Unexpected Absence of Population Structure and High Genetic Diversity of the Western Atlantic Hermit Crab Clibanarius antillensis Stimpson, 1859 (Decapoda: Diogenidae) Based on Mitochondrial Markers and Morphological Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction, Amplification and Sequencing
2.3. Genetic Distance Analyses
2.4. Phylogenetic Analyses
2.5. Genetic Variability Analyses
2.6. Demographic Analyses
2.7. Morphological Assessment
3. Results
3.1. Genetic Distance Analyses
3.2. Phylogenetic Analyses
3.3. Genetic Variability Analyses
3.4. Demographic Analyses
3.5. Morphological Assessment
Taxonomy
Material Examined
Diagnosis
Description
Color (Fresh Specimen)
Distribution
Remarks
4. Discussion
4.1. Genetic Structure
4.2. Genetic Diversity
4.3. Morphological Variations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Futuyma, D.J. Evolutionary Biology, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 1986; ISBN 978-0-87893-188-0. [Google Scholar]
- Heywood, V.H.; Watson, R.T. Global Biodiversity Assessment: Summary for Policy-Makers; Watson, R.T., Heywood, V.H., Baste, I., Dias, B., Gámez, R., Reid, W., Ruark, G., Eds.; Cambridge University Press: Cambridge, UK, 1995; ISBN 978-0-521-56481-6. [Google Scholar]
- Slatkin, M. Gene flow and the geographic structure of natural populations. Science 1987, 236, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Slatkin, M.; Barton, N.H. A comparison of three methods for estimating average levels of gene flow. Evolution 1989, 43, 1349–1368. [Google Scholar] [CrossRef] [PubMed]
- Palumbi, S.R. Macrospatial genetic structure and speciation in marine taxa with high dispersal abilities. In Molecular Zoology: Advances, Strategies, and Protocols; Ferraris, J.D., Palumbi, S.R., Eds.; Wiley-Liss: New York, NY, USA, 1996; pp. 101–113. ISBN 978-0-471-14449-6. [Google Scholar]
- Collin, R. The effects of mode of development on phylogeography and population structure of north Atlantic Crepidula (Gastropoda: Calyptraeidae). Mol. Ecol. 2001, 10, 2249–2262. [Google Scholar] [CrossRef] [PubMed]
- Avise, J.C. Molecular Markers, Natural History and Evolution; Springer: New York, NY, USA, 1994; ISBN 978-1-4615-2381-9. [Google Scholar]
- Palumbi, S.R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Syst. 1994, 25, 547–572. [Google Scholar] [CrossRef]
- Silva, I.C.; Mesquita, N.; Paula, J. Lack of population structure in the fiddler crab Uca annulipes along an East African latitudinal gradient: Genetic and morphometric evidence. Mar. Biol. 2010, 157, 1113–1126. [Google Scholar] [CrossRef]
- Hedgecock, D. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull. Mar. Sci. 1986, 39, 550–564. [Google Scholar]
- Taylor, M.S.; Hellberg, M.E. Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 2003, 299, 107–109. [Google Scholar] [CrossRef] [Green Version]
- Baums, I.B.; Paris, C.B.; Chérubin, L.M. A bio-oceanographic filter to larval dispersal in a reef-building coral. Limnol. Oceanogr. 2006, 51, 1969–1981. [Google Scholar] [CrossRef] [Green Version]
- Burton, R.S. Protein polymorphisms and genetic differentiation of marine invertebrate populations. Mar. Biol. Lett. 1983, 4, 193–206. [Google Scholar]
- Scheltema, R.S. On dispersal and planktonic larvae of benthic invertebrates: An eclectic overview and summary of problems. Bull. Mar. Sci. 1986, 39, 290–322. [Google Scholar]
- Morgan, S.G. Predation by planktonic and benthic invertebrates on larvae of estuarine crabs. J. Exp. Mar. Biol. Ecol. 1992, 163, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Morgan, S.G. Life and death in the plankton: Larval mortality and adaptation. In Ecology of Marine Invertebrate Larvae; McEdward, L., Ed.; CRC Press: Boca Raton, FL, USA, 1995; pp. 279–321. ISBN 978-0-13-875895-0. [Google Scholar]
- Hewitt, G. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. Lond. 1996, 58, 247–276. [Google Scholar] [CrossRef]
- Gaylord, B.; Gaines, S.D. Temperature or transport? Range limits in marine species mediated solely by flow. Am. Nat. 2000, 155, 769–789. [Google Scholar] [CrossRef] [PubMed]
- Anger, K. The Biology of Decapod Crustacean Larvae; A.A. Balkema Publishers: Lisse, The Netherlands, 2001; ISBN 978-90-265-1828-7. [Google Scholar]
