity 13, no. 10: 496. https://doi.org/10.3390/d13100496
APA StyleAreesirisuk, P., Srikulnath, K., Onsod, P., Jaroensuk, J., & Rerkamnuaychoke, B. (2021). Haplogroup Distribution of 309 Thais from Admixed Populations across the Country by HVI and HVII Sanger-Type Sequencing. Diversity, 13(10), 496. https://doi.org/10.3390/d13100496