The Natural Capital Value of the Seagrass Posidonia oceanica in the North-Western Mediterranean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field and Laboratory Activities
2.3. Emergy Application
2.4. Trophodynamic Analysis
- -
- Trophic level of the species;
- -
- The rate of energy transfer from one trophic level to the next, assumed to be 15% for coastal systems [81].
2.5. Biophysical Accounting
2.6. Monetary Conversion
3. Results
3.1. Field and Laboratory Activities
3.2. Emergy Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Main Taxonomic Groups Associated to the Habitat of P. oceanica
Main Taxonomic Groups |
---|
Fitoplancton |
Microphytobenthos |
Macroalgae |
Bryozoa |
Porifera |
Cnidaria |
Ascidiacea |
Foraminifera |
Echinodermata |
Crustacea |
Mollusca |
Anellida |
Sipunculida |
Appendix B. Formulas Employed for Emergy Application
Items | Formula | Unit | References |
---|---|---|---|
Carbon | Benthic biomass obtained in the laboratory | g | This study |
Nitrogen | Benthic biomass obtained in the laboratory ×7/41 | g | This study |
Phosphorus | Benthic biomass obtained in the laboratory/41 | g | This study |
Solar radiation | annual solar radiation per unit area area × (1-albedo) × area × time for stocks formation | J | This study |
Rain (chemical energy) | annual rainfall × Gibbs free energy × water density × area × time for stocks formation | J | [37] |
Wind | air density × drag coeff. × (wind speed · geostrophic wind velocity)3 × area × seconds per year × time for stocks formation | J | [37] |
Kinetic current | ½ × height of water evaporated on average in the Mediterranean due to currents× velocity2 × water sea density × time for stocks formation | J | [84] |
Geopotential current | ½ × height of water evaporated on average in the Mediterranean due to currents2 × water sea density × gravity ×time for stocks formation | J | [84] |
Geothermal heat | area × geothermal flux × time for stocks formation | J | [125,126] |
Tides | ½×number of tides per year × (height)2 × density × gravity × area × time for stocks formation | J | [125,127] |
Runoff | (annual rainfall−evaporation−aquifer infiltration) × water density × Gibbs free energy × catchment area | J | [37] |
Appendix C. UEVs Employed for Emergy Application
Items | UEVs | References |
---|---|---|
Carbon | 1.02 × 108 | [128] |
Nitrogen | 7.40 × 109 | [37] |
Phosphorus | 2.86 × 100 | [37] |
Solar radiation | 1.00 × 100 | [37] |
Rain (chemical energy) | 2.93 × 104 | [37] |
Wind | 2.41 × 103 | [37] |
Kinetic current | 1.77 × 107 | [37] |
Geopotential current | 3.80 × 104 | [37] |
Geothermal heat | 5.53 × 104 | [37] |
Tides | 2.71 × 104 | [37] |
Runoff | 6.61 × 104 | [37] |
References
- UNEP World Conservation Monitoring Centre, & Census of Marine Life on Seamounts (Programme). Data Analysis Working Group. Seamounts, Deep-Sea Corals and Fisheries: Vulnerability of Deep-Sea Corals to Fishing on Seamounts beyond Areas of National Jurisdiction (No. 183); UNEP/Earthprint: Nairobi, Kenya, 2006. [Google Scholar]
- Hattam, C.; Atkins, J.P.; Beaumont, N.; Börger, T.; Böhnke-Henrichs, A.; Burdon, D.; Austen, M.C. Marine ecosystem services: Linking indicators to their classification. Ecol. Indic. 2015, 49, 61–75. [Google Scholar] [CrossRef]
- UNESCO IOC. MSP in Support of Sustainable Ocean Based Economy; 2017; Available online: https://wedocs.unep.org/handle/20.500.11822/20218 (accessed on 24 August 2021).
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Van Den Belt, M. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Böhnke-Henrichs, A.; Baulcomb, C.; Koss, R.; Hussain, S.S.; de Groot, R.S. Typology and indicators of ecosystem services for marine spatial planning and management. J. Environ. Manag. 2013, 130, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Liquete, C.; Zulian, G.; Delgado, I.; Stips, A.; Maes, J. Assessment of coastal protection as an ecosystem service in Europe. Ecol. Indic. 2013, 30, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef] Tomasello, A.; Sciandra, M.; Muggeo, V.M.R.; Pirrotta, M.; Di Maida, G.; Calvo, S. Reference growth charts for Posidonia oceanica seagrass: An effective tool for assessing growth performance by age and depth. Ecol. Indic. 2016, 69, 50–58. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. The links between biodiversity, ecosystem services and human well-being. Ecosyst. Ecol. A New Synth. 2010, 1, 110–139. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Naeem, S. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef]
- Vihervaara, P.; Franzese, P.P.; Buonocore, E. Information, energy, and eco-exergy as indicators of ecosystem complexity. Ecol. Model. 2019, 395, 23–27. [Google Scholar] [CrossRef]
- Buonocore, E.; Appolloni, L.; Russo, G.F.; Franzese, P.P. Assessing natural capital value in marine ecosystems through an environmental accounting model: A case study in Southern Italy. Ecol. Model. 2020, 419, 108958. [Google Scholar] [CrossRef]
- Comitato Capitale Naturale. Quarto Rapporto sullo Stato del Capitale Naturale in Italia, Roma. 2021. Available online: https://www.mite.gov.it/sites/default/files/archivio/allegati/CapitaleNaturale/iv_rapporto_cn_2021.pdf (accessed on 24 August 2021).
