A Participatory Agrobiodiversity Conservation Approach in the Oases: Community Actions for the Promotion of Sustainable Development in Fragile Areas
Abstract
:1. Introduction
2. The Case Study: The Oasis of El Hamma
3. Methods
- (a)
- Geographic distribution of the parcel,
- (b)
- Area of the parcel,
- (c)
- Age of the farmer,
- (d)
- Maintenance status of the parcel.
- (a)
- Presentation of the statistical data related to the GDA to the farmers present.
- (b)
- Discussion among the GDA members regarding the data.
- (c)
- Observation of the discussion (issues addressed, interactions, perceptions, reactions) and its outcomes by the project team.
4. Results and Discussion
4.1. Data Analysis
4.1.1. Agrobiodiversity Assessment
- -
- Main varieties: Deglet nūr, Aligue, Khouat aligue, Kentichi, Besser Hilou.
- -
- Common (and rare) varieties: Ammeri, Legou, Goundi, Ghars mettiga, Tozeurzeid, Boufegous, Hamra, Horra, Tronja, Gasbi, Bidh hmém, Choddekh, Kenta, Sbaa arous, Fhel, Aoum léghlez, Khadhraya, Rimtha, Tekirmiste, Khalt gbiir, Mnekher.
4.1.2. Focus Groups Approach and Strategy Assessment
4.1.3. New Actions for Agrobiodiversity Conservation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- FAO. Agricultural Biodiversity; FAO/Netherlands Conference on the Multifunctional Character of Agriculture and Land; Background Paper; FAO: Rome, Italy, 1999; pp. 1–42. [Google Scholar]
- Sauvé, R.; Watts, J. An analysis of IPGRI’s influence on the International Treaty on Plant Genetic Resources for Food and Agriculture. Agric. Syst. 2003, 78, 307–327. [Google Scholar] [CrossRef]
- Peano, C.; Merlino, V.M.; Sottile, F.; Borra, D.; Massaglia, S. Sustainability for food consumers: Which perception? Sustainability 2019, 11, 5955. [Google Scholar] [CrossRef] [Green Version]
- FAO. State of Biodiversity. 2020. Available online: http://www.fao.org/state-of-biodiversity-for-food-agriculture/en/ (accessed on 20 April 2021).
- Chaudhary, A.; Carrasco, L.R.; Kastner, T. Linking national wood consumption with global biodiversity and ecosystem service losses. Sci. Total Environ. 2017, 586, 985–994. [Google Scholar] [CrossRef]
- GIZ Agrobiodiversity—The Key to Food Security, Climate Adaptation and Resilience. German Cooperation. 2015. Available online: https://www.giz.de/fachexpertise/downloads/ giz2015-en-agrobiodiversity-factsheet-collection-incl-mappe.pdf Quality & Quantity (accessed on 20 April 2021).
- Brush, S.B. Farmers’ rights and protection of traditional agricultural knowledge. World Dev. 2007, 35, 1499–1514. [Google Scholar] [CrossRef] [Green Version]
- Sottile, F.; Fiorito, D.; Tecco, N.; Girgenti, V.; Peano, C. An Interpretive Framework for Assessing and Monitoring the Sustainability of School Gardens. Sustainability 2016, 8, 801. [Google Scholar] [CrossRef] [Green Version]
- Heywood, V. Overview of Agricultural Biodiversity and its Importance to Nutrition and Health. In Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health; Fanzo, J., Hunter, D., Borelli, T., Mattei, F., Eds.; Routledge/Taylor and Francis: Oxfordshire, UK, 2013. [Google Scholar]
- Padmanabhan, M. Institutions of agrobiodiversity management in Kerala—Gendered collective action. Soc. Nat. Resour. 2011, 24, 174–184. [Google Scholar] [CrossRef]
- Sottile, F.; Modica, A.; Rosselli, S.; Catania, A.C.; Cavallaro, G.; Lazzara, G.; Bruno, M. Hand-made paper obtained by green procedure of cladode waste of Opuntia ficus indica (L.) Mill. from Sicily. Nat. Prod. Res. 2019, 35, 359–368. [Google Scholar] [CrossRef]
