Salt Marsh Restoration for the Provision of Multiple Ecosystem Services
Abstract
:1. Introduction
2. Study Approach
2.1. Salt Marsh Extent and Distribution
2.2. Identification of Pressures
- Coastal development and habitat degradation;
- Freshwater inflow modification;
- Pollution and changes in water quality;
- Biological invasions by alien invasive species;
- Manipulation of estuary mouths (influencing tidal connectivity);
- Exploitation of living resources (fish and invertebrates);
2.3. Identification of Sites for Restoration
2.4. Development of a Socio-Ecological Systems Framework for Salt Marsh Restoration
3. Results
3.1. Habitat Extent, Distribution, and Identification of Pressures
3.2. Identification of Sites for Restoration
3.3. A Socio-Ecological Systems Framework for Salt Marsh Restoration
4. Discussion
4.1. Abiotic Pressures and Salt Marsh Restoration in South African Estuaries
4.2. Opportunities for Restoration Following Land-Use Change
4.3. Application of the Socio-Ecological Systems Framework
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Adam, P. Saltmarsh Ecology; Cambridge University Press: Cambridge, UK, 1990; pp. 1–461. [Google Scholar]
- Lefeuvre, J.C.; Bouchard, V.; Feunteun, E.; Grare, S.; Laffaille, P.; Radureau, A. European salt marshes diversity and func-tioning: The case study of the Mont Saint-Michel bay, France. Wetl. Ecol. Manag. 2000, 8, 147–161. [Google Scholar] [CrossRef] [Green Version]
- van Niekerk, L.; Adams, J.B.; Bate, G.C.; Forbes, A.T.; Forbes, N.T.; Huizinga, P.; Lamberth, S.J.; MacKay, C.F.; Petersen, C.; Taljaard, S.; et al. Country-wide assessment of estuary health: An approach for integrating pressures and ecosystem response in a data limited environment. Estuar. Coast. Shelf Sci. 2013, 130, 239–251. [Google Scholar] [CrossRef]
- Silliman, B.R.; Schrack, E.; He, Q.; Cope, R.; Santoni, A.; van der Heide, T.; Jacobi, R.; Jacobi, M.; van de Koppel, J. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl. Acad. Sci. USA 2015, 112, 14295–14300. [Google Scholar] [CrossRef] [Green Version]
- Elliott, M.; Mander, L.; Mazik, K.; Simenstad, C.; Valesini, F.; Whitfield, A.; Wolanski, E. Ecoengineering with Ecohydrology: Successes and failures in estuarine restoration. Estuar. Coast. Shelf Sci. 2016, 176, 12–35. [Google Scholar] [CrossRef]
- International Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Duarte, C.M.; Dennison, W.C.; Orth, R.J.W.; Carruthers, T.J.B. The Charisma of Coastal Ecosystems: Addressing the Imbalance. Chesap. Sci. 2008, 31, 233–238. [Google Scholar] [CrossRef] [Green Version]
- McOwen, C.J.; Weatherdon, L.V.; van Bochove, J.-W.; Van, B.J.-W.; Blyth, S.; Zockler, C.; Stanwell-Smith, D.; Kingston, N.; Martin, C.; Spalding, M.; et al. A global map of saltmarshes. Biodivers. Data J. 2017, 5, e11764. [Google Scholar] [CrossRef]
- Fitzgerald, D.M.; Hein, C.J.; Hughes, Z.; Kulp, M.; Georgiou, I.; Miner, M. Runaway barrier island transgression concept: Global case studies. In Barrier Dynamics and Response to Changing Climate; Moore, L.J., Murray, A.B., Eds.; Springer: Cham, Switzerland, 2018; pp. 3–56. [Google Scholar]
- Borja, A. Grand challenges in marine ecosystems ecology. Front. Mar. Sci. 2014, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Waltham, N.J.; Elliott, M.; Lee, S.Y.; Lovelock, C.; Duarte, C.M.; Buelow, C.; Simenstad, C.; Nagelkerken, I.; Claassens, L.; Wen, C.K.; et al. UN Decade on Ecosystem Restoration 2021–2030—What chance for success in restoring coastal ecosys-tems? Front. Mar. Sci. 2020, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- United Nations Environment Agency. Resolution 73/284: United Nations Decade on Ecosystem Restoration (2021–2030). Available online: https://undocs.org/A/RES/73/284 (accessed on 17 September 2021).