- Haines-Young, R.; Potschin, M. Common international classification of ecosystem services (CICES): 2011 Update. Nottm. Rep. Eur. Environ. Agency 2011. [Google Scholar]
- Paoli, C.; Vassallo, P.; Pozzi, M.; Massa, F.; Rigo, I.; Fanciulli, G.; Cappanera, V.; Merotto, L.; Venturini, S.; Lavarello, I.; et al. Towards strong sustainability: A framework for economic and ecological management of marine protected areas. Vie Milieu Life Environ. 2020, 70, 209–223. [Google Scholar]
- TEEB. The Economics of Ecosystems and Biodiversity Ecological and Economic Foundations; Kumar, P., Ed.; Earthscan: London, UK; Washington, DC, USA, 2010. [Google Scholar]
- Ruijs, A.; van der Heide, M.; van den Berg, J. Natural Capital Accounting for the Sustainable Development Goals: Current and Potential Uses and Steps Forward; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2018. [Google Scholar]
- Pergent-Martini, C.; Pergent, G.; Monnier, B.; Boudouresque, C.-F.; Mori, C.; Valette-Sansevin, A. Contribution of Posidonia oceanica meadows in the context of climate change mitigation in the Mediterranean Sea. Mar. Environ. Res. 2021, 165, 105236. [Google Scholar] [CrossRef] [PubMed]
- Telesca, L.; Belluscio, A.; Criscoli, A.; Ardizzone, G.; Apostolaki, E.T.; Fraschetti, S.; Gristina, M.; Salomidi, M. Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Sci. Rep. 2015, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- IUCN. Posidonia oceanica. Available online: https://www.iucnredlist.org/species/153534/135156882 (accessed on 24 August 2021).
- Bay, D. A field study of the growth dynamics and productivity of Posidonia oceanica (L.) Delile in Calvi Bay, Corsica. Aquat. Bot. 1984, 20, 43–64. [Google Scholar] [CrossRef]
- Hemminga, M.A.; Duarte, C.M. Seagrass Ecology; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Borum, J. European Seagrasses: An Introduction to Monitoring and Management; Duarte, C.M., Greve, T.M., Krause-Jensen, D., Eds.; M & MS Project, 2004; p. 2006. Available online: https://pdf4pro.com/amp/view/european-seagrasses-an-introduction-to-monitoring-and-45613d.html (accessed on 24 August 2021).
- Boudouresque, C.F.; Verlaque, M. An overview of species introduction and invasion processes in marine and coastal lagoon habitats. Cah. Biol. Mar. 2012, 53, 309. [Google Scholar]
- Vassallo, P.; Paoli, C.; Rovere, A.; Montefalcone, M.; Morri, C.; Bianchi, C.N. The value of the seagrass Posidonia oceanica: A natural capital assessment. Mar. Pollut. Bull. 2013, 75, 157–167. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Bernard, G.; Pergent, G.; Shili, A.; Verlaque, M. Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: A critical review. Botanica Marina 2009, 52, 395–418. [Google Scholar] [CrossRef]
- Montefalcone, M.; Albertelli, G.; Morri, C.; Parravicini, V.; Bianchi, C.N. Legal protection is not enough: Posidonia oceanica meadows in marine protected areas are not healthier than those in unprotected areas of the northwest Mediterranean Sea. Mar. Pollut. Bull. 2009, 58, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Bonacorsi, M.; Pergent-Martini, C.; Breand, N.; Pergent, G. Is Posidonia oceanica regression a general feature in the Mediterranean Sea? Mediterr. Mar. Sci. 2013, 14, 193–203. [Google Scholar] [CrossRef]
- Marbà, N.; Díaz-Almela, E.; Duarte, C.M. Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biol. Conserv. 2014, 176, 183–190. [Google Scholar] [CrossRef]
- Holon, F.; Boissery, P.; Guilbert, A.; Freschet, E.; Deter, J. The impact of 85 years of coastal development on shallow seagrass beds (Posidonia oceanica (L.) Delile) in South Eastern France: A slow but steady loss without recovery. Estuar. Coast. Shelf Sci. 2015, 165, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Burgos, E.; Montefalcone, M.; Ferrari, M.; Paoli, C.; Vassallo, P.; Morri, C.; Bianchi, C.N. Ecosystem functions and economic wealth: Trajectories of change in seagrass meadows. J. Clean. Prod. 2017, 168, 1108–1119. [Google Scholar] [CrossRef]
- Sanchez-Lizaso, J.L. Estudio De La Pradera De Posidonia oceanica (L.) Delile de la Reserva Marina de Tabarca (Alicante): Fenologia y Produccion Primaria. Ph.D. Thesis, Universidad de Alicante, San Vicente del Raspeig, Spain, 1993; 130p. [Google Scholar]
- Campanella, L.; Conti, M.E.; Cubadda, F.; Sucapane, C. Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean. Environ. Pollut. 2001, 111, 117–126. [Google Scholar] [CrossRef]
- Lafabrie, C.; Pergent-Martini, C.; Pergent, G. Metal contamination of Posidonia oceanica meadows along the Corsican coastline (Mediterranean). Environ. Pollut. 2008, 151, 262–268. [Google Scholar] [CrossRef]
- Pergent-Martini, C.; Pergent, G. Marine phanerogams as a tool in the evaluation of marine trace-metal contamination: An example from the Mediterranean. Int. J. Environ. Poll. 2000, 13, 126–147. [Google Scholar] [CrossRef]
- Warnau, M.; Ledent, G.; Temara, A.; Bouquegneau, J.M.; Jangoux, M.; Dubois, P. Heavy metals in Posidonia oceanica and Paracentrotus lividus from seagrass beds of the north-western Mediterranean. Sci. Total Environ. 1995, 171, 95–99. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; Wiley: Hoboken, NJ, USA, 1996; 370p. [Google Scholar]