- Avise, J.C. Phylogeography: Retrospect and prospect. J. Biogeogr. 2009, 36, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Boehm, J.T.; Woodall, L.; Teske, P.R.; Lourie, S.A.; Baldwin, C.; Waldman, J.; Hickerson, M. Marine dispersal and barriers drive atlantic seahorse diversification. J. Biogeogr. 2013, 40, 1839–1849. [Google Scholar] [CrossRef]
- Peres, P.A.; Mantelatto, F.L. Salinity tolerance explains the contrasting phylogeographic patterns of two swimming crabs species along the tropical western Atlantic. Evol. Ecol. 2020, 34, 589–609. [Google Scholar] [CrossRef]
- Gopurenko, D.; Hughes, J.M. Regional patterns of genetic structure among Australian populations of the mud crab, Scylla serrata (Crustacea: Decapoda): Evidence from mitochondrial DNA. Mar. Freshw. Res. 2002, 53, 849–857. [Google Scholar] [CrossRef]
- Oliveira-Neto, J.F.; Pie, M.R.; Boeger, W.A.; Ostrensky, A.; Baggio, R.A. Population genetics and evolutionary demography of Ucides cordatus (Decapoda: Ocypodidae). Mar. Ecol. 2007, 28, 460–469. [Google Scholar] [CrossRef]
- Mayr, E. Populações, Espécies e Evolução; Cia Ed Nacional: São Paulo, Brasil, 1977. [Google Scholar]
- Mandai, S.S.; Buranelli, R.C.; Schubart, C.D.; Mantelatto, F.L. Phylogenetic and phylogeographic inferences based on two DNA markers reveal geographic structure of the orange claw hermit crab Calcinus tibicen (Anomura: Diogenidae) in the western Atlantic. Mar. Biol. Res. 2018, 14, 565–580. [Google Scholar] [CrossRef]
- Negri, M.; Pileggi, L.G.; Mantelatto, F.L. Molecular barcode and morphological analyses reveal the taxonomic and biogeographical status of the striped-legged hermit crab species Clibanarius sclopetarius (Herbst, 1796) and Clibanarius vittatus (Bosc, 1802) (Decapoda: Diogenidae). Invert. Syst. 2012, 26, 561–571. [Google Scholar] [CrossRef]
- Forest, J.; Saint Laurent, M. Compagne de la calypso au large des côtes Atlantiques de l’Amérique Du Sud (1961–1962). 6. Crustacés Décapodes: Pagurides. Ann. Inst. Oceanogr. 1968, 45, 47–169. [Google Scholar]
- Coelho, P.A.; Ramos-Porto, M. Sinopse dos crustáceos decápodos Brasileiros (Família Callianassidae, Callianideidae, Upogebiidae, Parapaguridae, Paguridae, Diogenidae). Trop. Ocean. 1987, 19, 27–53. [Google Scholar] [CrossRef] [Green Version]
- De Melo, G.A.S. Manual de identificação dos Crustacea Decapoda do Litoral Brasileiro: Anomura, Thalassinidea, Palinuridea, Astacidea; Editora Plêiade: São Paulo, Brasil, 1999; ISBN 978-85-85795-08-5. [Google Scholar]
- Nucci, P.R.; De Melo, G.A.S. Hermit crabs from Brazil: Family Diogenidae (Crustacea: Decapoda: Paguroidea), except Paguristes. Zootaxa 2015, 3947, 327–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantelatto, F.L.; Miranda, I.; Vera-Silva, A.L.; Negri, M.; Buranelli, R.C.; Terossi, M.; Magalhães, T.; Costa, R.C.; Zara, F.J.; Castilho, A.L. Checklist of decapod crustaceans from the coast of the São Paulo State (Brazil) supported by integrative molecular and morphological data: IV. Infraorder Anomura: Superfamilies Chirostyloidea, Galatheoidea, Hippoidea and Paguroidea. Zootaxa 2021, in press. [Google Scholar]
- Hazlett, B.A. The behavioral ecology of hermit crabs. Annu. Rev. Ecol. Syst. 1981, 12, 1–22. [Google Scholar] [CrossRef]
- Brossi-Garcia, A.L.; Hebling, N.J. Desenvolvimento pós-embrionário de Clibanarius antillensis Stimpson, 1859 (Crustacea, Diogenidae), em laboratório. Bol. Zool. 1983, 6, 89–111. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, F.A.; McLaughlin, P.A.; Crain, J.A. Larval development of Clibanarius antillensis Stimpson, 1859 (Crustacea: Anomura: Diogenidae) reared under laboratory conditions: A comparison between Panamanian and Brazilian populations. J. Nat. Hist. 1991, 25, 917–932. [Google Scholar] [CrossRef]
- Cházaro-Olvera, S.; Robles, R.; Montoya-Mendoza, J.; Herrera-López, J.A. Intraspecific variation in Megalopae of Clibanarius antillensis (Anomura, Diogenidae) among western Atlantic populations. Nauplius 2018, 26, e2018031. [Google Scholar] [CrossRef]
- Mantelatto, F.L.; (University of São Paulo Ribeirão Preto, São Paulo, Brazil). Personal Communication, 2014.