- Fischer, J.; Riechers, M.; Loos, J.; Martin-Lopez, B.; Temperton, V.M. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends Ecol. Evol. 2021, 36, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 2019, 27. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization (FAO). International Union for Conservation of Nature Commission on Ecosystem Management (IUCN CEM); Society for Ecological Restoration (SER). Principles for Ecosystem Restoration to Guide the United Nations Decade 2021–2030; FAO: Rome, Italy, 2021; pp. 1–21. [Google Scholar]
- McKinley, E.; Pagès, J.; Alexander, M.; Burdon, D.; Martino, S. Uses and management of saltmarshes: A global survey. Estuar. Coast. Shelf Sci. 2020, 243, 106840. [Google Scholar] [CrossRef]
- Ladd, C.J. Review on processes and management of saltmarshes across Great Britain. Proc. Geol. Assoc. 2021, 132, 269–283. [Google Scholar] [CrossRef]
- Bradbury, R.; Butchart, S.; Fisher, B.; Hughes, F.; Ingwall-King, L.; MacDonald, M.; Merriman, J.; Peh, K.; Pellier, A.; Thomas, D.; et al. The economic consequences of conserving or restoring sites for nature. Nat. Sustain. 2021, 4, 1–7. [Google Scholar] [CrossRef]
- Zu Ermgassen, P.S.; Baker, R.; Beck, M.W.; Dodds, K.; Zu Ermgassen, S.O.; Mallick, D.; Taylor, M.D.; Turner, R.E. Ecosystem services: Delivering decision-making for salt marshes. Est. Coast. 2021, 44, 1–8. [Google Scholar] [CrossRef]
- Burden, A.; Garbutt, A.; Evans, C.D. Effect of restoration on saltmarsh carbon accumulation in Eastern England. Biol. Lett. 2019, 15, 20180773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulliver, A.; Carnell, P.E.; Trevathan-Tackett, S.M.; Costa, M.D.D.P.; Masqué, P.; Macreadie, P.I. Estimating the Potential Blue Carbon Gains From Tidal Marsh Rehabilitation: A Case Study From South Eastern Australia. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Baker, R.; Taylor, M.D.; Able, K.W.; Beck, M.W.; Cebrian, J.; Colombano, D.D.; Connolly, R.M.; Currin, C.; Deegan, L.A.; Feller, I.C.; et al. Fisheries rely on threatened salt marshes. Science 2020, 370, 670–671. [Google Scholar] [CrossRef]
- Narayan, S.; Beck, M.; Wilson, P.; Thomas, C.J.; Guerrero, A.; Shepard, C.C.; Reguero, B.; Franco, G.; Ingram, J.C.; Trespalacios, D. The Value of Coastal Wetlands for Flood Damage Reduction in the Northeastern USA. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Adam, P. Salt marsh restoration. In Coastal Wetlands, 2nd ed.; Perillo, G., Wolanski, E., Cahoon, D., Hopkinson, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 817–861. [Google Scholar]
- Rendón, O.R.; Garbutt, A.; Skov, M.; Möller, I.; Alexander, M.; Ballinger, R.; Wyles, K.; Smith, G.; McKinley, E.; Griffin, J.; et al. A framework linking ecosystem services and human well-being: Saltmarsh as a case study. People Nat. 2019, 1, 486–496. [Google Scholar] [CrossRef]
- Bayraktarov, E.; Saunders, M.I.; Abdullah, S.; Mills, M.; Beher, J.; Possingham, H.P.; Mumby, P.J.; Lovelock, C.E. The cost and feasibility of marine coastal restoration. Ecol. Appl. 2016, 26, 1055–1074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cioffi, W.; Cope, R.; Daleo, P.; Heywood, E.; Hoyt, C.; Smith, C.; Silliman, B. A Global Synthesis Reveals Gaps in Coastal Habitat Restoration Research. Sustainability 2018, 10, 1040. [Google Scholar] [CrossRef] [Green Version]
