Progress on Research Regarding Ecology and Biodiversity of Coastal Fisheries and Nektonic Species and Their Habitats within Coastal Landscapes
Abstract
:1. Habitat Templates
2. Early Papers on Habitat Use and Nursery Function
3. Essential Fish Habitat
4. Habitat Mosaics/Habitat Connectivity
5. Transitory/Ephemeral Habitat
6. New Approaches/Techniques
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryder, R.A.; Kerr, S.R. Environmental priorities: Placing habitat in hierarchical perspective. In National Workshop on Effects of Habitat Alteration on Salmonid Stocks; Levings, C.D., Holt, L.B., Henderson, M.A., Eds.; Canadian Special Publication of Fisheries and Aquatic Sciences 105; 1989; pp. 2–12. Available online: https://waves-vagues.dfo-mpo.gc.ca/Library/111493.pdf (accessed on 1 March 2021).
- Southwood, T.R.E. Habitat, the templet for ecological strategies? J. Anim. Ecol. 1977, 46, 337–365. [Google Scholar] [CrossRef]
- Southwood, T.R.E. Tactics, strategies and templets. Oikos 1988, 52, 3–18. [Google Scholar] [CrossRef]
- Korfiatis, K.J.; Stamou, G.P. Habitat templets and the changing worldview of ecology. Biol. Phil. 1999, 14, 375–393. [Google Scholar] [CrossRef]
- Peterson, M.S. A conceptual view of environment-habitat-production linkages in tidal-river estuaries. Rev. Fish. Sci. 2003, 11, 291–313. [Google Scholar] [CrossRef]
- Peterson, M.S.; Comyns, B.H.; Rakocinski, C.F.; Fulling, G.L. Defining the fundamental physiological niche of young estuarine fishes and its relationship to understanding distribution, vital metrics, and optimal nursery conditions. Environ. Biol. Fishes 2004, 71, 143–149. [Google Scholar] [CrossRef]
- Peterson, M.S.; Lowe, M.R. Implications of cumulative impacts to estuarine and marine habitat quality for fish and invertebrate resources. Rev. Fish. Sci. 2009, 17, 505–523. [Google Scholar] [CrossRef]
- Lowe, M.R.; Peterson, M.S. Effects of coastal urbanization on salt marsh faunal assemblages in the northern Gulf of Mexico. Mar. Coast. Fisheries 2014, 6, 89–107. [Google Scholar] [CrossRef] [Green Version]
- Lowe, M.R.; Peterson, M.S. Relative condition and foraging patterns of nekton from salt marsh habitats arrayed along a gradient of urbanization. Est. Coasts 2015, 38, 800–812. [Google Scholar] [CrossRef]
- McCoy, E.D.; Bell, S.S. Habitat structure: The evolution and diversification of a complex topic. In Habitat Structure: The Physical Arrangement of Objects in Space; Bell, S.S., McCoy, E.D., Mushinsky, H.R., Eds.; Chapman and Hall: London, UK, 1991; pp. 3–27. [Google Scholar] [CrossRef]
- Hoss, D.E.; Thayer, G.W. The importance of habitat to the early life history of estuarine dependent fishes. Amer. Fish. Soc. Symp. 1993, 4, 147–158. [Google Scholar]
- Simenstad, C.A.; Brandt, S.R.; Chambers, A.; Dame, R.; Deegan, A.; Hodson, R.; Houde, E.D. Habitat- biotic interactions. In Estuarine Science: A synthetic Approach to Research and Practice; Hobbie, J.E., Ed.; Island Press: Washington, DC, USA, 2000; pp. 427–455. ISBN 1-55963-700-5. [Google Scholar]
- Joseph, E.B. Analysis of nursery ground. In A Workshop on Egg, Larval, and Juvenile Stages of Fish in Atlantic Coast Estuaries; Pacheco, A., Ed.; Technical Report # 1; National Marine Fisheries Service: Highlands, NJ, USA, 1973; pp. 118–121. [Google Scholar]
- Weinstein, M.P. Shallow marsh habitats as primary nurseries for fishes and shellfish, Cape Fear River, North Carolina. Fish. Bull. 1979, 77, 339–357. [Google Scholar]
- Weinstein, M.P.; Weiss, S.L.; Walters, M.F. Multiple determinants of community structure in shallow marsh habitats, Cape Fear River estuary, North Carolina. Mar. Biol. 1980, 58, 227–243. [Google Scholar] [CrossRef]
- Peters, D.S.; Cross, E.A. What is coastal fish habitat? In Stemming the Tide of Coastal Fish Habitat Loss; Stroud, R.H., Ed.; Marine Recreational Fisheries Vol. 14; National Coalition for Marine Conservation: Savannah, GA, USA, 1992; pp. 17–22. [Google Scholar]
- Langston, R.W.; Auster, P.J. Marine fishery and habitat interactions: To what extent are fisheries and habitat interdependent? Fisheries 1999, 24, 14–21. [Google Scholar] [CrossRef]
- Beck, M.W.; Heck, K.L., Jr.; Able, K.W.; Childers, D.L.; Eggleston, D.B.; Gillanders, B.M.; Halpern, B.; Hays, C.G.; Hoshino, K.; Minello, T.J.; et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 2001, 51, 633–641. [Google Scholar] [CrossRef]
- Beck, M.W.; Heck, K.L., Jr.; Able, K.W.; Childers, D.L.; Eggleston, D.B.; Gillanders, B.M.; Halpern, B.; Hays, C.G.; Hoshino, K.; Minello, T.J.; et al. The role of nearshore ecosystems as fish and shellfish nurseries. Issues Ecol. 2003, 11. Available online: https://www.esa.org/wp-content/uploads/2013/03/issue11.pdf (accessed on 1 March 2021).