- Stimpson, W. XI.-Notes on North American Crustacea, No. 1. Ann. Lyceum Nat. Hist. N. Y. 1859, 7, 49–93. [Google Scholar] [CrossRef]
- Provenzano, A.J. The shallow-water hermit crabs of Florida. Bull. Mar. Sci. 1959, 9, 349–420. [Google Scholar]
- Schubart, C.; Neigel, J.; Felder, D. The use of the mitochondrial 16S rRNA gene for phylogenetic and biogeographic studies of crustacea. Crustac. Issues 2000, 12, 817–830. [Google Scholar]
- Mantelatto, F.L.; Robles, R.; Felder, D.L. Molecular phylogeny of the western Atlantic species of the Genus Portunus (Crustacea, Brachyura, Portunidae). Zool. J. Linn. Soc. 2007, 150, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Estoup, A.; Largiader, C.; Perrot, E.; Chourrout, D. Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Mol. Mar. Biol. Biotechnol. 1996, 5, 295–298. [Google Scholar]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. In vitro amplification of DNA by the polymerase chain reaction. In Molecular Cloning: A Laboratory Manual; Sambrook, J., Fritsch, E.F., Maniatis, T., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989; Volume 2, pp. 2–35. [Google Scholar]
- Negri, M.; Lemaitre, R.; Mantelatto, F.L. Molecular and morphological resurrection of Clibanarius symmetricus (Randall, 1840), a cryptic species hiding under the name for the “Thinstripe” hermit crab C. vittatus (Bosc, 1802) (Decapoda: Anomura: Diogenidae). J. Crust. Biol. 2014, 34, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Buranelli, R.C.; Mantelatto, F.L. Broad-ranging low genetic diversity among populations of the yellow finger marsh crab Sesarma rectum Randall, 1840 (Sesarmidae) Revealed by DNA Barcode. Crustaceana 2017, 90, 845–864. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubart, C.D.; Huber, M.G.J. Genetic comparisons of German populations of the stone crayfish, Austropotamobius torrentium (Crustacea: Astacidae). Bull. Fr. Pêche Piscic. 2006, 318, 1019–1028. [Google Scholar] [CrossRef] [Green Version]
- Mantelatto, F.L.; Carvalho, F.L.; Simões, S.M.; Negri, M.; Souza-Carvalho, E.A.; Terossi, M. New primers for amplification of cytochrome c oxidase subunit I barcode region designed for species of Decapoda (Crustacea). Nauplius 2016, 24, e2016030. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl. Acids. Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; de Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB Bioinformatics Resource Portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bracken-Grissom, H.D.; Cannon, M.E.; Cabezas, P.; Feldmann, R.M.; Schweitzer, C.E.; Ahyong, S.T.; Felder, D.L.; Lemaitre, R.; Crandall, K.A. A Comprehensive and Integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda). BMC Evol. Biol. 2013, 13, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. In Lectures on Mathematics in the Life Sciences; Miura, R.M., Ed.; American Mathematical Society: Providence, RI, USA, 1986; Volume 17, pp. 57–86. [Google Scholar]
- Rambaut, A.S.M.; Suchard, M.A.; Xie, D.; Drummond, A.J. Tracer 1.6. Available online: http://beast.bio.ed.ac.uk/Tracer (accessed on 15 November 2019).
- Rozas, J.; Rozas, R. DnaSP Version 3: An integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 1999, 15, 174–175. [Google Scholar] [CrossRef]
- Clement, M.; Posada, D.; Crandall, K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000, 9, 1657–1659. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Langaney, A. Origin and differentiation of human mitochondrial DNA. Am. J. Hum. Genet. 1989, 44, 73–85. [Google Scholar]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite version 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.R.; Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 1992, 9, 552–569. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Excoffier, L. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: Application to human mitochondrial DNA. Genetics 1999, 152, 1079–1089. [Google Scholar]
- Harpending, H.C. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol. 1994, 66, 591–600. [Google Scholar]
- Drummond, A.J.; Rambaut, A.; Shapiro, B.; Pybus, O.G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 2005, 22, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Kishino, H.; Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985, 22, 160–174. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Knowlton, N.; Weigt, L.A. New dates and new rates for divergence across the Isthmus of Panama. Proc. R. Soc. Lond. B 1998, 265, 2257–2263. [Google Scholar] [CrossRef] [Green Version]