- Jennerjahn, T.C.; Mitchell, S.B. Pressures, stresses, shocks and trends in estuarine ecosystems—An introduction and synthesis. Estuar. Coast. Shelf Sci. 2013, 130, 1–8. [Google Scholar] [CrossRef]
- Mitchell, S.; Jennerjahn, T.C.; Vizzini, S.; Zhang, W. Changes to processes in estuaries and coastal waters due to intense multiple pressures—An introduction and synthesis. Estuar. Coast. Shelf Sci. 2015, 156, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tabot, P.; Adams, J. Ecophysiology of salt marsh plants and predicted responses to climate change in South Africa. Ocean Coast. Manag. 2013, 80, 89–99. [Google Scholar] [CrossRef]
- Adams, J.B. Salt marsh at the tip of Africa: Patterns, processes and changes in response to climate change. Estuar. Coast. Shelf Sci. 2020, 237, 106650. [Google Scholar] [CrossRef]
- van Niekerk, L.; Adams, A.B.; Lamberth, S.J.; Taljaard, S.; MacKay, C.F.; Bachoo, S.; Parak, O.; Murison, G.; Weerts, S.P. Chapter 6: Pressures on the Estuarine Realm. In South African National Biodiversity Assessment 2018: Technical Report. Volume 3: Estuarine Realm; van Niekerk, L., Adams, J.B., Lamberth, S.J., MacKay, C.F., Taljaard, S., Turpie, J.K., Weerts, S.P., Raimondo, D.C., Eds.; South African National Biodiversity Institute: Pretoria, South Africa, 2019; pp. 76–135. [Google Scholar]
- van Niekerk, L.; Adams, J.B.; Lamberth, S.J.; MacKay, C.F.; Taljaard, S.; Turpie, J.K.; Weerts, S.P.; Raimondo, D.C. South African National Biodiversity Assessment 2018: Technical Report. Volume 3: Estuarine Realm; South African National Biodiversity Institute: Pretoria, South Africa, 2019; pp. 1–376. [Google Scholar]
- Turpie, J.K.; Letley, G. Chapter 2: Benefits of Estuarine Biodiversity. In South African National Biodiversity Assessment 2018: Technical Report. Volume 3: Estuarine Realm; van Niekerk, L., Adams, J.B., Lamberth, S.J., MacKay, C.F., Taljaard, S., Turpie, J.K., Weerts, S.P., Raimondo, D.C., Eds.; South African National Biodiversity Institute: Pretoria, South Africa, 2019; pp. 1–11. [Google Scholar]
- Jones, S.; Carrasco, N.K.; Perissinotto, R.; Fox, C. Abiotic and biotic responses to the 2016/2017 restoration project at the St Lucia Estuary mouth, South Africa. Afr. J. Aquat. Sci. 2020, 45, 153–166. [Google Scholar] [CrossRef]
- Lemley, D.A.; Adams, J.B.; Rishworth, G.M.; Bouland, C. Phytoplankton responses to adaptive management interventions in eutrophic urban estuaries. Sci. Total Environ. 2019, 693, 133601. [Google Scholar] [CrossRef]
- de Villiers, N.; Harasti, D.; Hodgson, A.; Claassens, L. A comparison of the fauna in eelgrass and erosion control structures in a warm temperate Southern African estuary. Reg. Stud. Mar. Sci. 2021, 44, 101757. [Google Scholar] [CrossRef]
- Bornman, T.G.; Adams, J.B.; Bezuidenhout, C. Adaptations of salt marsh to semi-arid environments and management impli-cations for the Orange River mouth. Trans. R. Soc. S. Africa 2004, 59, 125–131. [Google Scholar] [CrossRef]
- Riddin, T.; van Wyk, E.; Adams, J. The rise and fall of an invasive estuarine grass. S. Afr. J. Bot. 2016, 107, 74–79. [Google Scholar] [CrossRef]
- Cormier, R.; Elliott, M. SMART marine goals, targets and management–is SDG 14 operational or aspirational, is ‘Life Below Water’ sinking or swimming? Mar. Pollut. Bull. 2017, 123, 28–33. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Norton, D.A. Towards a Conceptual Framework for Restoration Ecology. Restor. Ecol. 1996, 4, 93–110. [Google Scholar] [CrossRef]