- Pulselli, F.M.; Patrizi, N.; Focardi, S. Calculation of the unit emergy value of water in an Italian watershed. Ecol. Model. 2011, 222, 2929–2938. [Google Scholar] [CrossRef]
- Franzese, P.P.; Buonocore, E.; Paoli, C.; Massa, F.; Donati, S.; Fanciulli, G.; Miccio, A.; Mollica, M.; Navone, A.; Russo, G.F.; et al. Environmental accounting in marine protected areas: The EAMPA project. J. Environ. Account. Manag. 2015, 3, 324–332. [Google Scholar] [CrossRef]
- Diviacco, G. Indagine Sulla Qualità DELL’AMBIENTE Marino in Liguria (Stato di Conservazione Delle Biocenosi Bentiche Costiere); Ufficio Parchi e Aree Protette Regione Liguria: Regione Liguria, Italy, 1998; pp. 1–46. [Google Scholar]
- Pergent, G.; Pergent-Martini, C.; Boudouresque, C.-F. Utilisation de l’herbier à Posidonia oceanica comme indicateur biologique de la qualité du milieu littoral en Méditerranée: Etat des connaissances. Mésogée 1995, 54, 3–29. [Google Scholar]
- Giraud, G. Contribution À La Description Et À La Phénologie Quantitative Des Herbiers à Posidonia oceanica (L.). Ph.D. Thesis, University Aix-Marseille II, Marseille, France, 1977; 150p. [Google Scholar]
- Buia, M.C.; Gambi, M.C.; Dappiano, M. Seagrass systems. Biol. Mar. Medit. 2004, 10 (Suppl. 1), 133–183. [Google Scholar]
- Giraud, G.; Boudouresque, C.F.; Cinelli, F.; Fresi, E.; Mazzella, L. Observations sur l’herbier de Posidonia oceanica (L.) Delile autour de l’île d’Ischia (Italie). Plant. Biosyst. 1979, 113, 261–274. [Google Scholar] [CrossRef]
- Pergent, G.; Pergent-Martini, C. Leaf renewal cycle and primary production of Posidonia oceanica in the bay of Lacco Ameno (Ischia, Italy) using lepidochronological analysis. Aquat. Bot. 1991, 42, 49–66. [Google Scholar] [CrossRef]
- Cancemi, G.; De Falco, G.; Pergent, G. Effects of organic matter input from a fish farming facility on a Posidonia oceanica meadow. Estuar. Coast. Shelf Sci. 2003, 56, 961–968. [Google Scholar] [CrossRef]
- Pergent-Martini, C.; Leoni, V.; Pasqualini, V.; Ardizzone, G.D.; Balestri, E.; Bedini, R.; Belluscio, A.; Belsher, T.; Borg, J.; Boudouresque, C.F.; et al. Descriptors of Posidonia oceanica meadows: Use and application. Ecol. Indic. 2005, 5, 213–230. [Google Scholar] [CrossRef]
- Pergent, G. Lepidochronological analysis of the seagrass Posidonia oceanica (L.) Delile: A standardized approach. Aquat. Bot. 1990, 37, 39–54. [Google Scholar] [CrossRef]
- Francour, P. Root and rhizome biomass of Posidonia oceanica bed. Rapp. Comm. Int. Mer Medit. 1985, 29, 5. [Google Scholar]
- Tomasello, A.; Calvo, S.; Di Maida, G.; Lovison, G.; Pirrotta, M.; Sciandra, M. Shoot age as a confounding factor on detecting the effect of human-induced disturbance on Posidonia oceanica growth performance. J. Exp. Mar. Biol. Ecol. 2007, 343, 166–175. [Google Scholar] [CrossRef]
- Paoli, C.; Povero, P.; Burgos, E.; Dapueto, G.; Fanciulli, G.; Massa, F.; Scarpellini, P.; Vassallo, P. Natural capital and environmental flows assessment in marine protected areas: The case study of Liguria region (NW Mediterranean Sea). Ecol. Model. 2018, 368, 121–135. [Google Scholar] [CrossRef]
- Vassallo, P.; Paoli, C.; Buonocore, E.; Franzese, P.P.; Russo, G.F.; Povero, P. Assessing the value of natural capital in marine protected areas: A biophysical and trophodynamic environmental accounting model. Ecol. Model. 2017, 355, 12–17. [Google Scholar] [CrossRef]
- Wackernagel, M.; Onisto, L.; Bello, P.; Linares, A.C.; Falfán, I.S.L.; Garcıa, J.M.; Suarez-Guerrero, A.I.; Suarez-Guerrero, M.G. National natural capital accounting with the ecological footprint concept. Ecol. Econ. 1999, 29, 375–390. [Google Scholar] [CrossRef]
- Jørgensen, S.E. Ecosystem services, sustainability and thermodynamic indicators. Ecol. Complex. 2010, 7, 311–313. [Google Scholar] [CrossRef]
- Müller, F.; Burkhard, B. The indicator side of ecosystem services. Ecosyst. Serv. 2012, 1, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Odum, H.T. Systems Ecology: An Introduction; Wiley: Hoboken, NJ, USA, 1983; 644p. [Google Scholar]
- Pereira, L.; Zucaro, A.; Ortega, E.; Ulgiati, S. Wealth, trade and the environment: Carrying capacity, economic performance and wellbeing in Brazil and Italy. J. Environ. Account. Manag. 2013, 1, 159–188. [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline. Ecol. Model. 2010, 221, 2501–2508. [Google Scholar] [CrossRef]
- Bellan-Santini, D. Contribution à l’ètude des peuplements infralittoraux sur substrat rocheux. Rec. Trav. Stat. Mar. Endoume 1969, 63, 1–294. [Google Scholar]
- True, M.A. étude quantitative de quatre peuplements sciaphiles sur substrat rocheux dans la region marsellaise. Bull. Inst. Océanogr. Monaco 1970, 69, 1–48. [Google Scholar]
- Albertelli, G.; Cattaneo, M.; Drago, N. Indagine qualitativa e quantitativa su due biocenosi della platea continentale ligure. Atti III Congr. AIOL 1978, 1980, 231–237. [Google Scholar]