- Modica, A.; Rosselli, S.; Catinella, G.; Sottile, F.; Catania, A.C.; Cavallaro, G.; Lazzara, G.; Botta, L.; Spinella, A.; Bruno, M. Solid state 13C-NMR methodology for the cellulose composition studies of the shells of Prunus dulcis and their derived cellulosic materials. Carbohydr. Polym. 2020, 240, 116290. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Pereira, H.M.; Krug, C.; Leadley, P.W.; Visconti, P.; Januchowski-Hartley, S.R.; Krug, R.M.; Alkemade, R.; Bellard, C.; Cheung, W.W.L.; et al. A framework to identify enabling and urgent actions for the 2020 Aichi Targets. Basic Appl. Ecol. 2014, 15, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Kørnøv, L.; Lyhne, I.; Gallego Davila, J. Linking the UN SDGs and environmental assessment: Towards a conceptual framework. Environ. Impact Assess. Rev. 2020, 85, 106463. [Google Scholar] [CrossRef]
- Zimmerer, K.S.; Haan, S.D.; Jones, A.D.; Creed-Kanashiro, H.; Tello, M.; Carrasco, M.; Meza, K.; Amaya, F.P.; Cruz-Garcia, G.S.; Tubbeh, R.; et al. The biodiversity of food and agriculture (Agrobiodiversity) in the anthropocene: Research advances and conceptual framework. Anthropocene 2019, 25, 100192. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, E.; Gonzalez, A.; Hooper, D.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 59, 59–67. [Google Scholar] [CrossRef]
- Zimmerer, K.S.; Haan, S.D. Agrobiodiversity and a sustainable food future. Nat. Plants 2017, 3, 17047. [Google Scholar] [CrossRef] [Green Version]
- Distefano, G.; Caruso, M.; Malfa, S.L.; Ferrante, T.; Signore, B.D.; Gentile, A.; Sottile, F. Genetic diversity and relationships among Italian and foreign almond germplasm as revealed by microsatellite markers. Sci. Hortic. 2013, 162, 305–312. [Google Scholar] [CrossRef]
- Plucknett, D.L.; Smith, N.J.G.; Williams, J.T.; Anishetty, N.M. Gene Banks and the World’s Food; Princeton University Press: Princeton, NJ, USA, 1987. [Google Scholar]
- Bezner, R.K.; Madsen, S.; Stüber, M.; Liebert, J.; Enloe, S.; Borghino, N.; Parros, P.; Mutyambai, D.M.; Prudhon, M.; Wezel, A. Can agroecology improve food security and nutrition? A review. Glob. Food Secur. 2021, 29, 100540. [Google Scholar] [CrossRef]
- Ricciardi, V.; Mehrabi, Z.; Wittman, H.; James, D.; Ramankutty, N. Higher yields and more biodiversity on smaller farms. Nat. Sustain. 2021, 1–7. [Google Scholar] [CrossRef]
- Guzzon, F.; Arandia Rios, L.W.; Cepeda, G.M.C.; Polo, M.C.; Cabrera, A.C.; Figueroa, J.M.; Hoyos, A.E.M.; Calvo, T.W.J.; Molnar, T.L.; León, L.A.N.; et al. Conservation and use of Latin American maize diversity: Pillar of nutrition security and cultural heritage of humanity. Agronomy 2021, 11, 172. [Google Scholar] [CrossRef]
- Bellon, M.R.; Mastretta-Yanes, A.; Ponce-Mendoza, A.; Ortiz-Santamaría, D.; Oliveros-Galindo, O.; Perales, H. Evolutionary and food supply implications of ongoing maize domestication by Mexican campesinos. Proc. Biol. Sci. 2018, 285, 20181049. [Google Scholar] [CrossRef] [Green Version]
- Haan, S. Community-Based Conservation of Crop Genetic Resources. In Plant Genetic Resources: A Review of Current Research and Future Needs; Burleigh Dodds Science Publishing: Cambridge, UK, 2021. [Google Scholar]
- Agnoletti, M.; Tredici, M.; Santoro, A. Biocultural diversity and landscape patterns in three historical rural areas of Morocco, Cuba and Italy. Biodivers. Conserv. 2015, 24, 3387–3404. [Google Scholar] [CrossRef]
- Johnston, P. What Is Agrobiodiversity. Agro-Biodiversity Project-PJ.PDF. 2016. Available online: http://aaun.edu.au/wp-content/uploads/2016/01/6-Peter-Johnston-AgroBiodiversity-Project (accessed on 20 April 2021).
