Reducing the Extinction Risk of Populations Threatened by Infectious Diseases
Abstract
:1. Introduction
2. The Tasmanian Devil
2.1. Devil Facial Tumour Disease (DFTD)
2.2. Genetic Managment
2.3. Benefits of Supplementing Populations
3. Extending Principles Adopted in Tasmanian Devil Conservation Efforts to Other Populations Suffering from Disease
3.1. Genetic Management of Disease-Affected Populations
3.2. Fear of Failure
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef] [Green Version]
- Díaz, S.; Fargione, J.; Chapin, F.S.; Tilman, D. Biodiversity Loss Threatens Human Well-Being. PLoS Biol. 2006, 4, e277. [Google Scholar] [CrossRef] [Green Version]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef]
- McKnight, D.T.; Schwarzkopf, L.; Alford, R.A.; Bower, D.S.; Zenger, K.R. Effects of emerging infectious diseases on host population genetics: A review. Conserv. Genet. 2017, 18, 1235–1245. [Google Scholar] [CrossRef]
- De Castro, F.; Bolker, B. Mechanisms of disease-induced extinction. Ecol. Lett. 2005, 8, 117–126. [Google Scholar] [CrossRef]
- Cunningham, A.A.; Daszak, P.; Wood, J.L.N. One Health, emerging infectious diseases and wildlife: Two decades of progress? Philosophical transactions. Biol. Sci. 2017, 372, 20160167. [Google Scholar] [CrossRef] [Green Version]
- Douglass, F.J.; Harmony, J.D.; Nelson, C.D. A conceptual framework for restoration of threatened plants: The effective model of American chestnut (Castanea dentata) reintroduction. New Phytol. 2013, 197, 378–393. [Google Scholar]
- Deem, S.L.; Karesh, W.B.; Weisman, W. Putting Theory into Practice: Wildlife Health in Conservation; Blackwell Science Inc: Boston, MA, USA, 2001; pp. 1224–1233. [Google Scholar]
- Edmands, S. Between a rock and a hard place: Evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol. Ecol. 2006, 16, 463–475. [Google Scholar] [CrossRef]
- Huisman, J.; Kruuk, L.E.B.; Ellis, P.A.; Clutton-Brock, T.H.; Pemberton, J.M. Inbreeding depression across the lifespan in a wild mammal population. Proc. Natl. Acad. Sci. USA 2016, 113, 3585–3590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisely, S.M.; Ryder, O.A.; Santymire, R.M.; Engelhardt, J.F.; Novak, B.J. A Road Map for 21st Century Genetic Restoration: Gene Pool Enrichment of the Black-Footed Ferret. J. Hered. 2015, 106, 581–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ralls, K.; Ballou, J.D.; Dudash, M.R.; Eldridge, M.D.B.; Fenster, C.B.; Lacy, R.C.; Sunnucks, P.; Frankham, R. Call for a Paradigm Shift in the Genetic Management of Fragmented Populations. Conserv. Lett. 2017, 11, e12412. [Google Scholar] [CrossRef]
- Hamish, M.; Andy, D. Disease, habitat fragmentation and conservation. Proc. R. Soc. B Biol. Sci. 2002, 269, 2041–2049. [Google Scholar]
- Joseph, M.B.; Mihaljevic, J.R.; Arellano, A.L.; Kueneman, J.G.; Preston, D.L.; Cross, P.C.; Johnson, P.T.J. Taming wildlife disease: Bridging the gap between science and management. J. Appl. Ecol. 2013, 50, 702–712. [Google Scholar] [CrossRef]
- MacInnes, C.D.; Smith, S.M.; Tinline, R.; Ayers, N.R.; Bachmann, P.; Ball, D.G.A.; Calder, L.A.; Crosgrey, S.J.; Fielding, C.; Hauschildt, P.; et al. Elimination of rabies from red foxes in eastern ontario. J. Wildl. Dis. 2001, 37, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Portier, J.; Ryser-Degiorgis, M.-P.; Hutchings, M.R.; Monchâtre-Leroy, E.; Richomme, C.; Larrat, S.; Van Der Poel, W.H.M.; Dominguez, M.; Linden, A.; Santos, P.T.; et al. Multi-host disease management: The why and the how to include wildlife. BMC Vet. Res. 2019, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Scheele, B.C.; Hunter, D.A.; Grogan, L.F.; Berger, L.; Kolby, J.E.; McFadden, M.S.; Marantelli, G.; Skerratt, L.F.; Driscoll, D.A. Interventions for Reducing Extinction Risk in Chytridiomycosis-Threatened Amphibians. Conserv. Biol. 2014, 28, 1195–1205. [Google Scholar] [CrossRef] [Green Version]