- Albertelli, G.; Angelino, M.; Cattaneo, M.; Della Croce, N.; Drago, N.; Fabiano, M.; Salemi Picone, P.E.; Zunini Sertorio, T. Produzione delle acque e dei fondi in Mar Ligure: Platea continentale. In Proceedings of the Convegno delle Unità Operative afferenti ai sotto progetti delle Risorse Biologiche e Inquinamento marino, Roma, Italy, 10–11 November 1981; pp. 61–69. [Google Scholar]
- Albertelli, G.; Cattaneo, M.; Della Croce, N.; Drago, N. Benthos Della Piattaforma Continentale Ligure Alassio Savona Chiavari Corniglia (1977–1981); Tech. Rep. n. 14; Università di Genova, Cattedra di Idrobiologia e Pescicoltura, Facoltà di Scienze Fisiche, Matematiche e Naturali: Genova, Italy, 1981. [Google Scholar]
- Willsie, A. Zonation de la macrofaune endogée de la matte d’herbier de Posidonia oceanica (L.) Delile. Rapp. Comm. Int. Mer Medit. 1983, 28, 165–168. [Google Scholar]
- Libes, M. Production Primaire D’un Herbier à Posidonia oceanica Mesurée in Situ Par La Méthode Du Carbone 14. Thèse de doctorat de specialité en Écologie, University Aix-Marseille, Faculty Science Luminy, Marseille, France, 1984; pp. 1–199. [Google Scholar]
- Albertelli, G.; D’ambrosio, N. Alcuni Aspetti ecologici del macrobenthos della zona pilota di Chiavari. Boll. Mus. Ist. Biol. Univ. Genova 1986, 52, 125–137. [Google Scholar]
- Albertelli, G.; Rossi, G.L. Studio del popolamento macrobentonico di un fondale posto in prossimità di un effluente urbano (1976–1980). Atti VII Congr. AIOL 1986, 1987, 91–100. [Google Scholar]
- Bianchi, C.N.; Cevasco, M.G.; Diviacco, G.; Morri, C. Primi risultati di una ricerca ecologica sulla Grotta Marina di Bergeggi (Savona). Boll. Mus. Ist. Biol. Univ. Genova 1986, 52, 267–293. [Google Scholar]
- Cocito, S.; Fanucci, S.; Niccolai, I.; Morri, C.; Bianchi, C.N. Relationships between trophic organization of benthic communities and organic matter content in Tyrrhenian Sea sediments. Hydrobiologia 1990, 207, 53–60. [Google Scholar] [CrossRef]
- Canals, M.; Ballesteros, E. Production of carbonate sediments by phytobenthic communities in the Mallorca-Minorca shelf, north western Mediterranean Sea. Deep. Sea Res. 1997, 44, 611–629. [Google Scholar] [CrossRef]
- Sánchez-Jerez, P.; Barberà Cebrián, C.B.; Ramos Esplá, A.A. Comparison of the epifauna spatial distribution in Posidonia oceanica, Cymodocea nodosa and unvegetated bottoms: Importance of meadow edges. Acta Oecol. 1999, 20, 391–405. [Google Scholar] [CrossRef]
- Cerrano, C.; Bavestrello, G.; Bianchi, C.N.; Cattaneo Vietti, R.; Bava, S.; Morganti, C.; Morri, C.; Picco, P.; Sarà, G.; Schiaparelli, S.; et al. A catastrophic mass mortality episode of gorgonians and other organisms in the Ligurian Sea (North western Mediterranean), summer 1999. Ecol. Lett. 2000, 3, 284–293. [Google Scholar] [CrossRef]
- Guidetti, P.; Lorenti, M.; Buia, M.C.; Mazzella, L. Temporal dynamic and biomass partioning in three Adriatic seagrass species: Posidonia oceanica, Cymodocea nodosa, Zostera marina. Mar. Ecol. 2002, 23, 51–67. [Google Scholar] [CrossRef]
- Agostini, S.; Pergent, G.; Marchand, B. Growth and primary production of Cymodocea nodosa in a coastal lagoon. Aquat. Bot. 2003, 76, 185–193. [Google Scholar] [CrossRef]
- Barron, C.; Marbà, N.; Terrados, J.; Kennedy, H.; Duarte, C.M. Community metabolism and carbon budget along a gradient of seagrass (Cymodocea nodosa) colonization. Limnol. Oceanogr. 2004, 49, 1642–1651. [Google Scholar] [CrossRef] [Green Version]
- Antoniadou, C.; Koutsoubas, D.; Chintiroglou, C. Mollusca fauna from infralittoral hard substrate assemblages in the North Aegean Sea. Belg. J. Zool. 2005, 135, 119–126. [Google Scholar] [CrossRef]
- Ballesteros, E. Mediterranean coralligenous assemblages: A synthesis of present knowledge. Oceanogr. Mar. Biol. Annu. Rev. 2006, 44, 123–195. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Bernard, G.; Bonhomme, P.; Charbonnel, E.; Diviacco, G.; Meinesz, A.; Pergent, G.; Pergent-Martini, C.; Ruitton, S.; Tunesi, L. Préservation et Conservation des Herbiers à Posidonia Oceanica; RaMoGe Publ.: Monaco, Monaco, 2006; 200p. [Google Scholar]
- Cerrano, C.; Totti, C.; Sponga, F.; Bavestrello, G. Summer disease in Parazoanthus axinellae (Schmidt, 1862) (Cnidaria, Zoanthidea). Ital. J. Zool. 2006, 73, 355–361. [Google Scholar] [CrossRef]
- Pauly, D.; Christensen, V. Primary production required to sustain global fisheries. Nature 1995, 374, 255–257. [Google Scholar] [CrossRef]
- Christensen, V.; Pauly, D. Trophic models of aquatic ecosystems. ICLARM Conf. Proc. 1993, 26, 390. [Google Scholar]
- Redfield, A.C.; Ketchum, B.H.; Richards, F.A. The Influence of Organisms on the Composition of Sea-Water. In The Sea; Hill, N.M., Ed.; Wiley: London, UK, 1963; Volume 2, pp. 27–77. [Google Scholar]
- Brown, M.T.; Tennenbaum, S.; Odum, H.T. Emergy Analysis and Policy Perspectives for the Sea of Cortez, Mexico; University of Florida, Center for Wetlands and Water Resources: Gainesville, FL, USA, 1991. [Google Scholar]
- Campbell, D.E.; Brandt-Williams, S.; Meisch, M.A. Environmental Accounting Using Emergy: Evaluation of the State of West Virginia; U.S. Environmental Protection Agency: Washington, DC, USA, 2005.