- Choi, Y.D.; Temperton, V.M.; Allen, E.B.; Grootjans, A.P.; Halassy, M.; Hobbs, R.J.; Naeth, M.A.; Torok, K. Ecological resto-ration for future sustainability in a changing environment. Ecoscience 2008, 15, 53–64. [Google Scholar] [CrossRef]
- Bornman, T.G.; Adams, J.B.; Bate, G.C. Freshwater requirements of a semi-arid supratidal and floodplain salt marsh. Estuaries 2002, 25, 1394–1405. [Google Scholar] [CrossRef]
- Adams, J.; Veldkornet, D.; Tabot, P. Distribution of macrophyte species and habitats in South African estuaries. S. Afr. J. Bot. 2016, 107, 5–11. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, Z.; Song, X.; Li, Y.; Cao, X.; Yuan, Y. A methodology for assessing and mapping pressure of human activities on coastal region based on stepwise logic decision process and GIS technology. Ocean Coast. Manag. 2016, 120, 80–87. [Google Scholar] [CrossRef]
- Corbau, C.; Zambello, E.; Rodella, I.; Utizi, K.; Nardin, W.; Simeoni, U. Quantifying the impacts of the human activities on the evolution of Po delta territory during the last 120 years. J. Environ. Manag. 2018, 232, 702–712. [Google Scholar] [CrossRef]
- Bowd, R. Risk, Resilience and Social-Ecological Systems in Natural Resource-Based Development in South Africa. Ph.D. Thesis, University of KwaZulu-Natal, Durban, South Africa, 2015. [Google Scholar]
- Adams, J.; Whitfield, A.; van Niekerk, L. A socio-ecological systems approach towards future research for the restoration, conservation and management of southern African estuaries. Afr. J. Aquat. Sci. 2020, 45, 231–241. [Google Scholar] [CrossRef]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; pp. 92–101. [Google Scholar]
- Jb, A.; Pretorius, L.; Snow, G. Deterioration in the water quality of an urbanised estuary with recommendations for improvement. Water SA 2019, 45, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.; Fernandes, M.; Riddin, T. Chapter 5: Estuarine habitat extent and trend. In South African National Biodiversity As-sessment 2018: Technical Report. Volume 3: Estuarine Realm; van Niekerk, L., Adams, J.B., Lamberth, S.J., MacKay, C.F., Taljaard, S., Turpie, J.K., Weerts, S.P., Raimondo, D.C., Eds.; South African National Biodiversity Institute: Pretoria, South Africa, 2019; pp. 52–75. [Google Scholar]
- Department of Environmental Affairs and Development Planning (DEA&DP). Environmental Flows and the Health and Value of the Berg River Estuary: Potential Trade-Offs between Estuary Value and Regional Water Supply under a Changing Climate; DEA&DP: Cape Town, South Africa, 2021. [Google Scholar]
- Department of Environmental Affairs and Development Planning (DEA&DP). Bank Erosion in the Berg River Estuary Causes and Concerns; DEA&DP: Cape Town, South Africa, 2021. [Google Scholar]
- Wasserman, J. Recreating a Wetland at an Abandoned Saltworks: Towards a Rehabilitation Plan. Master’s Thesis, Nelson Mandela University, Gqeberha, South Africa, 2021. [Google Scholar]
- Bornman, T.G.; Adams, J.B.; Bezuidenhout, C. Present Status of the Orange River Mouth Wetland and Potential For Rehabilitation; IECM Report No. 43; South African National Biodiversity Institute: Pretoria, South Africa, 2005; pp. 1–43. [Google Scholar]
- Bezuidenhout, C. Macrophytes as Indicators of Physico-Chemical Factors in South African Estuaries. Ph.D. Thesis, Department of Botany, Nelson Mandela University, Gqeberha, South Africa, 2011. [Google Scholar]