- Scheele, B.C.; Foster, C.N.; Hunter, D.A.; Lindenmayer, D.B.; Schmidt, B.R.; Heard, G.W. Living with the enemy: Facilitating amphibian coexistence with disease. Biol. Conserv. 2019, 236, 52–59. [Google Scholar] [CrossRef]
- Boots, M.; Best, A.; Miller, M.R.; White, A. The role of ecological feedbacks in the evolution of host defence: What does theory tell us? Philos. Trans. R. Soc. B Biol. Sci. 2008, 364, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Jachowski, D.S.; Gitzen, R.A.; Grenier, M.B.; Holmes, B.; Millspaugh, J.J. The importance of thinking big: Large-scale prey conservation drives black-footed ferret reintroduction success. Biol. Conserv. 2011, 144, 1560–1566. [Google Scholar] [CrossRef]
- Pearse, A.M.; Swift, K. Allograft theory: Transmission of devil facial-tumour disease. Nature 2006, 439, 549. [Google Scholar] [CrossRef]
- Pye, R.J.; Pemberton, D.; Tovar, C.; Tubio, J.M.C.; Dun, K.A.; Fox, S.; Darby, J.; Hayes, D.; Knowles, G.W.; Kreiss, A.; et al. A second transmissible cancer in Tasmanian devils. Proc. Natl. Acad. Sci. USA 2015, 113, 374–379. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, C.; Baars, C.; Hesterman, H.; Hocking, G.; Jones, M.; Lazenby, B.; Mann, D.; Mooney, N.; Pemberton, D.; Pyecroft, S.; et al. Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biol. Conserv. 2006, 131, 307–324. [Google Scholar] [CrossRef]
- Pye, R.; Hamede, R.; Siddle, H.V.; Caldwell, A.; Knowles, G.W.; Swift, K.; Kreiss, A.; Jones, M.E.; Lyons, A.B.; Woods, G.M. Demonstration of immune responses against devil facial tumour disease in wild Tasmanian devils. Biol. Lett. 2016, 12, 20160553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazenby, B.; Tobler, M.W.; Brown, W.E.; Hawkins, C.E.; Hocking, G.J.; Hume, F.; Huxtable, S.; Iles, P.; Jones, M.E.; Lawrence, C.; et al. Density trends and demographic signals uncover the long-term impact of transmissible cancer in Tasmanian devils. J. Appl. Ecol. 2018, 55, 1368–1379. [Google Scholar] [CrossRef]
- Jones, M.E.; Cockburn, A.; Hamede, R.; Hawkins, C.; Hesterman, H.; Lachish, S.; Mann, D.; McCallum, H.; Pemberton, D. Life-history change in disease-ravaged Tasmanian devil populations. Proc. Natl. Acad. Sci. USA 2008, 105, 10023–10027. [Google Scholar] [CrossRef] [Green Version]
- Grueber, C.E.; Fox, S.; McLennan, E.A.; Gooley, R.M.; Pemberton, D.; Hogg, C.J.; Belov, K. Complex problems need detailed solutions: Harnessing multiple data types to inform genetic management in the wild. Evol. Appl. 2018, 12, 280–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, C.E.; McCallum, H.; Mooney, N.; Jones, M.; Holdsworth, M. Sarcophilus Harrisii; The IUCN Red List of Threatened Species: Cambridge, UK, 2008. [Google Scholar]
- Pye, R.; Patchett, A.; McLennan, E.; Thomson, R.; Carver, S.; Fox, S.; Pemberton, D.; Kreiss, A.; Morelli, A.B.; Silva, A. Immunization strategies producing a humoral IgG immune response against devil facial tumor disease in the majority of Tasmanian devils destined for wild release. Front. Immunol. 2018, 9, 259. [Google Scholar] [CrossRef]
- Fox, S.; Seddon, P.J. Wild devil recovery: Managing devils in the presence of disease. In Saving the Tasmanian Devil Recovery through Science-Based Management; Hogg, C., Fox, S., Pemberton, D., Belov, K., Eds.; CSIRO: Victoria, Australia, 2019. [Google Scholar]
- Lachish, S.; Miller, K.J.; Storfer, A.; Goldizen, A.W.; Jones, M.E. Evidence that disease-induced population decline changes genetic structure and alters dispersal patterns in the Tasmanian devil. Heredity 2010, 106, 172–182. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.; Hayes, V.M.; Ratan, A.; Petersen, D.C.; Wittekindt, N.E.; Miller, J.; Walenz, B.; Knight, J.; Qingyu, W.; Zhao, F.; et al. Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proc. Natl. Acad. Sci. USA 2011, 108, 12348–12353. [Google Scholar] [CrossRef] [Green Version]
- IUCN. Guidlines for Reintroductions and Other Conservation Translocations; Commission, I.S.S., Ed.; IUCN: Gland, Switzerland, 2013. [Google Scholar]