- Kira, T.; Shidei, T. Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Jpn. J. Conserv. Ecol. 1967, 17, 70–93. [Google Scholar]
- Peet, R.K. Changes in biomass and production during secondary forest succession. In Forest Succession Concepts and Application; West, D.C., Shugart, H.H., Botkin, D.B., Eds.; Springer: New York, NY, USA, 1980; pp. 324–338. [Google Scholar]
- Waring, R.H.; Schlesinger, W.H. Forest Ecosystems Concepts and Management; Academic Press: Orlando, FL, USA, 1985. [Google Scholar] [CrossRef]
- Kozlowski, T.T.; Kramer, P.J.; Pallardy, S.G. The Physiological Ecology of Woody Plants; Academic Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Yoder, B.J.; Ryan, M.G.; Waring, R.H.; Schoettle, A.W.; Kaufmann, M.R. Evidence of reduced photosynthetic rates in old trees. Forensic Sci. Int. 1994, 40, 513–527. [Google Scholar] [CrossRef]
- Hunt, E.R.; Lavigne, M.B.; Franklin, S.E. Factors controlling the decline of net primary production with stand age for balsam fir in Newfoundland assessed using an ecosystem simulation model. Ecol. Model. 1999, 122, 151–164. [Google Scholar] [CrossRef]
- Kimura, M.; Simbolon, H. Allometry and life history of a forest understory palm Pinanga coronata (Arecaceae) on Mount Halimun. West Java. Ecol. Res. 2002, 17, 323–338. [Google Scholar] [CrossRef]
- Calvo, S.; Lovison, G.; Pirrotta, M.; Di Maida, G.; Tomasello, A.; Sciandra, M. Modelling the relationship between sexual reproduction and rhizome growth in Posidonia oceanica (L.) Delile. Mar. Ecol. 2006, 27, 361–371. [Google Scholar] [CrossRef]
- Den Hartog, C. The Seagrasses of the World. In Verhand. Kon. Ned Akad. Wetensch. Afd. Natuurkunde; Tweede Reeks, deel 59; North-Holland Publishing Company: Amsterdam, The Netherlands; London, UK, 1970. [Google Scholar]
- Lepoint, G.; Millet, S.; Dauby, P.; Gobert, S.; Bouquegneau, J.M. Annual nitrogen budget of the seagrass Posidonia oceanica as determined by in situ uptake experiments. Mar. Ecol. Prog. Ser. 2002, 237, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Duarte, C.M. Allometric scaling of seagrass form and productivity. Mar. Ecol. Prog. Ser. 1991, 77, 289–300. [Google Scholar] [CrossRef]
- Marbà, N.; Walker, D.I. Growth, flowering, and population dynamics of temperate Western Australian seagrasses. Mar. Ecol. Prog. Ser. 1999, 184, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Odum, E.P. The Strategy of Ecosystem Development. Science 1969, 164, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Paoli, C.; Vassallo, P.; Dapueto, G.; Fanciulli, G.; Massa, F.; Venturini, S.; Povero, P. The economic revenues and the emergy costs of cruise tourism. J. Clean. Prod. 2017, 166, 1462–1478. [Google Scholar] [CrossRef]
- Vassallo, P.; Bianchi, C.N.; Paoli, C.; Holon, F.; Navone, A.; Bavestrello, G.; Cattaneo Vietti, R.; Morri, C. A predictive approach to benthic marine habitat mapping: Efficacy and management implications. Mar. Pollut. Bull. 2018, 131, 218–232. [Google Scholar] [CrossRef]
- Dapueto, G.; Paoli, C.; Vassallo, P.; Pozzi, M.; Massa, F.; Rigo, I.; Fanciulli, G.; Venturini, S.; Merotto, L.; Cappanera, V.; et al. A spatial decision support system for the sustainable management of fishing in marine protected areas. Vie Milieu Life Environ. 2020, 70, 183–195. [Google Scholar]
- Montefalcone, M.; Lasagna, R.; Bianchi, C.N.; Morri, C. Anchoring damage on Posidonia oceanica meadow cover: A case study in Prelo Cove (Ligurian Sea, NW Mediterranean). Chem. Ecol. 2006, 22, 207–217. [Google Scholar] [CrossRef]
- Montefalcone, M.; Chiantore, M.; Lanzone, A.; Morri, C.; Albertelli, G.; Bianchi, C.N. BACI design reveals the decline of the seagrass Posidonia oceanica induced by anchoring. Mar. Pollut. Bull. 2008, 56, 1637–1645. [Google Scholar] [CrossRef] [PubMed]
- Diviacco, G.; Coppo, S. Atlante Degli Habitat Marini Della Liguria: Descrizione e Cartografia Delle Praterie di Posidonia Oceanica e Dei Principali Popolamenti Costieri; Centro Stampa Offset: Chiusanico, Italy, 2006. [Google Scholar]