- Wright, S. Evolution and the Genetics of Populations: A Treatise; University of Chicago Press: Chicago, IL, USA, 1978; ISBN 978-0-226-91049-9. [Google Scholar]
- Benedict, J.E. Four new symmetrical hermit crabs (Pagurids) from the West India Region. Proc. USA Natl. Mus. 1901, 23, 771–778. [Google Scholar] [CrossRef]
- Dana, J.D. Crustacea. Part I. In United States Exploring Expedition during the Year 1838, 1839, 1840, 1841, 1842. under the Command of Charles Wilkes, U.S.N.; C. Sherman: Philadelphia, PA, USA, 1852; Volume 13, p. 685. [Google Scholar]
- Stimpson, W. Prodomus descriptionis animalium evertebratorum, quae in expeditione ad oceanum Pacificum Septentrionalem, a Republica Federate Missa, Cadevaladero Ringgold et Johanne Rodgers ducibus, observavit et descripsit. VII. Crustacea Anomura. Proc. Acad. Nat. Sci. Phila. 1858, 10, 225–252. [Google Scholar]
- Smith, S.I. Notice of the Crustacea collected by prof. C.F. Hart on the coast of Brazil in 1867. Trans. Conn. Acad. Arts Sci. 1869, 2, 1–41. [Google Scholar]
- Nobili, G. Decapodi i stomatopodi raccolti dal dr. Enrico Festa Nel Darien, Curaçao, La Guayra, Porto Cabello, Colon, Panama. Boll. Musei Zool. Anat. Comp. R Univ. Torino 1897, 12, 1–8. [Google Scholar]
- Rathbun, M.J. Results of the Branner-Agassiz expedition to Brazil. I. The Decapod and Stomatopod Crustacea. Proc. Wash. Acad. Sci. USA 1900, 2, 133–156. [Google Scholar]
- Moreira, C. Contribuições para o conhecimento da fauna Brasileira. Crustáceos do Brasil. Arch. Mus. Nac. 1901, 11, 1–151. [Google Scholar]
- Schmitt, W.L. Report on the Macrura, Anomura and Stomatopoda collected by the Barbados-Antigua expedition from the university of Iowa in 1918. Univ. Iowa Stud. Nat. Hist. 1924, 10, 65–99. [Google Scholar]
- Schmitt, W.L. Crustacea Macrura and Anomura of Porto Rico and the Virgin Islands. Scientific survey of Porto Rico and the Virgin Islands. N. Y. Acad. Sci. 1935, 15, 125–227. [Google Scholar]
- Schmitt, W.L. Zoologische ergebnisse einer reise nach bonaire, Curaçao und Aruba im jahre 1930. No. 16. Macruran and Anomuran Crustacea from Bonaire, Curaçao und Aruba. Zool. Jahrb. Abt. Syst. Geog. Biol. Tiere 1936, 67, 363–378. [Google Scholar]
- Provenzano, A.J. Notes on Bermuda hermit crabs (Crustacea: Anomura). Bull. Mar. Sci. 1960, 10, 117–124. [Google Scholar]
- Provenzano, A.J. Pagurid Crabs (Decapoda Anomura) from St. John, Virgin Islands, with descriptions of three new species. Crustaceana 1961, 3, 151–166. [Google Scholar] [CrossRef] [Green Version]
- Coelho, P.A.; Ramos, M.D.A. A constituição e a distribuição da fauna de decápodos do litoral leste da América do sul entre as latitudes de 5° N e 39° S. Trop. Ocean. 1972, 13, 133–236. [Google Scholar] [CrossRef] [Green Version]
- Rieger, P.J. Malacostraca—Eucarida. Paguroidea. In Catalogue of Crustacea of Brazil; Young, P.S., Ed.; Museu Nacional: Rio de Janeiro, Brazil, 1998; pp. 413–429. ISBN 978-85-7427-001-2. [Google Scholar]
- McLaughlin, P.A.; Komai, T.; Lemaitre, R.; Rahayu, D.L. annotated checklist of Anomuran Decapod Crustaceans of the world (exclusive of the Kiwaoidea and families Chirostylidae and Galatheidae of the Galatheoidea). Part 1, Lithodoidea, Lomisoidea and Paguroidea. Raffles Bull. Zool. 2010, 23, 5–107. [Google Scholar]
- Lemaitre, R.; McLaughlin, P. World Paguroidea & Lomisoidea database. Clibanarius antillensis Stimpson, 1859. Available online: http://marinespecies.org/aphia.php?p=taxdetails&id=367492 (accessed on 18 January 2021).
- Rodríguez-Rey, G.T.; Solé-Cava, A.M.; Lazoski, C. Genetic homogeneity and historical expansions of the slipper lobster, Scyllarides brasiliensis, in the South-West Atlantic. Mar. Freshw. Res. 2014, 65, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Buranelli, R.C.; Felder, D.L.; Mantelatto, F.L. Genetic diversity among populations of the western Atlantic mangrove crab Ucides cordatus (Linnaeus, 1763) (Decapoda: Brachyura: Ocypodidae): Evidence for Panmixia and useful data for future management and conservation. J. Crust. Biol. 2019, 39, 386–395. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Ye, L.; Liang, J.; Xuan, F.; Xu, Q. Genetic differentiation between populations of swimming crab Portunus trituberculatus along the coastal waters of the East China Sea. Hydrobiology 2009, 618, 125–137. [Google Scholar] [CrossRef]
- Scheltema, R.S. larval dispersal as a means of genetic exchange between geographically separated populations of shoal-water benthic marine gastropods. Biol. Bull. 1971, 140, 284–322. [Google Scholar] [CrossRef]