- Hogg, J.T.; Forbes, S.H.; Steele, B.M.; Luikart, G. Genetic rescue of an insular population of large mammals. Proc. R. Soc. B Boil. Sci. 2006, 273, 1491–1499. [Google Scholar] [CrossRef] [Green Version]
- Kronenberger, J.A.; Gerberich, J.C.; Fitzpatrick, S.W.; Broder, E.D.; Angeloni, L.M.; Funk, W.C. An experimental test of alternative population augmentation scenarios. Conserv. Biol. 2018, 32, 838–848. [Google Scholar] [CrossRef]
- Stowell, S.M.L.; Pinzone, C.A.; Martin, A.P. Overcoming barriers to active interventions for genetic diversity. Biodivers. Conserv. 2017, 16, 613–1765. [Google Scholar] [CrossRef]
- Robinson, Z.L.; Coombs, J.A.; Hudy, M.; Nislow, K.H.; Letcher, B.H.; Whiteley, A.R. Experimental test of genetic rescue in isolated populations of brook trout. Mol. Ecol. 2017, 26, 4418–4433. [Google Scholar] [CrossRef] [Green Version]
- Hedrick, P.W.; Garcia-Dorado, A. Understanding Inbreeding Depression, Purging, and Genetic Rescue. Trends Ecol. Evol. 2016, 31, 940–952. [Google Scholar] [CrossRef]
- Heber, S.; Varsani, A.; Kuhn, S.; Girg, A.; Kempenaers, B.; Briskie, J. The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors. Proc. Biol. Sci. 2013, 280, 20122228. [Google Scholar] [CrossRef]
- Hedrick, P.W.; Fredrickson, R. Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conserv. Genet. 2009, 11, 615–626. [Google Scholar] [CrossRef]
- Johnson, W.E.; Onorato, D.; Roelke, M.E.; Land, E.D.; Cunningham, M.; Belden, R.C.; McBride, R.; Jansen, D.; Lotz, M.; Shindle, D.; et al. Genetic Restoration of the Florida Panther. Science 2010, 329, 1641–1645. [Google Scholar] [CrossRef] [PubMed]
- Weeks, A.R.; Heinze, D.; Perrin, L.; Stoklosa, J.; Hoffmann, A.A.; Van Rooyen, A.; Kelly, T.; Mansergh, I. Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nat. Commun. 2017, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, A.R.; Fitzpatrick, S.W.; Funk, W.C.; Tallmon, D.A. Genetic rescue to the rescue. Trends Ecol. Evol. 2015, 30, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Weeks, A.R.; Sgro, C.M.; Young, A.G.; Frankham, R.; Mitchell, N.J.; Miller, K.A.; Byrne, M.; Coates, D.J.; Eldridge, M.D.B.; Sunnucks, P.; et al. Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol. Appl. 2011, 4, 709–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hufbauer, R.; Szűcs, M.; Kasyon, E.; Youngberg, C.; Koontz, M.J.; Richards, C.M.; Tuff, T.; Melbourne, B.A. Three types of rescue can avert extinction in a changing environment. Proc. Natl. Acad. Sci. USA 2015, 112, 10557–10562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.; Brown, C.; Kim, B.Y.; Lohmueller, K.E.; Wayne, R.K. Purging of Strongly Deleterious Mutations Explains Long-Term Persistence and Absence of Inbreeding Depression in Island Foxes. Curr. Biol. 2018, 28, 3487–3494.e4. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.A.; Vecchyo, D.O.-D.; Fan, Z.; Kim, B.Y.; Vonholdt, B.M.; Marsden, C.D.; Lohmueller, K.E.; Wayne, R.K. Genomic Flatlining in the Endangered Island Fox. Curr. Biol. 2016, 26, 1183–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ralls, K.; Sunnucks, P.; Lacy, R.C.; Frankham, R. Genetic rescue: A critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biol. Conserv. 2020, 251, 108784. [Google Scholar] [CrossRef]
- Gandon, S.; Michalakis, Y. Local adaptation, evolutionary potential and host-parasite coevolution: Interactions between migration, mutation, population size and generation time. J. Evol. Biol. 2002, 15, 451–462. [Google Scholar] [CrossRef]
- Hogg, C.; McLennan, E.; Wise, P.; Lee, A.; Pemberton, D.; Fox, S.; Belov, K.; Grueber, C. Preserving the demographic and genetic integrity of a single source population during multiple translocations. Biol. Conserv. 2020, 241, 108318. [Google Scholar] [CrossRef]
- Peel, E.; Belov, K. Lessons learnt from the Tasmanian devil facial tumour regarding immune function in cancer. Mamm. Genome 2018, 29, 731–738. [Google Scholar] [CrossRef]
- Kelly, E.; Phillips, B.L. Targeted gene flow for conservation. Conserv. Biol. 2016, 30, 259–267. [Google Scholar] [CrossRef]