- Bianchi, C.N.; Peirano, A. Atlante Delle Fanerogame Marine Della Liguria: Posidonia Oceanica e Cymodocea Nodosa; ENEA, Centro Ricerche Ambiente Marino La Spezia: La Spezia, Italy, 1995; pp. 1–146. [Google Scholar]
- Lasagna, R.; Montefalcone, M.; Albertelli, G.; Corradi, N.; Ferrari, M.; Morri, C.; Bianchi, C.N. Much damage for little advantage: Field studies and morphodynamic modelling highlighted the environmental impact of an apparently small coastal mismanagement. Estuar. Coast. Shelf Sci. 2011, 94, 255–262. [Google Scholar] [CrossRef]
- Oprandi, A.; Mucerino, L.; De Leo, F.; Bianchi, C.N.; Morri, C.; Azzola, A.; Benelli, F.; Besio, G.; Ferrari, M.; Montefalcone, M. Effects of a severe storm on seagrass meadows. Sci. Total Environ. 2020, 748, 141373. [Google Scholar] [CrossRef]
- Guidetti, P. Detecting environmental impacts on the Mediterranean seagrass Posidonia oceanica (L.) Delile: The use of reconstructive methods in combination with ‘beyond BACI’ designs. J. Exp. Mar. Biol. Ecol. 2001, 260, 27–39. [Google Scholar] [CrossRef]
- Lasagna, R.; Montefalcone, M.; Bianchi, C.N.; Morri, C.; Albertelli, G. Morphology of a Posidonia oceanica meadow under altered sedimentary budget. Biol. Mar. Medit. 2006, 13, 245–249. [Google Scholar]
- Francour, P.; Harmelin, J.G.; Pollard, D.; Sartoretto, S. A review of marine protected areas in the northwestern Mediterranean region: Siting, usage, zonation and management. Aquat. Conserv. 2001, 11, 155–188. [Google Scholar] [CrossRef]
- Astraldi, M.; Manzella, G. Some observations on current measurements on the east Ligurian shelf, Mediterranean Sea. Cont. Shelf. Res. 1983, 2, 183–193. [Google Scholar] [CrossRef]
- Baldi, P.; Marri, A.; Schirone, A. Applicazione di un Modello Per la Simulazione Del Trasporto e Della Diluizione Di Inquinanti Nelle Acque Costiere; Tech. Rep. n.1, ENEA, RTI/AMB/GEM–MAR/97/04/RL2/A1.4; ENEA: La Spezia, Italy, 1997. [Google Scholar]
- Parravicini, V.; Micheli, F.; Montefalcone, M.; Morri, C.; Villa, E.; Castellano, M.; Povero, P.; Bianchi, C.N. Conserving biodiversity in a human-dominated world: Degradation of marine sessile communities within a protected area with conflicting human uses. PLoS ONE 2013, 8, e75767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, I.; Rigo, I.; Oprandi, A.; Montefalcone, M.; Morri, C.; Peirano, A.; Vassallo, P.; Paoli, C.; Bianchi, C.N. What biotic indices tell us about ecosystem change: Lessons from the seagrass Posidonia oceanica. Vie Milieu Life Environ. 2020, 70, 3–4. [Google Scholar]
- Gacia, E.; Duarte, C.M. Elucidating sediment retention by seagrasses: Sediment deposition and resuspension in a Mediterranean (Posidonia oceanica) meadow. Estuar. Coast. Shelf Sci. 2001, 52, 505–514. [Google Scholar] [CrossRef]
- Borg, J.A.; Attrill, M.J.; Rowden, A.A.; Schembri, P.J.; Jones, M.B. Architectural characteristics of two bed types of the seagrass Posidonia oceanica over different spatial scales. Estuar. Coast. Shelf Sci. 2005, 62, 667–678. [Google Scholar] [CrossRef]
- Ruiz, J.M.; Romero, J. Effects of disturbances caused by coastal constructions on spatial structure, growth dynamics and photosynthesis of the seagrass Posidonia oceanica. Mar. Pollut. Bull. 2003, 46, 1523–1533. [Google Scholar] [CrossRef]
- Montefalcone, M.; Albertelli, G.; Bianchi, C.N.; Mariani, M.; Morri, C. A new synthetic index and a protocol for monitoring the status of Posidonia oceanica meadows: A case study at Sanremo (Ligurian Sea, NW Mediterranean). Aquat. Conserv. 2006, 16, 29–42. [Google Scholar] [CrossRef]
- Backhurst, M.K.; Cole, R.G. Biological impacts of boating at Kawau Island, north-eastern New Zealand. J. Environ. Manag. 2000, 60, 239–251. [Google Scholar] [CrossRef]
- Perez, M.; Duarte, C.M.; Romero, J.; Sand-Jensen, K.; Alcoverro, T. Growth plasticity in Cymodocea nodosa stands: The importance of nutrient supply. Aquat. Bot. 1994, 47, 249–264. [Google Scholar] [CrossRef]
- Cunha, A.H.; Duarte, C.M. Population age structure and rhizome growth of Cymodocea nodosa in the Ria Formosa (southern Portugal). Mar. Biol. 2005, 146, 841–847. [Google Scholar] [CrossRef]