- Gillanders, B.M.; Able, K.W.; Brown, J.A.; Eggleston, D.B.; Sheridan, P.F. Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: An important component of nurseries. Mar. Ecol. Prog. Ser. 2003, 247, 281–295. [Google Scholar] [CrossRef] [Green Version]
- Dahlgren, C.P.; Kellison, G.T.; Adams, A.J.; Gillanders, B.M.; Kendall, M.S.; Layman, C.A.; Ley, J.A.; Nagelkerken, I.; Serafy, J.E. Marine nurseries and effective juvenile habitats: Concepts and applications. Mar. Ecol. Prog. Ser. 2006, 312, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Sheaves, M.; Baker, R.; Johnston, R. Marine nurseries and effective juvenile habitats: An alternative view. Mar. Ecol. Prog. Ser. 2006, 318, 303–306. [Google Scholar] [CrossRef]
- Layman, C.A.; Dahlgren, C.P.; Kellison, C.T.; Adams, A.J.; Gillanders, B.M.; Kendall, M.S.; Ley, J.A.; Nagelkerken, I.; Serafy, J.E. Marine nurseries and effective juvenile habitats. Mar. Ecol. Prog. Ser. 2006, 318, 307–308. [Google Scholar] [CrossRef] [Green Version]
- Jackson, E.L.; Rowden, A.A.; Attrill, M.S.; Bossey, S.J.; Jones, M.B. The importance of seagrass beds as a habitat for fishery species. Oceanog. Mar. Biol. Ann. Rev. 2001, 39, 269–303. [Google Scholar]
- Minello, T.J.; Able, K.W.; Weinstein, M.P.; Hays, C.G. Salt marshes as nurseries for nekton: Testing hypotheses on density, growth and survival through meta-analysis. Mar. Ecol. Prog. Ser. 2003, 246, 39–59. [Google Scholar] [CrossRef]
- Sheridan, P.F.; Hays, C.G. Are mangroves nursery habitat for transient fishes and decapods? Wetlands 2003, 23, 449–458. [Google Scholar] [CrossRef]
- Adams, A.J.; Dahlgren, C.P.; Kellison, G.T.; Kendall, M.S.; Layman, C.A.; Ley, J.A.; Nagelkerken, I.; Serafy, J.E. Nursery function of tropical back-reef systems. Mar. Ecol. Prog. Ser. 2016, 318, 287–301. [Google Scholar] [CrossRef]
- Whitfield, A.K. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Rev. Fish. Biol. Fisheries 2017, 27, 75–110. [Google Scholar] [CrossRef]
- Meng, L.; Powell, J.C. Linking juvenile fish and their habitats: An example from Narragansett Bay, Rhode Island. Estuaries 1999, 22, 905–916. [Google Scholar] [CrossRef]
- Lefcheck, J.S.; Hughes, B.B.; Johnson, A.J.; Pfirrmann, B.W.; Rasher, D.B.; Smyth, A.R.; Williams, B.L.; Beck, M.W.; Orth, R.J. Are coastal habitats important nurseries? A meta-analysis. Conserv. Lett. 2019, 12, e12645. [Google Scholar] [CrossRef]
- Elliott, K.C. Framing conservation: ‘Biodiversity’ and the values embedded in scientific language. Environ. Conserv. 2020, 47, 260–268. [Google Scholar] [CrossRef]
- Sheaves, M. Consequences of ecological connectivity: The coastal ecosystem mosaic. Mar. Ecol. Prog. Ser. 2009, 391, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Fulford, R.S.; Peterson, M.S.; Grammer, P.O. An ecological model of the habitat mosaic in estuarine nursery areas: Part 1—Interaction of dispersal theory and habitat variability in describing juvenile fish distributions. Ecol. Model. 2011, 222, 3203–3215. [Google Scholar] [CrossRef]
- McIvor, C.C.; Odum, W.E. Food, predation risk, and microhabitat selection in a marsh fish assemblage. Ecology 1988, 69, 1341–1351. [Google Scholar] [CrossRef]
- Connolly, R. The role of seagrass as preferred habitat for juvenile Sillaginodes punctata (Cuv and Val) (Sillaginidae Pisces): Habitat selection or feeding? J. Exp. Mar. Biol. Ecol. 1994, 180, 39–47. [Google Scholar] [CrossRef]
- Jenkins, G.P.; Wheatley, M.J. The influence of habitat structure on nearshore fish assemblages in a southern Australian embayment: Comparison of shallow seagrass, reef-algal and unvegetated sand habitats, with emphasis on their importance to recruitment. J. Exp. Mar. Biol. Ecol. 1998, 221, 147–172. [Google Scholar] [CrossRef]