- Epstein, B.; Jones, M.; Hamede, R.; Hendricks, S.; McCallum, H.; Murchison, E.P.; Schönfeld, B.; Wiench, C.; Hohenlohe, P.; Storfer, A. Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Brüniche-Olsen, A.; Austin, J.J.; Jones, M.E.; Holland, B.R.; Burridge, C.P. Detecting Selection on Temporal and Spatial Scales: A Genomic Time-Series Assessment of Selective Responses to Devil Facial Tumor Disease. PLoS ONE 2016, 11, e0147875. [Google Scholar] [CrossRef] [Green Version]
- Hohenlohe, P.A.; McCallum, H.I.; Jones, M.E.; Lawrance, M.F.; Hamede, R.K.; Storfer, A. Conserving adaptive potential: Lessons from Tasmanian devils and their transmissible cancer. Conserv. Genet. 2019, 20, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Hogg, C.J.; Lee, A.V.; Hibbard, C.J. Managing a metapopulation: Intensive to wild and all the places in between. In Saving the Tasmanian devil: Recovery through Science-Based Management; CSIRO: Victoria, Australia, 2019. [Google Scholar]
- Hogg, C.J.; Lee, A.V.; Srb, C.; Hibbard, C. Metapopulation management of an Endangered species with limited genetic diversity in the presence of disease: The Tasmanian devil Sarcophilus harrisii. Int. Zoo Yearb. 2016, 51, 137–153. [Google Scholar] [CrossRef]
- Gary, M.F.; Green, D.E.; Joyce, E.L. Oral Chytridiomycosis in the Mountain Yellow-Legged Frog (Rana muscosa). Copeia 2001, 2001, 945–953. [Google Scholar]
- Hammerson, G. Rana Muscosa; The IUCN Red List of Threatened Species: Cambridge, UK, 2008. [Google Scholar]
- Backlin, A.R.; Hitchcock, C.J.; Gallegos, E.A.; Yee, J.L.; Fisher, R.N. The precarious persistence of the Endangered Sierra Madre yellow-legged frog Rana muscosa in southern California, USA. Oryx 2013, 49, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Schoville, S.D.; Tustall, T.S.; Vredenburg, V.T.; Backlin, A.R.; Gallegos, E.; Wood, D.A.; Fisher, R.N. Conservation genetics of evolutionary lineages of the endangered mountain yellow-legged frog, Rana muscosa (Amphibia: Ranidae), in southern California. Biol. Conserv. 2011, 144, 2031–2040. [Google Scholar] [CrossRef]
- Byrne, P.G.; Silla, A.J. An experimental test of the genetic consequences of population augmentation in an amphibian. Conserv. Sci. Pract. 2020, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Templeton, A.; Hemmer, H.; Mace, G.M.; Seal, U.S.; Shields, W.M.; Woodruff, D.S. Local adaptation, coadaptation, and population boundaries. Zoo Biol. 1986, 5, 115–125. [Google Scholar] [CrossRef]
- Frankham, R.; Ballou, J.D.; Eldridge, M.D.B.; Lacy, R.C.; Ralls, K.; Dudash, M.R.; Fenster, C.B. Predicting the Probability of Outbreeding Depression. Conserv. Biol. 2011, 25, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Hartley, M.; Sainsbury, A. Methods of Disease Risk Analysis in Wildlife Translocations for Conservation Purposes. EcoHealth 2017, 14, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Zink, R.M.; Kale, H.W. Conservation genetics of the extinct dusky seaside sparrow Ammodramus maritimus nigrescens. Biol. Conserv. 1995, 74, 69–71. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glassock, G.L.; Grueber, C.E.; Belov, K.; Hogg, C.J. Reducing the Extinction Risk of Populations Threatened by Infectious Diseases. Diversity 2021, 13, 63. https://doi.org/10.3390/d13020063
Glassock GL, Grueber CE, Belov K, Hogg CJ. Reducing the Extinction Risk of Populations Threatened by Infectious Diseases. Diversity. 2021; 13(2):63. https://doi.org/10.3390/d13020063
Chicago/Turabian StyleGlassock, Gael L., Catherine E. Grueber, Katherine Belov, and Carolyn J. Hogg. 2021. "Reducing the Extinction Risk of Populations Threatened by Infectious Diseases" Diversity 13, no. 2: 63. https://doi.org/10.3390/d13020063
APA StyleGlassock, G. L., Grueber, C. E., Belov, K., & Hogg, C. J. (2021). Reducing the Extinction Risk of Populations Threatened by Infectious Diseases. Diversity, 13(2), 63. https://doi.org/10.3390/d13020063