Aquatic Organisms Research with DNA Barcodes
Abstract
:1. Introduction
2. Progress in Aquatic DNA Barcoding Studies
3. Species Discovery
4. Integrative Taxonomy
5. Applications
6. Future Trends
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; Dewaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. B Boil. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubert, N.; Hanner, R.; Holm, E.; Mandrak, N.E.; Taylor, E.; Burridge, M.; Watkinson, D.; Dumont, P.; Curry, A.; Bentzen, P.; et al. Identifying Canadian Freshwater Fishes through DNA Barcodes. PLoS ONE 2008, 3, e2490. [Google Scholar] [CrossRef] [Green Version]
- Kerr, K.C.R.; Stoeckle, M.Y.; Dove, C.J.; Weigt, L.A.; Francis, C.M.; Hebert, P.D.N. Comprehensive DNA barcode coverage of North American birds. Mol. Ecol. Notes 2007, 7, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Dewaard, J.R.; Zakharov, E.V.; Prosser, S.W.J.; Sones, J.E.; McKeown, J.T.A.; Mantle, B.; La Salle, J. A DNA ‘Barcode Blitz’: Rapid Digitization and Sequencing of a Natural History Collection. PLoS ONE 2013, 8, e68535. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Schmid-Egger, C.; Moriniere, J.; Haszprunar, G.; Hebert, P.D.N. DNA Barcoding Largely Supports 250 Years of Classical Taxonomy: Identifications for Central European Bees (Hymenoptera, Apoidea Partim). Mol. Ecol. Resour. 2015, 15, 985–1000. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, M.T.; Wild, R.; Elliot, M.; Fujisawa, T.; Balke, M.; Inward, D.J.; Lees, D.C.; Ranaivosolo, R.; Eggleton, P.; Barraclough, T.; et al. Accelerated Species Inventory on Madagascar Using Coalescent-Based Models of Species Delineation. Syst. Biol. 2009, 58, 298–311. [Google Scholar] [CrossRef] [Green Version]
- Ratnasingham, S.; Hebert, P. A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System. PLoS ONE 2013, 8, e66213. [Google Scholar] [CrossRef] [Green Version]
- Kekkonen, M.; Hebert, P.D.N. DNA Barcode-Based Delineation of Putative Species: Efficient Start for Taxonomic Workflows. Mol. Ecol. Resour. 2014, 14, 706–715. [Google Scholar] [CrossRef]
- Hebert, P.; Penton, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 2004, 101, 14812–14817. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.A.; Rodriguez, J.J.; Whitfield, J.B.; Deans, A.; Janzen, D.H.; Hallwachs, W.; Hebert, P. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc. Natl. Acad. Sci. USA 2008, 105, 12359–12364. [Google Scholar] [CrossRef] [Green Version]
- Ratnasingham, S.; Hebert, P.D.N. Bold: The Barcode of Life Data System (www.Barcodinglife.Org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucklin, A.; Steinke, D.; Blanco-Bercial, L. Barcoding of Marine Metazoa. Annu. Rev. Mar. Sci. 2011, 3, 471–508. [Google Scholar] [CrossRef]
- Trivedi, S.; Aloufi, A.A.; Ansari, A.A.; Ghosh, S.K. Role of DNA barcoding in marine biodiversity assessment and conservation: An update. Saudi J. Biol. Sci. 2016, 23, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Mauchline, J.; Blaxter, J.H.S.; Southward, A.J.; Tyler, P.A. The Biology of Calanoid Copepods—Introduction. In Advances in Marine Biology; Academic Press: San Diego, CA, USA, 1998; Volume 33, Reprint, Not in File. [Google Scholar]
- Bucklin, A.; Ortman, B.D.; Jennings, R.M.; Nigro, L.M.; Sweetman, C.J.; Copley, N.; Sutton, T.; Wiebe, P.A. “Rosetta Stone” for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean). Deep Sea Res. Part II Top. Stud. Oceanogr. 2010, 57, 2234–2247. [Google Scholar] [CrossRef]