- Irlandi, E.A.; Crawford, M.K. Habitat linkages: The effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish. Oecologia 1997, 110, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Fairweather, P.G. Implications of ‘supply-side’ ecology for environmental assessment and management. Trends Ecol. Evol. 1991, 6, 60–63. [Google Scholar] [CrossRef]
- Able, K.W.; Balletto, J.H.; Hagan, S.M.; Jivoff, P.R.; Strait, K. Linkages between salt marshes and other nekton habitats in Delaware Bay, USA. Rev. Fish. Sci. 2007, 15, 1–61. [Google Scholar] [CrossRef]
- Sambrook, K.; Hoey, A.S.; Andréfouët, S.; Cumming, G.S.; Duce, S.; Bonin, M.C. Beyond the reef: The widespread use of non-reef habitats by coral reef fishes. Fish Fisheries 2019, 20, 903–920. [Google Scholar] [CrossRef]
- Abrantes, K.G.; Barnett, A.; Baker, R.; Sheaves, M. Habitat-specific food webs and trophic interactions supporting coastal-dependent fishery species: An Australian case study. Rev. Fish. Biol. Fisheries 2015, 25, 337–363. [Google Scholar] [CrossRef]
- Sheaves, M.; Baker, R.; Nagelkerken, I.; Connolly, R.M. True value of estuarine and coastal nurseries for fish: Incorporating complexity and dynamics. Est. Coasts 2015, 38, 401–414. [Google Scholar] [CrossRef] [Green Version]
- Needles, L.A.; Lester, S.E.; Ambrose, R.; Andren, A.; Beyeler, M.; Connor, M.; Eckman, J.; Costa- Pierce, B.; Gaines, S.D.; Lafferty, K.; et al. Managing bay and estuarine ecosystems for multiple services. Est. Coasts 2015, 38 (Suppl. 1), S35–S48. [Google Scholar] [CrossRef]
- Ray, G.C. Connectivities of estuarine fishes to the coastal realm. Est. Coast. Shelf Sci. 2005, 64, 18–32. [Google Scholar] [CrossRef]
- Kingsford, M.J.; Choat, M.J. The fauna associated with drift algae captured with a plankton-mesh purse seine net. Limn. Ocean. 1985, 30, 618–630. [Google Scholar] [CrossRef]
- Pederson, E.J.; Peterson, M.S. Bryozoans as ephemeral estuarine habitat and a larval transport mechanism for mobile benthos and young fishes in the north-central Gulf of Mexico. Mar. Biol. 2002, 140, 935–947. [Google Scholar] [CrossRef]
- Wells, R.J.D.; Rooker, J.R. Spatial and temporal patterns of habitat use by fishes associated with Sargassum mats in the Northwestern Gulf of Mexico. Bull. Mar. Sci. 2004, 74, 81–99. [Google Scholar]
- Kulczycki, G.R.; Virnstein, R.W.; Nelson, W.G. The relationship between fish abundance and algal biomass in a seagrass-drift algal community. Est. Coast. Shelf Sci. 1981, 12, 341–347. [Google Scholar] [CrossRef]
- Thiel, M. Rafting of benthic macrofauna: Important factors determining the temporal succession of the assemblage on detached macroalgae. Hydrobiologia 2003, 503, 49–57. [Google Scholar] [CrossRef]
- Dempster, T.; Kingsford, M.J. Drifting objects as habitat for pelagic juvenile fish off New South Wales, Australia. Mar. Freshw. Res. 2004, 55, 675–687. [Google Scholar] [CrossRef]
- Arroyo, N.L.; Bonsdorff, E. The role of drifting algae for marine biodiversity. In Marine Macrophytes as Foundation Species; Olafffon, E., Ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2016; pp. 100–129. [Google Scholar] [CrossRef]
- Thiel, M.; Haye, P.A. The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences. Oceanogr. Mar. Bio. Annu. Rev. 2006, 44, 323–429. [Google Scholar] [CrossRef]