- Otte, M.L.; Fang, W.-T.; Jiang, M. A Framework for Identifying Reference Wetland Conditions in Highly Altered Landscapes. Wetlands 2021, 41, 1–12. [Google Scholar] [CrossRef]
- Adams, J.B.; Cowie, M.; van Niekerk, L. Assessment of Completed Ecological Water Requirement Studies for South African Estuaries and Responses to Changes in Freshwater Inflow; Water Research Commission: Pretoria, South Africa, 2016; pp. 1–57. [Google Scholar]
- van Niekerk, L.; Adams, J.B.; Taljaard, S.; Huizinga, P.; Lamberth, S. Advancing mouth management practices in the Groot Brak Estuary, South Africa. In Complex Coastal Systems—Transdisciplinary Learning on International Case Studies; Slinger, J., Taljaard, S., d’Hont, F., Eds.; Delft Academic Press: Delft, The Netherlands, 2020; pp. 89–104. [Google Scholar]
- Nunes, M.; Adams, J.B.; van Niekerk, L. Changes in invasive alien aquatic plants in a small closed estuary. S. Afr. J. Bot. 2020, 135, 317–329. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. Causes and Consequences of Invasive Plants in Wetlands: Opportunities, Opportunists, and Outcomes. Crit. Rev. Plant Sci. 2004, 23, 431–452. [Google Scholar] [CrossRef]
- Gedan, K.B.; Silliman, B.R.; Bertness, M.D. Centuries of Human-Driven Change in Salt Marsh Ecosystems. Annu. Rev. Mar. Sci. 2009, 1, 117–141. [Google Scholar] [CrossRef] [Green Version]
- Gopal, B. Future of wetlands in tropical and subtropical Asia, especially in the face of climate change. Aquat. Sci. 2012, 75, 39–61. [Google Scholar] [CrossRef]
- Lu, Y.; Yuan, J.; Lu, X.; Su, C.; Zhang, Y.; Wang, C.; Cao, X.; Li, Q.; Su, J.; Ittekkot, V.; et al. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ. Pollut. 2018, 239, 670–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saintilan, N.; Rogers, K.; McKee, K.L. The shifting saltmarsh-mangrove ecotone in Australasia and the Americas. In Coastal Wetlands, 2nd ed.; Perillo, G., Wolanski, E., Cahoon, D., Hopkinson, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 915–945. [Google Scholar]
- Raw, J.; Riddin, T.; Wasserman, J.; Lehman, T.; Bornman, T.; Adams, J. Salt marsh elevation and responses to future sea-level rise in the Knysna Estuary, South Africa. Afr. J. Aquat. Sci. 2020, 45, 49–64. [Google Scholar] [CrossRef]
- Raw, J.L.; Adams, J.B.; Bornman, T.G.; Riddin, T.; Vanderklift, M.A. Vulnerability to sea-level rise and the potential for res-toration to enhance blue carbon sequestration in salt marshes of an urban estuary. Estuar. Coast. Shelf Sci. 2021, 260, 107495. [Google Scholar] [CrossRef]
- Veldkornet, D.A.; Adams, J.B.; van Niekerk, L. Characteristics and landcover of estuarine boundaries: Implications for the delineation of the South African estuarine functional zone. Afr. J. Mar. Sci. 2015, 37, 313–323. [Google Scholar] [CrossRef]
- Borchert, S.M.; Osland, M.J.; Enwright, N.M.; Griffith, K.T. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze. J. Appl. Ecol. 2018, 55, 2876–2887. [Google Scholar] [CrossRef]
- Dittmann, S.; Mosley, L.; Beaumont, K.; Clarke, B.; Bestland, E.; Guan, H.; Sandhu, H.; Clanahan, M.; Baring, R.; Quinn, J.; et al. From Salt to C; Carbon Sequestration through Ecological Restoration at the Dry Creek Salt Field; Goyder Institute for Water Research Technical Report Series (19/28); Goyder Institute: Adelaide, Australia, 2019; pp. 1–102. [Google Scholar]