- Hirai, J.; Shimode, S.; Tsuda, A.; Hirai, J.; Shimode, S.; Tsuda, A. Evaluation of ITS2-28S as a molecular marker for identification of calanoid copepods in the subtropical western North Pacific. J. Plankton Res. 2013, 35, 644–656. [Google Scholar] [CrossRef] [Green Version]
- Karanovic, I.; Huyen, P.T.M.; Yoo, H.; Nakao, Y.; Tsukagoshi, A. Shell and Appendages Variability in Two Allopatric Ostracod Species Seen through the Light of Molecular Data. Contrib. Zool. 2020, 89, 247–269. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, N.W.; Elías-Gutiérrez, M.; Adamowicz, S.J. Species Diversity and Phylogeographical Affinities of the Branchiopoda (Crustacea) of Churchill, Manitoba, Canada. PLoS ONE 2011, 6, e18364. [Google Scholar] [CrossRef]
- Rowe, C.L.; Adamowicz, S.J.; Hebert, P. Three new cryptic species of the freshwater zooplankton genus Holopedium (Crustacea: Branchiopoda: Ctenopoda), revealed by genetic methods. Zootaxa 2007, 1656, 1–50. [Google Scholar] [CrossRef] [Green Version]
- Elías-Gutiérrez, M.; Valdez-Moreno, M.; Topan, J.; Young, M.R.; Cohuo-Colli, J.A. Improved protocols to accelerate the assembly of DNA barcode reference libraries for freshwater zooplankton. Ecol. Evol. 2018, 8, 3002–3018. [Google Scholar] [CrossRef]
- Wattier, R.; Mamos, T.; Copilaş-Ciocianu, D.; Jelić, M.; Ollivier, A.; Chaumot, A.; Danger, M.; Felten, V.; Piscart, C.; Žganec, K.; et al. Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Galimberti, A.; Assandri, G.; Maggioni, D.; Ramazzotti, F.; Baroni, D.; Bazzi, G.; Chiandetti, I.; Corso, A.; Ferri, V.; Galuppi, M.; et al. Italian Odonates in the Pandora’s Box: A Comprehensive DNA Barcoding Inventory Shows Taxonomic Warnings at the Holarctic Scale. Mol. Ecol. Resour. 2021, 21, 183–200. [Google Scholar] [CrossRef] [PubMed]
- Denys, G.P.J.; Dettai, A.; Persat, H.; Hautecoeur, M.; Keith, P. Morphological and Molecular Evidence of Three Species of Pikes Esox spp. (Actinopterygii, Esocidae) in France, Including the Description of a New Species. C. R. Biol. 2014, 337, 521–534. [Google Scholar] [CrossRef]
- Denys, G.P.J.; Dettai, A.; Persat, H.; Daszkiewicz, P.; Hautecoeur, M.; Keith, P. Revision of Phoxinus in France with the Description of Two New Species (Teleostei, Leuciscidae). Cybium 2020, 44, 205–237. [Google Scholar]
- Buj, I.; Šanda, R.; Zogaris, S.; Freyhof, J.; Geiger, M.F.; Vukic, J. Cryptic diversity in Telestes pleurobipunctatus (Actinopterygii; Leuciscidae) as a consequence of historical biogeography in the Ionian Freshwater Ecoregion (Greece, Albania). Hydrobiology 2019, 835, 147–163. [Google Scholar] [CrossRef]
- Epitashvili, G.; Geiger, M.; Astrin, J.J.; Herder, F.; Japoshvili, B.; Mumladze, L. Towards retrieving the Promethean treasure: A first molecular assessment of the freshwater fish diversity of Georgia. Biodivers. Data J. 2020, 8, e57862. [Google Scholar] [CrossRef] [PubMed]
- Valdez-Moreno, M.; Vásquez-Yeomans, L.; Elías-Gutiérrez, M.; Ivanova, N.V.; Hebert, P. Using DNA barcodes to connect adults and early life stages of marine fishes from the Yucatan Peninsula, Mexico: Potential in fisheries management. Mar. Freshw. Res. 2010, 61, 655–671. [Google Scholar] [CrossRef]
- Valdez-Moreno, M.; Ivanova, N.V.; Elías-Gutiérrez, M.; Contreras-Balderas, S.; Hebert, P.D.N. DNA Barcodes in Freshwater Fishes from Mexico and Guatemala. J. Fish Biol. 2007. submitted. [Google Scholar]
- Leyva-Cruz, E.; Vásquez-Yeomans, L.; Carrillo, L.; Valdez-Moreno, M. Identifying pelagic fish eggs in the southeast Yucatan Peninsula using DNA barcodes. Genome 2016, 59, 1117–1129. [Google Scholar] [CrossRef] [Green Version]