- Funtowicz, S.O.; Ravetz, J.R. Uncertainty, complexity and post-normal science. Environ. Toxicol. Chem. 1994, 13, 1881–1885. [Google Scholar] [CrossRef]
- National Biodiversity Strategies and Action Plans (Tunisia). Available online: https://www.cbd.int/doc/world/tn/tn-nbsap-v3-fr.pdf (accessed on 20 April 2021).
- Carpentier, I. Diversité des dynamiques locales dans les oasis du Sud de la Tunisie. Les oasis en Afrique du Nord: Dynamiques territoriales et durabilité des systèmes de production agricole. Cah. Agric. 2017, 26, 35001. [Google Scholar] [CrossRef] [Green Version]
- Battesti, V. Jardins au Désert. Èvolution des Pratiques et Savoirs Oasiens; Jérid Tunisien: Paris, France, 2005. [Google Scholar]
- Bouaziz, A.; Hammani, A.; Kuperet, M. Les oasis en Afrique du Nord: Dynamiques territoriales et durabilité des systèmes de production agricole. Cah. Agric. 2018, 27, 14001. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Abson, D.J.; Bergsten, A.; French Collier, N.; Dorresteijn, I.; Hanspach, J.; Senbeta, F. Reframing the food—Biodiversity challenge. Trends Ecol. Evol. 2017, 32, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Martini, U.; Buffa, F.; Notaro, S. Community participation, natural resource management and the creation of innovative tourism products: Evidence from Italian networks of reserves in the Alps. Sustainability 2017, 9, 2314. [Google Scholar] [CrossRef] [Green Version]
- Santoro, A.; Venturi, M.; Maachia, S.B.; Benyahia, F.; Corrieri, F.; Piras, F.; Agnoletti, M. Agroforestry heritage systems as agrobiodiversity hotspots. The case of the mountain oases of Tunisia. Sustainability 2020, 12, 4054. [Google Scholar] [CrossRef]
- Lavie, E.; Marshall, A. Oases and Globalisation; Springer: Cham, Germany, 2014. [Google Scholar] [CrossRef]
- Carpentier, I.; Gana, A. Changing Agricultural Practices in the Oases of Southern Tunisia: Conflict and Competition for Resources in a Post-revolutionary and Globalisation Context. In Oases and Globalization; Springer: Cham, Germany, 2014; pp. 153–176. [Google Scholar]
- Théry, H. Mondialisation, Déterritorialisation, Reterritorialisation (Globalization and Territory); Bulletin de l’Association des Géographes Français, 85e Année, 3 September 2008; Mondialisation et Géographie/L’Ouest Américain: Lyon, France, 2008; pp. 324–331. [Google Scholar]
- Angelstam, P.; Elbakidze, M.; Axelsson, R. Knowledge production and learning for sustainable landscapes: Forewords by the researchers and stakeholders. Ambio 2013, 42, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Angelstam, P.; Naumov, V.; Elbakidze, M.; Manton, M.; Priednieks, J.; Rendenieks, Z. Wood production and biodiversity conservation are rival forestry objectives in Europe’s Baltic sea region. Ecosphere 2018, 9, e02119. [Google Scholar] [CrossRef] [Green Version]
- Spangenberg, J.; Görg, C.; Settele, J. Stakeholder involvement in ESS research and governance: Between conceptual ambition and practical experiences—Risks, challenges and tested tools. Ecosyst. Serv. 2015, 16, 201–211. [Google Scholar] [CrossRef]
- INS. Annuaire Statistique de la Tunisie, 2016; Institut National de la Statistique: Tunis, Tunisia, 2018. [Google Scholar]