- Connell, J. Popliteal vein entrapment. Br. J. Surg. 1978, 65, 351. [Google Scholar] [CrossRef]
- Fox, J.W. The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 2013, 28, 86–92. [Google Scholar] [CrossRef]
- Montefalcone, M.; Albertelli, G.; Morri, C.; Bianchi, C.N. Urban seagrass: Status of Posidonia oceanica facing the Genoa city waterfront (Italy) and implications for management. Mar. Pollut. Bull. 2007, 54, 206–213. [Google Scholar] [CrossRef]
- Rigo, I.; Dapueto, G.; Paoli, C.; Massa, F.; Oprandi, A.; Venturini, S.; Merotto, L.; Fanciulli, G.; Cappanera, V.; Montefalcone, M.; et al. Changes in the ecological status and natural capital of Posidonia oceanica meadows due to human pressure and extreme events. Vie Milieu Life Environ. 2020, 70, 3–4. [Google Scholar]
- Odum, H.T. Handbook of Emergy Evaluation Folio #2: Emergy of Global Processes; Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2000; 30p. [Google Scholar]
- De Gaetano, P.; Doglioli, A.M.; Magaldi, M.G.; Vassallo, P.; Fabiano, M. FOAM, a new simple benthic degradative module for the LAMP3D model: An application to a Mediterranean fish farm. Aquacult. Res. 2008, 39, 1229–1242. [Google Scholar] [CrossRef]
- Cataldi, R.; Mongelli, F.; Squarci, P.; Taffi, L.; Zito, G.; Calore, C. Geothermal ranking of Italian territory. Geothermics 1995, 24, 115–129. [Google Scholar] [CrossRef]
- Campbell, D.E.; Lu, H.; Lin, B.L. Emergy evaluations of the global biogeochemical cycles of six biologically active elements and two compounds. Ecol. Model. 2014, 271, 32–51. [Google Scholar] [CrossRef]
Meadow Location | Region | Protected Area | Station 1 | Station 2 |
---|---|---|---|---|
Camogli | Liguria | x | 44°19.650′ N, 9°9.000′ E | 44°20.517′ N, 9°9.267′ E |
Punta Pedale | Liguria | x | 44°19.215′ N, 9°12.790′ E | 44°19.086′ N, 9°12.703′ E |
Prelo-San Michele | Liguria | 44°20.216′ N, 9°13.454′ E | 44°20.426′ N, 9°13.467′ E | |
Framura | Liguria | 44°12.363′ N, 9°32.304′ E | 44°12.372′ N, 9°32.386′ E | |
Monterosso al Mare | Liguria | x | 44°8.559′ N, 9°38.554′ E | 44°8.264′ N, 9°38.406′ E |
Sant’Amanza | Corsica | x | 41°27.795′ N, 9°15.737′ E | 41°26.102′ N, 9°13.605′ E |
Unit of Measure | Camogli | Punta Pedale | Prelo-San Michele | Framura | Monterosso al Mare | Sant’Amanza | |
---|---|---|---|---|---|---|---|
shoot density | shoot·m−2 | 405.56 | 362.50 | 365.28 | 454.17 | 352.78 | 436.73 |
leaves number | no. leaves·shoot−1 | 6.03 | 5.67 | 5.42 | 4.97 | 5.36 | 5.00 |
leaf width | cm | 0.88 | 0.92 | 0.71 | 0.73 | 0.79 | 0.76 |
leaf length | cm | 37.09 | 34.73 | 30.12 | 24.88 | 23.49 | 37.01 |
leaf surface | cm2shoot−1 | 320.08 | 298.47 | 207.55 | 153.70 | 155.23 | 228.65 |
leaf biomass | gC·m−2 | 110.95 | 93.23 | 118.64 | 136.51 | 90.26 | 154.85 |
Unit of Measure | Camogli | Punta Pedale | Prelo-San Michele | Framura | Monterosso al Mare | Sant’Amanza | |
---|---|---|---|---|---|---|---|
number of life cycles | No. | 37 | 42 | 62 | 51 | 60 | 44 |
rhizome elongation | mm·a−1 | 8.13 | 7.17 | 4.83 | 6.57 | 5.02 | 7.40 |
leaf production | g·m−2·a−1 | 1158.24 | 688.17 | 192.49 | 459.85 | 376.80 | 608.99 |
leaves number per year | No. leaves·a−1 | 7.55 | 7.85 | 6.50 | 7.25 | 7.20 | 5.00 |
rhizome biomass | gC·m−2 | 730.90 | 625.27 | 412.18 | 533.61 | 377.87 | 412.10 |
Quantity | ||||||||
---|---|---|---|---|---|---|---|---|
Unit of Measure | Camogli | Punta Pedale | Prelo-San Michele | Framura | Monterosso al Mare | Sant’ Amanza | ||
1 | Carbon | g | 2.03 × 103 | 1.91 × 103 | 1.72 × 103 | 1.86 × 103 | 1.72 × 103 | 1.66 × 103 |
2 | Nitrogen | g | 3.47 × 102 | 3.26 × 102 | 2.94 × 102 | 3.18 × 102 | 2.94 × 102 | 2.83 × 102 |
3 | Phosphorus | g | 4.96 × 101 | 4.66 × 101 | 4.20 × 101 | 4.54 × 101 | 4.20 × 101 | 4.05 × 101 |
4 | Solar radiation | J | 1.97 × 1011 | 2.22 × 1011 | 3.26 × 1011 | 2.66 × 1011 | 3.26 × 1011 | 3.11 × 1011 |
5 | Rain (chemical potential) | J | 2.07 × 108 | 2.33 × 108 | 3.41 × 108 | 2.79 × 108 | 3.41 × 108 | 3.26 × 108 |
6 | Wind | J | 5.38 × 108 | 6.07 × 108 | 8.89 × 108 | 7.25 × 108 | 8.89 × 108 | 8.49 × 108 |