- Riddin, T.; Adams, J. The seed banks of two temporarily open/closed estuaries in South Africa. Aquat. Bot. 2008, 90, 328–332. [Google Scholar] [CrossRef]
- Riddin, T.; Adams, J. Water level fluctuations and phenological responses in a salt marsh succulent. Aquat. Bot. 2018, 153, 58–66. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Anisfeld, S.C.; Blum, L.K.; Long, E.V.; Feagin, R.A.; Fernandes, A.; Kearney, W.S.; Williams, K. Sea Level Rise and the Dynamics of the Marsh-Upland Boundary. Front. Environ. Sci. 2019, 7, 25. [Google Scholar] [CrossRef]
- Wolters, M.; Garbutt, A.; Bekker, R.M.; Bakker, J.P.; Carey, P.D. Restoration of salt-marsh vegetation in relation to site suita-bility, species pool and dispersal traits. J. Appl. Ecol. 2008, 45, 904–912. [Google Scholar] [CrossRef]
- Snow, A.A.; Vince, S.W. Plant Zonation in an Alaskan Salt Marsh: II. An Experimental Study of the Role of Edaphic Conditions. J. Ecol. 1984, 72, 669. [Google Scholar] [CrossRef]
- Cooper, A. The effects of salinity and waterlogging on the growth and cation uptake of salt marsh plants. N. Phytol. 1982, 90, 263–275. [Google Scholar] [CrossRef]
- Wiehe, P.O. A Quantitative Study of the Influence of Tide Upon Populations of Salicornia Europea. J. Ecol. 1935, 23, 323. [Google Scholar] [CrossRef]
- Armstrong, W.; Wright, E.J.; Lythe, S.; Gaynard, T.J.; Gaynard, S.L.J. Plant Zonation and the Effects of the Spring-Neap Tidal Cycle on Soil Aeration in a Humber Salt Marsh. J. Ecol. 1985, 73, 323. [Google Scholar] [CrossRef]
- Ungar, I.A. Are biotic factors significant in influencing the distribution of halophytes in saline habitats? Bot. Rev. 1998, 64, 176–199. [Google Scholar] [CrossRef]
- Levine, J.M.; Brewer, J.S.; Bertness, M.D. Nutrients, competition and plant zonation in a New England salt marsh. J. Ecol. 1998, 86, 285–292. [Google Scholar] [CrossRef]
- van Putte, N.; Temmerman, S.; Verreydt, G.; Seuntjens, P.; Maris, T.; Heyndrickx, M.; Boone, M.; Joris, I.; Meire, P. Groundwater dynamics in a restored tidal marsh are limited by historical soil compaction. Estuar. Coast. Shelf Sci. 2019, 244, 106101. [Google Scholar] [CrossRef]
- Esteves, L.S.; Williams, J.J. Managed realignment in Europe: A synthesis of methods, achievements and challenges. In The Science and Management of Nature-based Coastal Protection; Bilkovic, D.M., Mitchell, M.M., Toft, J.D., Megan, L.P.K., Eds.; Taylor and Francis: New York, NY, USA, 2017; pp. 157–180. [Google Scholar]
- Rogers, K.; Saintilan, N.; Copeland, C. Managed Retreat of Saline Coastal Wetlands: Challenges and Opportunities Identified from the Hunter River Estuary, Australia. Chesap. Sci. 2013, 37, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Zahawi, R.A.; Reid, J.L.; Holl, K.D. Hidden Costs of Passive Restoration. Restor. Ecol. 2014, 22, 284–287. [Google Scholar] [CrossRef]
- Armitage, A.R. Perspectives on maximizing coastal wetland restoration outcomes in anthropogenically altered landscapes. Est. Coast. 2021, 44, 1699–1709. [Google Scholar] [CrossRef]
- Shaw, G.; Adams, J.; Bornman, T. Sediment characteristics and vegetation dynamics as indicators for the potential rehabilitation of an estuary salt marsh on the arid west coast of South Africa. J. Arid. Environ. 2008, 72, 1097–1109. [Google Scholar] [CrossRef]
- Adams, J.B.; McGwynne, L. Restoration of a salt marsh in a semi-arid Ramsar site. WIOMSA Mag. 2020, 12, 6–7. [Google Scholar]