- Crisp, D.J. Genetic consequences of different reproductive strategies in marine invertebrates. In Marine Organisms: Genetics, Ecology, and Evolution; Battaglia, B., Beardmore, J.A., Eds.; Nato Conference Series, IV: Marine Sciences; Plenum Press: New York, NY, USA, 1978; pp. 257–273. ISBN 978-0-306-40020-9. [Google Scholar]
- Palumbi, S.R.; Wilson, A.C. Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evolution 1990, 44, 403–415. [Google Scholar] [CrossRef]
- Cirano, M.; Mata, M.M.; Campos, E.J.D.; Deiró, N.F.R. A Circulação oceânica de larga-escala na região oeste do Atlântico sul com base no modelo de circulação global OCCAM. Rev. Bras. Geof. 2006, 24, 209–230. [Google Scholar] [CrossRef] [Green Version]
- Puchnick-Legat, A.; Levy, J.A. Genetic structure of Brazilian populations of white mouth croaker Micropogonias furnieri (Perciformes: Sciaenidae). Braz. Arch. Biol. Technol. 2006, 49, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Affonso, P.; Galetti, P.M., Jr. Genetic diversity of three ornamental reef fishes (Families Pomacanthidae and Chaetodontidae) from the Brazilian Coast. Braz. J. Biol. 2007, 67, 925–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, R.; McEdward, L. Aspects of the physiology and ecology of pelagic larvae of marine benthic invertebrates. In Marine Plankton Life Cycle Strategies; Steidinger, K.A., Walker, L.M., Eds.; CRC Press: Boca Raton, FL, USA, 1984; pp. 93–120. ISBN 978-0-8493-5222-5. [Google Scholar]
- Lárez, M.B.; Palazón-Fernández, J.L.; Bolaños, C.J. The effect of salinity and temperature on the larval development of Mithrax caribbaeus Rathbun, 1920 (Brachyura: Majidae) reared in the laboratory. J. Plankton Res. 2000, 22, 1855–1869. [Google Scholar] [CrossRef]
- Torres, G.; Giménez, L.; Anger, K. Effects of reduced salinity on the biochemical composition (lipid, protein) of Zoea 1 decapod crustacean larvae. J. Exp. Mar. Biol. Ecol. 2002, 277, 43–60. [Google Scholar] [CrossRef] [Green Version]
- Anger, K.; Spivak, E.; Luppi, T. Effects of reduced salinities on development and bioenergetics of early larval shore crab, Carcinus maenas. J. Exp. Mar. Biol. Ecol. 1998, 220, 287–304. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, R.R.; Masui, D.C.; McNamara, J.C.; Mantelatto, F.L.M.; Garçon, D.P.; Furriel, R.P.M.; Leone, F.A. A kinetic study of the gill (Na+, K+)-ATPase, and its role in ammonia excretion in the intertidal hermit crab, Clibanarius vittatus. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2006, 145, 346–356. [Google Scholar] [CrossRef]
- Terossi, M.; Mantelatto, F.L. Morphological and genetic variability in Hippolyte obliquimanus Dana, 1852 (Decapoda, Caridea, Hippolytidae) from Brazil and the Caribbean Sea. Crustaceana 2012, 85, 685–712. [Google Scholar] [CrossRef] [Green Version]
- Tourinho, J.L.; Solé-Cava, A.M.; Lazoski, C. Cryptic species within the commercially most important lobster in the tropical Atlantic, the spiny lobster Panulirus argus. Mar. Biol. 2012, 159, 1897–1906. [Google Scholar] [CrossRef]
- Duffy, J.E. Resource-associated population subdivision in a symbiotic coral-reef shrimp. Evolution 1996, 50, 360–373. [Google Scholar] [CrossRef]
- Palumbi, S.R.; Grabowsky, G.; Duda, T.; Geyer, L.; Tachino, N. Speciation and population genetic structure in tropical pacific sea urchins. Evolution 1997, 51, 1506–1517. [Google Scholar] [CrossRef]
- Benzie, J.A.H. Major genetic differences between crown-ofthorns starfish (Acanthaster planci) populations in the Indian and Pacific Oceans. Evolution 1999, 53, 1782–1795. [Google Scholar] [CrossRef]
- Wieman, A.C.; Berendzen, P.B.; Hampton, K.R.; Jang, J.; Hopkins, M.J.; Jurgenson, J.; McNamara, J.C.; Thurman, C.L. A panmictic fiddler crab from the coast of Brazil? Impact of divergent ocean currents and larval dispersal potential on genetic and morphological variation in Uca maracoani. Mar. Biol. 2014, 161, 173–185. [Google Scholar] [CrossRef]
- Grant, W.; Bowen, B.W. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J. Hered. 1998, 89, 415–426. [Google Scholar] [CrossRef]
- Freeland, J. Molecular Ecology; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2005; ISBN 978-0-470-09061-9. [Google Scholar]
- Cassone, B.J.; Boulding, E.G. Genetic structure and phylogeography of the lined shore crab, Pachygrapsus crassipes, along the northeastern and western Pacific coasts. Mar. Biol. 2006, 149, 213–226. [Google Scholar] [CrossRef]