- Khoumsi, W.E.; Hammani, A.; Bouarfa, S.; Bouaziz, A.; Aïssa, I.B. Contribution de la nappe phréatique à l’alimentation hydrique du palmier dattier (Phoenix dactylifera) dans les zones oasiennes. Cah. Agric. 2017, 26, 45005. [Google Scholar] [CrossRef] [Green Version]
- Maachia, S.B.; Othmani, A.; Jemni, M.; Khaldi, R. Rapport d’Avancement de la Mission de CRRAO Degache “Appui Spécifique avec Activités de Protection de la Biodiversité Oasienne Menées par des Institutions de Recherche Spécialisées”; Ministère de l’Agriculture, des Ressources Hydrauliques et de la Pêche, Institution de la Recherche et de l’Enseignement Supérieur Agricoles, Centre Régional de Recherches en Agriculture Oasienne à Deugache: Degache, Tunisia, 2016. [Google Scholar]
- Rhouma, A. Le Palmier Dattier en Tunisie, I. In Le Patrimoine Génétique; IPGRI, UNDP, GEF/FEM, INRAT: Rome, Italy, 2005; p. 2. [Google Scholar]
- Rhouma, A. Le Palmier Dattier en Tunisie: Un Secteur en Pleine Expansion; Ferry, M., Greiner, D., Eds.; CIHEAM: Zaragoza, Spain, 1993. [Google Scholar]
- Rhouma, A.; Nasr, N.; Ali, A.B.; Hamdouni, N. Diagnostic Participatif sur la Diversité Génétique Phoenicicole et la Situation Socio-Économique dans l’Oasis de Hammet el Jerid Tunisie. Projet “Gestion Participative des Ressources Génétiques Palmier Dattier au Maghreb (RAB 98 G31)”; INRAT: Rome, Italy, 2003. [Google Scholar]
- Hammett, D.; Twyman, C.; Graham, M. Research and Fieldwork in Development; Routledge/Taylor Francis: Oxfordshire, UK, 2014. [Google Scholar]
- Battesti, V. Les Oasis du Jérid, des Ressources Naturelles et Idéelles. Environnement et Sociétés Rurales en Mutation, Approches Alternatives; Latitude 23, Editions IRD; Inst. Des Régions Arides: Médenine, Tunisia, 2004. [Google Scholar]
- APII. Analyse de la Filière des Dattes; Agence de Promotion de l’Industrie et de l’Innovation: Tunis, Tunisia, 2017. [Google Scholar]
- Battesti, V.; Puig, N. Espaces et pratiques dans les palmeraies du Jérid (Sud-ouest tunisien). Rev. d’Ethnobiol. JATBA 1999, 41, 2. [Google Scholar]
- Rodrigues, O. La Restructuration Rurale et la Flexibilité du Système Foncier. Mondialisation et Sociétés Rurales en Méditerranée; IRMC—KARTHALA: Paris, France, 2002. [Google Scholar]
- Peano, C.; Massaglia, S.; Ghisalberti, C.; Sottile, F. Pathways for the amplification of agroecology in African sustainable urban agriculture. Sustainability 2020, 12, 2718. [Google Scholar] [CrossRef] [Green Version]
- Mekki, I.; Marlet, S.; Ghazouani, W.; Fusillier, J.L.; Ammami, H.; Gal, P.Y.L. L’Oasis de Fatnassa Nord sous Contraintes Environnementale, Socioéconomique et d’Organisation de la Filière Datte: Éléments de Diagnostic de son Fonctionnement. In Proceedings of the Sociétés en Transition et Développement Local en Zones Difficiles, Djerba, Tunis, 22–24 April 2009; pp. 183–193. [Google Scholar]
- Bouammar, B.; Idder, M.A. Savoir faire dans l’agriculture oasienne, déperdition ou reconduction. El-Bahith Rev. 2006, 4, 4. [Google Scholar]
- Atlas du Gouvernorat de Tozeur. Available online: http://www.mehat.gov.tn/fileadmin/user_upload/Amenagement_Territoire/ATLASTOZEURFr.pdf (accessed on 20 April 2021).