- Lovelock, C.E.; Atwood, T.; Baldock, J.; Duarte, C.M.; Hickey, S.; Lavery, P.S.; Masque, P.; Macreadie, P.I.; Ricart, A.M.; Serrano, O.; et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 2017, 15, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Sasmito, S.D.; Taillardat, P.; Clendenning, J.N.; Cameron, C.; Friess, D.A.; Murdiyarso, D.; Hutley, L.B. Effect of land-use and land-cover change on mangrove blue carbon: A systematic review. Glob. Chang. Biol. 2019, 25, 4291–4302. [Google Scholar] [CrossRef]
- Raw, J.; Tsipa, V.; Banda, S.; Riddin, T.; van Niekerk, L.; Adams, J.B. Scoping Study: A Blue Carbon Sinks Assessment for South Africa; Project 83360258 funded by GIZ; Deutsche Gesellschaft für Internationale Zusammernarbeit GmbH for the Department of Environment Forestry and Fisheries: Pretoria, South Africa, 2021. [Google Scholar]
- Davis, K.; Binner, A.; House, L.; Bell, A.; Reserve, N.D.B.; Barnstaple, N.D.; Day, B.; Rees, S.; Smith, G.; Wilson, K.; et al. A Generalizable Integrated Natural Capital Methodology to Prioritise Investment in Saltmarsh Enhancement; University of Exeter: Exeter, UK, 2020. [Google Scholar]
- Curado, G.; Manzano-Arrondo, V.; Figueroa, E.; Castillo, J. Public Perceptions and Uses of Natural and Restored Salt Marshes. Landsc. Res. 2013, 39, 668–679. [Google Scholar] [CrossRef]
- Shumway, N.; Bell-James, J.; Fitzsimons, J.A.; Foster, R.; Gillies, C.; Lovelock, C.E. Policy solutions to facilitate restoration in coastal marine environments. Mar. Policy 2021, 134, 104789. [Google Scholar] [CrossRef]
Estuary | Historic Area (1937) | Present Area (2021) | Habitat Trend | Pressures | Protection Status |
---|---|---|---|---|---|
Kosi | 58 | 58 | Cattle browsing and grazing, trampling by people and cattle, fires. | National (iSimangaliso Wetland Park World Heritage Site) | |
Great Fish | 144 | 133 | Disturbance in lower reaches, flow reduction. | None | |
Kowie | 83 | 27 | Development—houses, marina. Eutrophication. | None | |
Swartkops | 537 | 193 | Development—industrial, infrastructure. Eutrophication. | None | |
Keurbooms | 105 | 72 | Development—houses, jetties. | Partial, Provincial (CapeNature) | |
Kromme | 89 | 68 | Development—houses, jetties, marina. Changes in freshwater inflow. | None | |
Knysna | 537 | 295 | Development—residential, infrastructure. Eutrophication. | Partial, National (SANParks). | |
Langebaan | 806 | 806 | Grazing pressure removed with establishment of protected area, potential for further expansion. | National (SANParks) | |
Groot Berg | 1965 | 1310 | Agriculture, development, marina. | Partial, Provincial (CapeNature) | |
Olifants | 195 | 97 | Salinization, flow reduction. | None | |
Orange | 154 | 144 | Mining, causeway, salinization, flow reduction. | Ramsar |
Estuary | Historic Area (1937) | Present Area (2021) | Habitat Trend | Pressures | Protection Status |
---|---|---|---|---|---|
Kosi | 229 | 229 | Cattle browsing, trampling by people and cattle, fires. | iSimangaliso Wetland Park World Heritage Site | |
Keiskamma | 312 | 181 | Agriculture, cattle browsing. | None | |
Swartkops | 643 | 359 | Development—industrial, infrastructure. | None | |
Gamtoos | 240 | 84 | Agriculture, flow reduction. | None | |
Keurbooms | 398 | 304 | Development. | Partial, Cape Nature | |
Knysna | 680 | 221 | Development—residential, infrastructure. | Partial, Cape Nature | |
Klein Brak | 594 | 333 | Development, agriculture. | None | |