- Van Tienderen, K.M.; van der Meij, S.E.T. Extreme mitochondrial variation in the Atlantic gall crab Opecarcinus hypostegus (Decapoda: Cryptochiridae) reveals adaptive genetic divergence over Agaricia coral hosts. Sci. Rep. 2017, 7, 39461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aris-Brosou, S.; Excoffier, L. The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol. Biol. Evol. 1996, 13, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Bucklin, A.; Wiebe, P.H. Low mitochondrial diversity and small effective population sizes of the copepods Calanus finmarchicus and Nannocalanus minor: Possible impact of climatic variation during recent glaciation. J. Hered. 1998, 89, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duran, S.; Palacín, C.; Becerro, M.A.; Turon, X.; Giribet, G. Genetic diversity and population structure of the commercially harvested sea urchin Paracentrotus lividus (Echinodermata, Echinoidea). Mol. Ecol. 2004, 13, 3317–3328. [Google Scholar] [CrossRef]
- Stamatis, C.; Triantafyllidis, A.; Moutou, K.A.; Mamuris, Z. Mitochondrial DNA variation in northeast Atlantic and Mediterranean populations of Norway lobster, Nephrops norvegicus. Mol. Ecol. 2004, 13, 1377–1390. [Google Scholar] [CrossRef]
- Ray, N.; Currat, M.; Excoffier, L. Intra-deme molecular diversity in spatially expanding populations. Mol. Biol. Evol. 2003, 20, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L. Patterns of DNA sequence diversity and genetic structure after a range expansion: Lessons from the infinite-island model. Mol. Ecol. 2004, 13, 853–864. [Google Scholar] [CrossRef]
- Imbrie, J.; Boyle, E.A.; Clemens, S.C.; Duffy, A.; Howard, W.R.; Kukla, G.; Kutzbach, J.; Martinson, D.G.; McIntyre, A.; Mix, A.C.; et al. On the structure and origin of major glaciation cycles 1. Linear responses to Milankovitch forcing. Paleoceanography 1992, 7, 701–738. [Google Scholar] [CrossRef]
- Hellberg, M.E. Genetic approaches to understanding marine metapopulation dynamics. In Marine Metapopulations; Kritzer, J.P., Sale, P.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 431–455. ISBN 978-0-12-088781-1. [Google Scholar]
- Roy, K.; Valentine, J.W.; Jablonski, D.; Kidwell, S.M. Scales of climatic variability and time averaging in pleistocene biotas: Implications for ecology and evolution. Trends Ecol. Evol. 1996, 11, 458–463. [Google Scholar] [CrossRef]
- Hewitt, G.M. Post-glacial re-colonization of European Biota. Biol. J. Linn. Soc. Lond. 1999, 68, 87–112. [Google Scholar] [CrossRef]
- Provan, J.; Bennett, K. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 2008, 23, 564–571. [Google Scholar] [CrossRef]
- Marko, P.B.; Hoffman, J.M.; Emme, S.A.; Mcgovern, T.M.; Keever, C.C.; Nicole Cox, L. The ‘Expansion-Contraction’ model of Pleistocene biogeography: Rocky shores suffer a sea change? Mol. Ecol. 2010, 19, 146–169. [Google Scholar] [CrossRef]
- Austerlitz, F.; Jung-Muller, B.; Godelle, B.; Gouyon, P.-H. Evolution of coalescence times, genetic diversity and structure during colonization. Popul. Biol. 1997, 51, 148–164. [Google Scholar] [CrossRef] [Green Version]
- Petit, R.J.; Aguinagalde, I.; de Beaulieu, J.-L.; Bittkau, C.; Brewer, S.; Cheddadi, R.; Ennos, R.; Fineschi, S.; Grivet, D.; Lascoux, M.; et al. Glacial Refugia: Hotspots but not melting pots of genetic diversity. Science 2003, 300, 1563–1565. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, L.; Castilla, J.C.; Viard, F. A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: The case of the marine gastropod Concholepas concholepas. J. Biogeogr. 2009, 36, 969–981. [Google Scholar] [CrossRef]
- Ibáñez, C.M.; Argüelles, J.; Yamashiro, C.; Adasme, L.; Céspedes, R.; Poulin, E. Spatial genetic structure and demographic inference of the Patagonian squid Doryteuthis gahi in the south-eastern Pacific Ocean. J. Mar. Biol. Ass. 2012, 92, 197–203. [Google Scholar] [CrossRef]
- Mclaughlin, P.A. Paguristes puniceus Henderson, 1896 (Decapoda: Anomura: Paguroidea: Diogenidae): A study in intraspecific variability. Zootaxa 2004, 742, 1. [Google Scholar] [CrossRef]
- Hermoso-Salazar, M.; Solís-Weiss, V. Distribution and morphological variation of Synalpheus superus Abele and Kim, 1989 and notes on the distribution of S. fritzmuelleri Coutière, 1909 (Decapoda: Caridea: Alpheidae). Zootaxa 2010, 2505, 65. [Google Scholar] [CrossRef]
- Negri, M.; Schubart, C.D.; Mantelatto, F.L. Tracing the introduction history of the invasive swimming crab Charybdis hellerii (A. Milne-Edwards, 1867) in the western Atlantic: Evidences of high genetic diversity and multiple introductions. Biol. Invasions 2018, 20, 1771–1798. [Google Scholar] [CrossRef]
- Schluter, D.; Price, T. Conflicting selection pressures and life history trade-offs. Proc. R. Soc. Lond. B 1991, 246, 11–17. [Google Scholar] [CrossRef]