- Walther, B.D.; Limburg, K.E.; Jones, C.M.; Schaffler, J.J. Frontiers in otolith chemistry: Insights, advances and applications. J. Fish Biol. 2017, 90, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Limburg, K.E.; Walther, B.D.; Lu, Z.; Jackman, G.; Mohan, J.; Walther, Y.; Nissling, A.; Weber, P.K.; Schmitt, A.K. In search of the dead zone: Use of otoliths for tracking fish exposure to hypoxia. J. Mar. Syst. 2015, 141, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Carlson, A.K.; Phelps, Q.E.; Graeb, B.D.S. Chemistry to conservation: Using otoliths to advance recreational and commercial fisheries management. J. Fish Biol. 2017, 90, 505–527. [Google Scholar] [CrossRef]
- Lazartigues, A.V.; Plourde, S.; Dodson, J.J.; Morissette, O.; Ouellet, P.; Sirois, P. Determining natal sources of capelin in a boreal marine park using otolith microchemistry. ICES J. Mar. Sci. 2016, 73, 2644–2652. [Google Scholar] [CrossRef] [Green Version]
- Pfleger, M.O.; Rider, S.J.; Johnston, C.E.; Janosik, A.M. Saving the doomed: Using eDNA to aid in detection of rare sturgeon for conservation (Acipenseridae). Glob. Ecol. Conserv. 2016, 8, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Simpfendorfer, C.; Kyne, P.; Noble, T.; Goldsbury, J.; Basiita, R.; Lindsay, R.; Shields, A.; Perry, C.; Jerry, D. Environmental DNA detects Critically Endangered largetooth sawfish in the wild. Endanger. Species Res. 2016, 30, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Holman, L.E.; de Bruyn, M.; Creer, S.; Carvalho, G.; Robidart, J.; Rius, M. Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Sci. Rpt. 2019, 9, 1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruppert, K.M.; Kline, R.J.; Rahman, M.S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 2019, 17, e00547. [Google Scholar] [CrossRef]
- Nguyen, B.N.; Shen, E.W.; Seemann, J.; Correa, A.M.S.; O’Donnell, J.L.; Altieri, A.H.; Knowlton, N.; Crandall, K.A.; Egan, S.P.; McMillan, W.O.; et al. Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape. Sci. Rpt. 2020, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rimet, F.; Aylagas, E.; Borja, Á.; Bouchez, A.; Canino, A.; Chauvin, C.; Chonova, T.; Ciampor, F., Jr.; Costa, F.O.; Ferrari, B.J.D.; et al. Metadata standards and practical guidelines for specimen and DNA curation when building barcode reference libraries for aquatic life. Metabarcoding and Metagenomics 2021, 5, 17–33. [Google Scholar] [CrossRef]
- Priede, I.G.; Merrett, N.R. The relationship between numbers of fish attracted to baited cameras and population density: Studies on demersal grenadiers Coryphaenoides (Nematonurus) armatus in the abyssal NE Atlantic Ocean. Fish. Res. 1998, 36, 133–137. [Google Scholar] [CrossRef]
- White, J.; Simpfendorfer, C.A.; Tobin, A.J.; Heupel, M.R. Application of baited remote underwater video surveys to quantify spatial distribution of elasmobranchs at an ecosystem scale. J. Exp. Mar. Bio. Ecol. 2013, 448, 281–288. [Google Scholar] [CrossRef]
- Sheaves, M.; Johnston, R.; Baker, R. Use of mangroves by fish: New insights from in-forest videos. Mar. Ecol. Prog. Ser. 2016, 549, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Bradley, M.; Baker, R.; Nagelkerken, I.; Sheaves, M. Context is more important than habitat type in determining use by juvenile fish. Landsc. Ecol. 2019, 34, 427–442. [Google Scholar] [CrossRef]
- Jones, T.R.; Henderson, C.J.; Olds, A.D.; Connolly, R.M.; Schlacher, T.A.; Hourigan, B.J.; Goodridge Gaines, L.A.; Gilby, B.L. The mouths of estuaries are key transition zones that concentrate the ecological effects of predators. Est. Coasts 2020, 1–11. [Google Scholar] [CrossRef]