- Rochdy, A.; Troin, J.-F. Le Maghreb, Hommes et Espaces. Annales. Économies, Sociétés, Civilisations; KARTHALA: Paris, France, 1986. [Google Scholar]
- Singh, Y.P.; Nayak, A.K.; Sharma, D.K.; Gautam, R.K.; Singh, R.K.; Singh, R.; Mishra, V.K.; Paris, T.; Ismail, A.M. Farmers’ participatory varietal selection: A sustainable improvement approach for the 21st century. Agroecol. Sustain. Food Syst. 2014, 38, 427–444. [Google Scholar] [CrossRef]
- Jackson, L.E.; Pascual, U.; Hodgkin, T. Utilizing and conserving agrobiodiversity in agricultural landscapes. Agric. Ecosyst. Environ. 2007, 121, 196–210. [Google Scholar] [CrossRef]
- Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural intensification and ecosystem properties. Science 1997, 277, 504–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altieri, M.A. Linking ecologists and traditional farmers in the search for sustainable agriculture. Front. Ecol. Environ. 2004, 2, 35–42. [Google Scholar] [CrossRef]
- Jarvis, D.; Hodgkin, T. Farmer Decision Making and Genetic Diversity: Linking Multidisciplinary Research to Implementation on-Farm. In Genes in the Field: On-Farm Conservation of Crop Diversity; Brush, S.B., Ed.; IPGRI: Rome, Italy; IDRC: Ottawa, ON, Canada; Lewis Publishers: Boca Raton, FL, USA, 1999; pp. 261–278. [Google Scholar]
- Jarvis, D.I.; Zoes, V.; Nares, D.; Hodgkin, T. On-farm management of crop genetic diversity and the Convention on Biological Diversity’s programme of work on agricultural biodiversity. Plant Genet. Resour. Newslett. 2004, 138, 5–17. [Google Scholar]
- Haj-Amor, Z.; Ritzema, H.; Hashemi, H.; Bouri, S. Surface irrigation performance of date palms under water scarcity in arid irrigated lands. Arab. J. Geosci. 2018, 11, 27. [Google Scholar] [CrossRef]
- Battesti, V. Jardins au Désert, Evolution des Pratiques et Savoirs Oasiens, Jérid Tunisien; IRD Éditions: Marseille, France, 2005; p. 440. [Google Scholar] [CrossRef]
- Gaba, S.; Bretagnolle, V. Social-ecological experiments to foster agroecological transition. People Nat. 2020, 2, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Janssen, M.A.; Holahan, R.; Lee, A.; Ostrom, E. Lab Experiments for the study of social-ecological systems. Science 2010, 328, 613–617. [Google Scholar] [CrossRef]
- Lang, D.J.; Wiek, A.; Bergmann, M. Transdisciplinary research in sustainability science: Practice, principles, and challenges. Sustain. Sci. 2012, 7, 25–43. [Google Scholar] [CrossRef]
- Vernooy, R.; Shrestha, P.; Sthapit, B. Community Seed Banks: Origins, Evolution, and Prospects; Routledge: Oxfordshire, UK, 2015. [Google Scholar]
- Bellon, M.R. Conceptualizing interventions to support on-farm genetic resource conservation. World Dev. 2004, 32, 159–172. [Google Scholar] [CrossRef]
- Bennett, N.J. Using perceptions as evidence to improve conservation and environmental management. Conserv. Biol. 2016, 30, 582–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mijatović, D.; Van Oudenhoven, F.; Eyzaguirre, P.; Hodgkin, T. The role of agricultural biodiversity in strengthening resilience to climate change: Towards an analytical framework. Int. J. Agric. Sustain. 2013, 11, 95–107. [Google Scholar] [CrossRef]
- Vergílio, M.; Fonseca, C.; Calado, H.; Borges, P.; Elias, R.; Gabriel, R.; Martins, A.; Azevedo, E.; Cardoso, P. Assessing the efficiency of protected areas to represent biodiversity: A small island case study. Environ. Conserv. 2016, 43, 337–349. [Google Scholar] [CrossRef]
- Cradock-Henry, N.A.; Blackett, P.; Hall, M.; Johnstone, P.; Teixeira, E.; Wreford, A. Climate adaptation pathways for agriculture: Insights from a participatory process. Environ. Sci. Policy 2020, 107, 66–79. [Google Scholar] [CrossRef]