Gouritz | 220 | 8 | Agriculture, flow reduction. | None | |
Heuningnes | 500 | 259 | Agriculture, flow reduction. | Cape Nature/SANParks | |
Klein | 208 | 206 | Changes in response to water level and mouth condition | Cape Nature | |
Langebaan | 1075 | 1132 | Grazing pressure removed with establishment of protected area, potential for further expansion. | SANParks | |
Groot Berg | 2926 | 2178 | Agriculture, flow reduction. | Partial, Cape Nature | |
Olifants | 1442.3 | 879 | Development—saltworks. Salinization, flow reduction, agriculture (supratidal covers ~183 ha and floodplain 696 ha, mostly loss of floodplain). | None | |
Orange | 1311 | 627 | Flow reduction and salinization. | Ramsar |
Estuary | Salt Pan Area (ha) | 50% Restored (ha) | Agriculture (ha) | 25% Restored (ha) | Degraded Area (ha) | 50% Restored (ha) | Total Potential Restoration Area |
---|---|---|---|---|---|---|---|
Groot Berg | 608.4 | 304 | 748 | 187 | 225 | 112.5 | 603.5 |
Swartkops | 628 | 314 | n/a | n/a | 175 | 87.5 | 401.5 |
Orange | n/a | n/a | 119 | 29.6 | 563 | 281.5 | 311.1 |
Olifants | 59 | 29.5 | 746 | 186.6 | - | - | 216.1 |
Gamtoos | n/a | n/a | 215 | 53.8 | 242.4 | 121.2 | 175.0 |
Gouritz | n/a | n/a | 540.8 | 136.5 | 2.6 | 1.3 | 137.8 |
Klein Brak | n/a | n/a | 201.7 | 50.4 | 149.4 | 74.7 | 125.1 |
Total | 1295 | 648 | 4073 | 643.9 | 1357 | 679 | 1970.1 |
Freshwater Inflow | Water Quality | Invasive Alien Plants | Restoration Actions | ||
---|---|---|---|---|---|
Baseflow | Floods | ||||
Groot Berg | H | H | VH | M | Remove agriculture, restore salt pans, ensure freshwater inflow, bank restoration, improve water quality, and remove alien invasive plants. |
Swartkops | VH | VH | VH | H | Remove old berms and upstream barriers, re-establish riparian vegetation, remove alien invasive plants, and rehabilitate abandoned salt pans. |
Orange | VH | VH | H | M | Remove causeway, ensure freshwater input to reduce salinization, and control dust input from surrounding mining. |
Olifants | M | M | H | H | Remove agriculture, ensure freshwater inflow, and potential for salt pan rehabilitation. |
Gamtoos | M | M | M | M | Remove agriculture, ensure baseflow input, and improve water quality. |
Gouritz | VH | VH | M | M | Remove agriculture, ensure baseflow input, and improve water quality. |
Klein Brak | H | H | M | H | Removal of old berms and upstream barriers to tidal action, remove alien invasive plants, remove agriculture, and improve water quality. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, J.B.; Raw, J.L.; Riddin, T.; Wasserman, J.; Van Niekerk, L. Salt Marsh Restoration for the Provision of Multiple Ecosystem Services. Diversity 2021, 13, 680. https://doi.org/10.3390/d13120680
Adams JB, Raw JL, Riddin T, Wasserman J, Van Niekerk L. Salt Marsh Restoration for the Provision of Multiple Ecosystem Services. Diversity. 2021; 13(12):680. https://doi.org/10.3390/d13120680
Chicago/Turabian StyleAdams, Janine B., Jacqueline L. Raw, Taryn Riddin, Johan Wasserman, and Lara Van Niekerk. 2021. "Salt Marsh Restoration for the Provision of Multiple Ecosystem Services" Diversity 13, no. 12: 680. https://doi.org/10.3390/d13120680
APA StyleAdams, J. B., Raw, J. L., Riddin, T., Wasserman, J., & Van Niekerk, L. (2021). Salt Marsh Restoration for the Provision of Multiple Ecosystem Services. Diversity, 13(12), 680. https://doi.org/10.3390/d13120680