- Debuse, V.J.; Addison, J.T.; Reynolds, J.D. Morphometric variability in UK populations of the European lobster. J. Mar. Biol. Assoc. 2001, 81, 469–474. [Google Scholar] [CrossRef]
- Brian, J.V.; Fernandes, T.; Ladle, R.J.; Todd, P.A. Patterns of morphological and genetic variability in UK Populations of the shore crab, Carcinus maenas Linnaeus, 1758 (Crustacea: Decapoda: Brachyura). J. Exp. Mar. Biol. Ecol. 2006, 329, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Rousset, F. Genetic approaches to the estimation of dispersal rates. In Dispersal; Clobert, J., Danchin, E., Dhondt, A.A., Nichols, J.D., Eds.; Oxford University Press: Oxford, UK, 2001; ISBN 978-0-19-850660-7. [Google Scholar]
- Avise, J.C. Molecular population structure and the biogeographic history of a regional fauna: A case history with lessons for conservation biology. Oikos 1992, 63, 62. [Google Scholar] [CrossRef] [Green Version]
- Bickford, D.; Lohman, D.J.; Sodhi, N.S.; Ng, P.K.L.; Meier, R.; Winker, K.; Ingram, K.K.; Das, I. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 2007, 22, 148–155. [Google Scholar] [CrossRef]
Gene | Primers | Sequence |
---|---|---|
16S rRNA | 16SL2 | 5′-TGCCTGTTTATCAAAAACAT-3′ [40] |
16SH2 | 5′-AGATAGAAACCAACCTGG-3′ [40] | |
16SLClib | 5′-TTTGACCTGCCCACTGAA-3′ [Present study] | |
16SHClib | 5′-GAAACCAACCTGGCT CACG-3′ [Present study] | |
COI | COL6b | 5′-ACAAATCATAAAGATATYGG-3′ [47] |
COL6b2 | 5′-ACWAAYCAYAAAGAYATYGG-3′ [48] | |
COIAL2o | 5′-ACGCAACGATGATTATTTTCTAC-3′ [48] | |
COIAL1m | 5′-GAGCTTGAGCYGGRATAGTAGG-3′ [48] | |
COH6 | 5′-TADACTTCDGGRTGDCCAARAAYCA-3′ [47] | |
COIAH2m | 5′-GACCRAAAAATCARAATAAATGTTG-3′ [48] | |
COIAH1m | 5′-CTCCWGCRGGGTCAAAGAAAGA-3′ [48] | |
COILClib | 5′-GCGTGAGCAGGAATAGTAGGT T-3′ [Present study] | |
COIHClib | 5′-AAAACAGGGTCTCCTCCTC-3′ [Present study] |
Locality | Catalog Number | GenBank | |
---|---|---|---|
16S rRNA | COI | ||
Florida, United States of America | ULLZ 4683–USNM 1540491 | DQ369941 | − |
Florida, United States of America | ULLZ 9433–USNM 1544313 | KF182529 | − |
MG264431 MG264432 MG264433 | − MG264468 − | ||
Florida, United States of America | CCDB 6267 | MG264434 | MG264469 |
Andros Island, Bahamas | AMNH 18726 | MG264435 | MG264470 |
Barra del Tordo, Mexico | ULLZ 15019–USNM 1548156 | MG264436 | − |
Veracruz, Mexico | CNCR 24702 | MG264438 MG264439 | MG264471 MT740091 |
Veracruz, Mexico | CNCR 22223 | MG264437 | MG264472 |
Tabasco, Mexico | CNCR 18624 | MG264440 | − |
Quintana Roo, Mexico | CNCR 3729 | MG264441 | − |
Carrie Bow Cay, Belize | USNM 1277880 | MG264442 | MG264473 |
Tortola Island, British Virgin Islands | USNM 1277883 | MG264444 | − |
Saint Martin, French Antilles | UF 32041 | MG264443 | − |
Grande-Terre, Guadeloupe | USNM 1277879 | MG264445 | − |
Playa Puerto Viejo, Costa Rica | CCDB 550 | MG264446 MG264447 − | MG264474 MG264475 MG264476 |
Bocas del Toro, Panama | CCDB 3578 | MG264448 MG264449 | MG264477 MG264478 |
Isla Margarita, Venezuela | CCDB 1810 | MG264450 − | MG264479 MG264480 |
Luís Correia, Piauí, Brazil | CCDB 4158 | MG264451 − | MG264481 MG264482 |
Trairi, Ceará, Brazil | CCDB 2651 | MG264452 MG264453 | MG264483 MG264484 |
Fortaleza, Ceará, Brazil | CCDB 4274 | − | MG264485 |
Touros, Rio Grande do Norte, Brazil | CCDB 3366 | MG264454 | MG264488 |
Touros, Rio Grande do Norte, Brazil | CCDB 3367 | − | MG264486 |
Touros, Rio Grande do Norte, Brazil | CCDB 3373 | − | MG264487 |
Ipojuca, Pernambuco, Brazil | CCDB 1727 | MG264455 MG264456 − − − | MG264489 MG264490 MG264491 MG264492 MG264493 |
Maragogi, Alagoas, Brazil | CCDB 4920 | MG264457 | MG264494 MG264495 MG264496 |
Ilhéus, Bahia, Brazil | CCDB 2597 | − | MG264498 |
Ilhéus, Bahia, Brazil | CCDB 2610 | − | MG264500 |
Porto Seguro, Bahia, Brazil | CCDB 585 | MG264458 MG264459 − | MG264497 − MG264499 |
Guarapari, Espírito Santo, Brazil | CCDB 2243 | MG264460 MG264461 − | MG264501 MG264502 MG264503 |
Búzios, Rio de Janeiro, Brazil | CCDB 497 | MG264462 | MG264504 |
Búzios, Rio de Janeiro, Brazil | CCDB 761 | MG264463 | − |
Búzios, Rio de Janeiro, Brazil | CCDB 5656 | − − | MG264505 MG264506 |
Ubatuba, São Paulo, Brazil | CCDB 2906 | MG264464 | MG264508 |
São Sebastião, São Paulo, Brazil | CCDB 5061 | MG264465 | − |
São Sebastião, São Paulo, Brazil | CCDB 5062 | − | MG264507 |
− | MG264509 | ||
Itajaí, Santa Catarina, Brazil | CCDB 1876 | MG264466 − − | MG264510 MG264511 MG264512 |
Species | Locality | CatalogNumber | Gen Bank | |
---|---|---|---|---|
16S rRNA | COI | |||