7 | Kinetic current | J | 1.85 × 103 | 2.09 × 103 | 3.06 × 103 | 2.50 × 103 | 3.06 × 103 | 2.92 × 103 |
8 | Geopotential current | J | 4.07 × 105 | 4.59 × 105 | 6.72 × 105 | 5.48 × 105 | 6.72 × 105 | 6.42 × 105 |
9 | Geothermal heat | J | 9.73 × 107 | 1.10 × 108 | 1.61 × 108 | 1.31 × 108 | 1.61 × 108 | 1.53 × 108 |
10 | Tides | J | 4.69 × 106 | 5.29 × 106 | 7.75 × 106 | 6.32 × 106 | 7.75 × 106 | 7.40 × 106 |
11 | Run off | J | 8.21 × 108 | 9.26 × 108 | 1.36 × 109 | 1.11 × 109 | 1.36 × 109 | 1.30 × 109 |
Emergy | ||||||||
---|---|---|---|---|---|---|---|---|
Unit of Measure | Camogli | Punta Pedale | Prelo-San Michele | Framura | Monterosso al Mare | Sant’ Amanza | ||
1 | Carbon | sej | 2.07 × 1011 | 1.95 × 1011 | 1.76 × 1011 | 1.90 × 1011 | 1.69 × 1011 | 1.79 × 1011 |
2 | Nitrogen | sej | 2.57 × 1012 | 2.41 × 1012 | 2.18 × 1012 | 2.35 × 1012 | 2.10 × 1012 | 2.22 × 1012 |
3 | Phosphorus | sej | 1.42 × 1012 | 1.33 × 1012 | 1.20 × 1012 | 1.30 × 1012 | 1.16 × 1012 | 1.23 × 1012 |
4 | Solar radiation | sej | 1.97 × 1011 | 2.22 × 1011 | 3.26 × 1011 | 2.66 × 1011 | 3.11 × 1011 | 3.24 × 1011 |
5 | Rain (chemical potential) | sej | 6.06 × 1012 | 6.83 × 1012 | 1.00 × 1013 | 8.16 × 1012 | 9.55 × 1012 | 3.85 × 1012 |
6 | Wind | sej | 1.30 × 1012 | 1.46 × 1012 | 2.14 × 1012 | 1.75 × 1012 | 2.05 × 1012 | 4.62 × 1012 |
7 | Kinetic current | sej | 3.28 × 1010 | 3.70 × 1010 | 5.42 × 1010 | 4.42 × 1010 | 5.17 × 1010 | 2.47 × 1010 |
8 | Geopotential current | sej | 1.55 × 1010 | 1.74 × 1010 | 2.55 × 1010 | 2.08 × 1010 | 2.44 × 1010 | 1.82 × 1010 |
9 | Geothermal heat | sej | 5.38 × 1012 | 6.06 × 1012 | 8.88 × 1012 | 7.25 × 1012 | 8.49 × 1012 | 4.22 × 1012 |
10 | Tides | sej | 1.27 × 1011 | 1.43 × 1011 | 2.10 × 1011 | 1.71 × 1011 | 2.01 × 1011 | 6.33 × 1011 |
11 | Run off | sej | 5.43 × 1013 | 6.12 × 1013 | 8.97 × 1013 | 7.32 × 1013 | 8.57 × 1013 | 5.67 × 1013 |
Total | sej | 6.84 × 1013 | 7.66 × 1013 | 1.11 × 1014 | 9.11 × 1013 | 1.06 × 1014 | 6.84 × 1013 |
Unit of Measure | Camogli | Punta Pedale | Prelo-San Michele | Framura | Monterosso al Mare | Sant’ Amanza | |
---|---|---|---|---|---|---|---|
annual NC of leaves | sej·m−2·a−1 | 1.59 × 1013 | 1.17 × 1013 | 3.83 × 1012 | 6.25 × 1012 | 7.28 × 1012 | 6.14 × 1012 |
em€·m−2·a−1 | 1.66 × 101 | 1.21 × 101 | 3.99 × 100 | 6.51 × 100 | 7.58 × 100 | 6.40 × 100 | |
annual NC of rhizomes | sej·m−2·a−1 | 1.73 × 1012 | 1.71 × 1012 | 1.67 × 1012 | 1.69 × 1012 | 1.67 × 1012 | 1.46 × 1012 |
em€·m−2·a−1 | 1.80 × 100 | 1.78 × 100 | 1.74 × 100 | 1.76 × 100 | 1.74 × 100 | 1.52 × 100 | |
total annual NC | sej·m−2·a−1 | 1.76 × 1013 | 1.34 × 1013 | 5.50 × 1012 | 7.94 × 1012 | 8.95 × 1012 | 7.60 × 1012 |
em€·m−2·a−1 | 1.84 × 101 | 1.39 × 101 | 5.73 × 100 | 8.27 × 100 | 9.33 × 100 | 7.92 × 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigo, I.; Paoli, C.; Dapueto, G.; Pergent-Martini, C.; Pergent, G.; Oprandi, A.; Montefalcone, M.; Bianchi, C.N.; Morri, C.; Vassallo, P. The Natural Capital Value of the Seagrass Posidonia oceanica in the North-Western Mediterranean. Diversity 2021, 13, 499. https://doi.org/10.3390/d13100499
Rigo I, Paoli C, Dapueto G, Pergent-Martini C, Pergent G, Oprandi A, Montefalcone M, Bianchi CN, Morri C, Vassallo P. The Natural Capital Value of the Seagrass Posidonia oceanica in the North-Western Mediterranean. Diversity. 2021; 13(10):499. https://doi.org/10.3390/d13100499
Chicago/Turabian StyleRigo, Ilaria, Chiara Paoli, Giulia Dapueto, Christine Pergent-Martini, Gerard Pergent, Alice Oprandi, Monica Montefalcone, Carlo Nike Bianchi, Carla Morri, and Paolo Vassallo. 2021. "The Natural Capital Value of the Seagrass Posidonia oceanica in the North-Western Mediterranean" Diversity 13, no. 10: 499. https://doi.org/10.3390/d13100499
APA StyleRigo, I., Paoli, C., Dapueto, G., Pergent-Martini, C., Pergent, G., Oprandi, A., Montefalcone, M., Bianchi, C. N., Morri, C., & Vassallo, P. (2021). The Natural Capital Value of the Seagrass Posidonia oceanica in the North-Western Mediterranean. Diversity, 13(10), 499. https://doi.org/10.3390/d13100499