Analysis of the Actual Data | Availability for an Evolution | |
---|---|---|
Farmer data | ||
Parcel size and location | Increase plots under management | |
Technical and labor management | ||
Parcel description | ||
Number and type of date palm trees | Increase date trees | |
Number and type of perennial fruit trees | Increase fruit trees | |
Number and type of annual vegetables | Increase in vegetables | |
Presence and types of breeds | Introduction of breeds | |
Parcel management techniques | ||
Irrigation resource | Introduction of localized irrigation | |
Drainage | Creation of micro-basins | |
Mechanization | Increase organic fertilizers | |
Soil working | Reduction in the use of synthetic chemical products | |
Fertilization | ||
Weed control | ||
Phytosanitary defense | ||
Wild boar damage | ||
Economic issues | ||
Parcel management costs | Creation of a cooperative for collective purchasing | |
Supply channels for cultivation inputs | Creation of a cooperative for machinery management | |
Products sale channels | Creation of a cooperative for collective marketing |
N° | Cultivar | N° | Cultivar | N° | Cultivar | N° | Cultivar | N° | Cultivar | N° | Cultivar |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Khalt gbir * | 11 | Lagou | 21 | Fehal * | 31 | Arichti | 41 | Khalt dhahbi | 51 | Tazerzit safra |
2 | Deglet senegua | 12 | Remtha | 22 | Bidh hamam | 32 | Gabouri * | 42 | Sabounia * | 52 | tazerzit soda |
3 | K’sseba | 13 | Gasbi | 23 | M’ghaiba * | 33 | Yatima | 43 | Om laghlez | 53 | Kenta |
4 | Aligue | 14 | Hamra | 24 | Yemyouli | 34 | Bent telba * | 44 | Om kassab * | 54 | Bouaffar |
5 | Khouat aligue | 15 | Cheddakh | 25 | Karroubi | 35 | Khonfes * | 45 | Chekenet essed * | 55 | Malti |
6 | Kentichi | 16 | Halwaya | 26 | Boufegous | 36 | Mokh begri | 46 | Angou | ||
7 | Gondi | 17 | Bejou | 27 | Meftah * | 37 | Ras hanech* | 47 | Khalt jallouli * | ||
8 | Ghars mettigue | 18 | Deglet nūr | 28 | Sbaa arous | 38 | Besser ragga * | 48 | Ennafakha | ||
9 | Ammari | 19 | Guerguiti | 29 | M’ouachem | 39 | Deglet zaouch * | 49 | Boumerzoug | ||
10 | Besser helou | 20 | Kadhraya | 30 | Sebaa bedhraa | 40 | Khalt sokkar * | 50 | Om lan |
Species | 2020 | 2021 |
---|---|---|
kg | ||
Okra | 10 | 12 |
Chili | 4 | 6 |
Alfalfa | 1 | 2 |
Salad | 2 | 3 |
Chard | 10 | 14 |
Celery | 0.5 | 1 |
Molokhia | 12 | 15 |
Parseley | 1 | 2 |
Carrot | 0 | 2 |
Fava bean | 0 | 6 |
Onion | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peano, C.; Caron, S.; Mahfoudhi, M.; Zammel, K.; Zaidi, H.; Sottile, F. A Participatory Agrobiodiversity Conservation Approach in the Oases: Community Actions for the Promotion of Sustainable Development in Fragile Areas. Diversity 2021, 13, 253. https://doi.org/10.3390/d13060253
Peano C, Caron S, Mahfoudhi M, Zammel K, Zaidi H, Sottile F. A Participatory Agrobiodiversity Conservation Approach in the Oases: Community Actions for the Promotion of Sustainable Development in Fragile Areas. Diversity. 2021; 13(6):253. https://doi.org/10.3390/d13060253
Chicago/Turabian StylePeano, Cristiana, Stefania Caron, Mohamed Mahfoudhi, Khouloud Zammel, Houda Zaidi, and Francesco Sottile. 2021. "A Participatory Agrobiodiversity Conservation Approach in the Oases: Community Actions for the Promotion of Sustainable Development in Fragile Areas" Diversity 13, no. 6: 253. https://doi.org/10.3390/d13060253
APA StylePeano, C., Caron, S., Mahfoudhi, M., Zammel, K., Zaidi, H., & Sottile, F. (2021). A Participatory Agrobiodiversity Conservation Approach in the Oases: Community Actions for the Promotion of Sustainable Development in Fragile Areas. Diversity, 13(6), 253. https://doi.org/10.3390/d13060253