Clibanarius albidigitus Nobili, 1901 | Panama City, Panama | − | AF425323 | − |
Punta Morales, Costa Rica | CCDB 1711 | − | JN671591 | |
Clibanarius clibanarius Herbst, 1791 | − | − | - | JX676177 |
Clibanarius corallinus H. Milne Edwards, 1848 | Tuamotus, French Polynesian | ULLZ 10121–USNM 1544831 | KF182528 | − |
Okinawa, Japan | CBM-ZC 9622 | − | AB507374 | |
Clibanarius erythropus Latreille, 1818 | Cádiz, Spain | CCDB 488 | − | JN671592 |
Clibanarius lineatus H. Milne Edwards, 1848 | Porosi, Nicaragua | CCDB 2444 | − | JN671594 |
Clibanarius longitarsus De Haan, 1849 | Okinawa, Japan | CBM-ZC 9583 | − | AB496944 |
Clibanarius rhabdodactylus Forest, 1953 | Okinawa, Japan | CBM-ZC 9593 | − | AB496946 |
Clibanarius sclopetarius Herbst, 1796 | São Sebastião, SP, Brazil | CCDB 2961 | JN671523 | JN671584 |
Clibanarius signatus Heller, 1861 | Iran | CCDB 3694 | − | JN671590 |
Clibanarius symmetricus Randall, 1840 | Paraty, RJ, Brazil | CCDB 2237 | JN671529 | JN671548 |
Clibanarius tricolor Gibbes, 1850 | Quintana Roo, Mexico | CCDB 504 | MG264467 | JN671593 |
Clibanarius virescens Krauss, 1843 | Okinawa, Japan | CBM-ZC 9587 | − | AB496948 |
Clibanarius vittatus Bosc, 1802 | Florida, United States of America | CCDB 3783 | − | JX238506 |
Texas, United States of America | CCDB 1185 | JN671527 | − |
16S rRNA | COI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Locality | N | S | H | Hd | π | K | N | S | H | Hd | π | K |
United States | 6 | 2 | 3 | 0.6 | 0.00168 | 0.66667 | 2 | 5 | 2 | 1.0 | 0.00954 | 5.00000 |
Bahamas | 1 | − | − | − | − | − | 1 | − | − | − | − | − |
Mexico | 6 | 2 | 3 | 0.6 | 0.00189 | 0.66667 | 3 | 10 | 3 | 1.0 | 0.01272 | 6.66667 |
Belize | 1 | − | − | − | − | − | 1 | − | − | − | − | − |
Antilles | 3 | 0 | 1 | 0.0 | 0.00000 | 0.00000 | − | − | − | − | − | − |
Costa Rica | 2 | 0 | 1 | 0.0 | 0.00000 | 0.00000 | 3 | 2 | 3 | 1.0 | 0.00254 | 1.33333 |
Panama | 2 | 1 | 2 | 1.0 | 0.00252 | 1.00000 | 2 | 12 | 2 | 1.0 | 0.02290 | 12.0000 |
Venezuela | 1 | − | − | − | − | − | 2 | 0 | 1 | 0.0 | 0.00000 | 0.00000 |
Brazil–Piauí | 1 | − | − | − | − | − | 2 | 2 | 2 | 1.0 | 0.00382 | 2.00000 |
Brazil–Ceará | 2 | 1 | 2 | 1.0 | 0.00281 | 1.00000 | 3 | 14 | 3 | 1.0 | 0.01781 | 9.33333 |
Brazil–Rio Grande do Norte | 1 | − | − | − | − | − | 3 | 11 | 3 | 1.0 | 0.01399 | 7.33333 |
Brazil–Pernambuco | 2 | 3 | 2 | 1.0 | 0.00758 | 3.00000 | 5 | 12 | 5 | 1.0 | 0.01202 | 6.30000 |
Brazil–Alagoas | 1 | − | − | − | − | − | 3 | 9 | 3 | 1.0 | 0.01145 | 6.00000 |
Brazil–Bahia | 2 | 0 | 1 | 0.0 | 0.00000 | 0.00000 | 4 | 10 | 4 | 1.0 | 0.01081 | 5.66667 |
Brazil–Espírito Santo | 2 | 0 | 1 | 0.0 | 0.00000 | 0.00000 | 3 | 5 | 3 | 1.0 | 0.00636 | 3.33333 |
Brazil–Rio de Janeiro | 2 | 0 | 1 | 0.0 | 0.00000 | 0.00000 | 3 | 13 | 3 | 1.0 | 0.01654 | 8.66667 |
Brazil–São Paulo | 2 | 0 | 1 | 0.0 | 0.00000 | 0.00000 | 3 | 11 | 3 | 1.0 | 0.01399 | 7.33333 |
Brazil–Santa Catarina | 1 | − | − | − | − | − | 3 | 5 | 3 | 1.0 | 0.00636 | 3.33333 |
Characters | Literature | Present Study |
---|---|---|
Ocular acicles: spines | up to 6 | 3–9 |
Antennal acicles: spines | up to 7 | 5–9 |
Second pereiopod: carpus spines | 1 or 2 | 1–4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishikawa, K.S.; Negri, M.; Mantelatto, F.L. Unexpected Absence of Population Structure and High Genetic Diversity of the Western Atlantic Hermit Crab Clibanarius antillensis Stimpson, 1859 (Decapoda: Diogenidae) Based on Mitochondrial Markers and Morphological Data. Diversity 2021, 13, 56. https://doi.org/10.3390/d13020056
Nishikawa KS, Negri M, Mantelatto FL. Unexpected Absence of Population Structure and High Genetic Diversity of the Western Atlantic Hermit Crab Clibanarius antillensis Stimpson, 1859 (Decapoda: Diogenidae) Based on Mitochondrial Markers and Morphological Data. Diversity. 2021; 13(2):56. https://doi.org/10.3390/d13020056
Chicago/Turabian StyleNishikawa, Keity S., Mariana Negri, and Fernando L. Mantelatto. 2021. "Unexpected Absence of Population Structure and High Genetic Diversity of the Western Atlantic Hermit Crab Clibanarius antillensis Stimpson, 1859 (Decapoda: Diogenidae) Based on Mitochondrial Markers and Morphological Data" Diversity 13, no. 2: 56. https://doi.org/10.3390/d13020056
APA StyleNishikawa, K. S., Negri, M., & Mantelatto, F. L. (2021). Unexpected Absence of Population Structure and High Genetic Diversity of the Western Atlantic Hermit Crab Clibanarius antillensis Stimpson, 1859 (Decapoda: Diogenidae) Based on Mitochondrial Markers and Morphological Data. Diversity, 13(2), 56. https://doi.org/10.3390/d13020056