- Ventura, D.; Bruno, M.; Jona Lasinio, G.; Belluscio, A.; Ardizzone, G. A low-cost drone based application for identifying and mapping of coastal fish nursery grounds. Est. Coast. Shelf Sci. 2016, 171, 85–98. [Google Scholar] [CrossRef]
- Harris, J.M.; Nelson, J.A.; Rieucau, G.; Broussard, W.P. Use of drones in fishery science. Trans. Am. Fish. Soc. 2019, 148, 687–697. [Google Scholar] [CrossRef]
- Murfitt, S.L.; Allan, B.M.; Bellgrove, A.; Rattray, A.; Young, M.A.; Lerodiaconou, D. Applications of unmanned aerial vehicles in intertidal reef monitoring. Sci. Rpt. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasserman, J.; Claassens, L.; Adams, J.B. Mapping subtidal estuarine habitats with a remotely operated underwater vehicle (ROV). African J. Mar. Sci. 2020, 42, 123–128. [Google Scholar] [CrossRef]
- Ridge, J.T.; Gray, P.C.; Windle, A.E.; Johnston, D.W. Deep learning for coastal resource conservation: Automating detection of shellfish reefs. Remote Sens. Ecol. Conserv. 2020, 6, 431–440. [Google Scholar] [CrossRef]
- Timi, J.T.; Poulin, R. Why ignoring parasites in fish ecology is a mistake. Int. J. Parasitol. 2020, 50, 755–761. [Google Scholar] [CrossRef]
- Lafferty, K.D.; Hofmann, E.E. Marine disease impacts, diagnosis, forecasting, management and policy. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150200. [Google Scholar] [CrossRef] [Green Version]
- Brandl, S.J.; Goatley, C.H.R.; Bellwood, D.R.; Tornabene, L. The hidden half: Ecology and evolution of cryptobenthic fishes on coral reefs. Biol. Rev. 2018, 93, 1846–1873. [Google Scholar] [CrossRef]
- Brandl, S.J.; Tornabene, L.; Goatley, C.H.R.; Casey, J.M.; Morais, R.A.; Côté, I.M.; Baldwin, C.C.; Parravicini, V.; Schiettekatte, N.M.D.; Bellwood, D.R. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 2019, 364, 1189–1192. [Google Scholar] [CrossRef]
- De Brauwer, M.; Harvey, E.S.; Ambo-Rappe, R.; McIlwain, J.L.; Jompa, J.; Saunders, B.J. High diversity, but low abundance of cryptobenthic fishes on soft sediment habitats in Southeast Asia. Est. Coast. Shelf Sci. 2019, 217, 110–119. [Google Scholar] [CrossRef]
- Hendon, J.R.; Peterson, M.S.; Comyns, B.H. Spatio-temporal distribution of larval Gobiosoma bosc in waters adjacent to natural and altered marsh-edge habitats of Mississippi coastal waters. Bull. Mar. Sci. 2000, 66, 143–156. [Google Scholar]
- Gain, I.E.; Brewton, R.A.; Reese Robillard, M.M.; Johnson, K.D.; Smee, D.L.; Stunz, G.W. Macrofauna using intertidal oyster reef varies in relation to position within the estuarine habitat mosaic. Mar. Biol. 2017, 164, 1–16. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peterson, M.S.; Andres, M.J. Progress on Research Regarding Ecology and Biodiversity of Coastal Fisheries and Nektonic Species and Their Habitats within Coastal Landscapes. Diversity 2021, 13, 168. https://doi.org/10.3390/d13040168
Peterson MS, Andres MJ. Progress on Research Regarding Ecology and Biodiversity of Coastal Fisheries and Nektonic Species and Their Habitats within Coastal Landscapes. Diversity. 2021; 13(4):168. https://doi.org/10.3390/d13040168
Chicago/Turabian StylePeterson, Mark S., and Michael J. Andres. 2021. "Progress on Research Regarding Ecology and Biodiversity of Coastal Fisheries and Nektonic Species and Their Habitats within Coastal Landscapes" Diversity 13, no. 4: 168. https://doi.org/10.3390/d13040168
APA StylePeterson, M. S., & Andres, M. J. (2021). Progress on Research Regarding Ecology and Biodiversity of Coastal Fisheries and Nektonic Species and Their Habitats within Coastal Landscapes. Diversity, 13(4), 168. https://doi.org/10.3390/d13040168