- Vásquez-Yeomans, L.; Carrillo, L.; Morales, S.; Malca, E.; Morris, J.A.; Schultz, T.; Lamkin, J.T. First larval record of Pterois volitans (Pisces: Scorpaenidae) collected from the ichthyoplankton in the Atlantic. Biol. Invasions 2011, 13, 2635–2640. [Google Scholar] [CrossRef]
- Victor, B.C.; Vasquez-Yeomans, L.; Valdez-Moreno, M.; Wilk, L.; Jones, D.L.; Lara, M.R.; Caldow, C.; Shivji, M. The larval, juvenile, and adult stages of the Caribbean goby, Coryphopterus kuna (Teleostei: Gobiidae): A reef fish with a pelagic larval duration longer than the post-settlement lifespan. Zootaxa 2010, 2346, 53–61. [Google Scholar] [CrossRef]
- Victor, B.C. Hypoplectrus floridae n. sp. and Hypoplectrus ecosur n. sp., Two New Barred Hamlets from the Gulf of Mexico (Pisces: Serranidae): More Than 3% Different in COI MtDNA Sequence from the Caribbean Hypoplectrus Species Flock. J. Ocean Sci. Found. 2012, 5, 2–19. [Google Scholar]
- Ahern, A.; Gómez-Gutiérrez, J.; Aburto-Oropeza, O.; Saldierna-Martínez, R.; Johnson, A.F.; Harada, A.; Sánchez-Uvera, A.; Erisman, B.; Arvizú, D.C.; Burton, R. DNA sequencing of fish eggs and larvae reveals high species diversity and seasonal changes in spawning activity in the southeastern Gulf of California. Mar. Ecol. Prog. Ser. 2018, 592, 159–179. [Google Scholar] [CrossRef]
- Bearez, P.; Dettai, A.; Gomon, M.F. Polylepion russelli (Labridae), a Trans-Indo-Pacific Species. Cybium 2013, 37, 305–306. [Google Scholar]
- Victor, B.C.; Alfaro, M.E.; Sorenson, L. Rediscovery of Sagittalarva inornata n. gen., n. comb. (Gilbert, 1890) (Perciformes: Labridae), a long-lost deepwater fish from the eastern Pacific Ocean: A case study of a forensic approach to taxonomy using DNA barcoding. Zootaxa 2013, 3669, 551–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mejía, O.; León-Romero, Y.; Soto-Galera, E. DNA barcoding of the ichthyofauna of Pánuco–Tamesí complex: Evidence for taxonomic conflicts in some groups. Mitochondrial DNA 2012, 23, 471–476. [Google Scholar] [CrossRef]
- Venegas, R.D.L.P.; Hueter, R.; Cano, J.G.; Tyminski, J.; Remolina, J.G.; Maslanka, M.; Ormos, A.; Weigt, L.; Carlson, B.; Dove, A. An Unprecedented Aggregation of Whale Sharks, Rhincodon typus, in Mexican Coastal Waters of the Caribbean Sea. PLoS ONE 2011, 6, e18994. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, A.F.; Oliveira, C.; Langeani, F.; Netto-Ferreira, A.L. Overlooked biodiversity of mitochondrial lineages in Hemiodus (Ostariophysi, Characiformes). Zool. Scr. 2021, 50, 337–351. [Google Scholar] [CrossRef]
- Adelir-Alves, J.; Spier, D.; Gerum, H.L.N.; Machado, L.F.; Spach, H.L.; Boza, B.R.; Oliveira, C. Plectorhinchus macrolepis (Actinopterygii: Haemulidae) in the western Atlantic Ocean. J. Fish Biol. 2019, 95, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- Arruda, P.S.S.; Ferreira, D.C.; Oliveira, C.; Venere, P.C. DNA Barcoding Reveals High Levels of Divergence among Mitochondrial Lineages of Brycon (Characiformes, Bryconidae). Genes 2019, 10, 639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caires, R.A.; Santos, W.C.R.d.; Machado, L.; Oliveira, C.; Cerqueira, N.; Rotundo, M.M.; Oliveira, C.; Marceniuk, A.P. The Tonkin Weakfish, Cynoscion similis (Sciaenidae, Perciformes), an Endemic Species of the Amazonas-Orinoco Plume. Acta Amaz. 2019, 49, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, C.O.; Marceniuk, A.P.; Oliveira, C.; Wosiacki, W.B. Integrative Taxonomy of the Species Complex Haemulon steindachneri (Jordan and Gilbert, 1882) (Eupercaria; Haemulidae) with a Description of a New Species from the Western Atlantic. Zoology 2020, 141, 125782. [Google Scholar] [CrossRef]
- de Queiroz, L.J.; Cardoso, Y.P.; Jacot-Des-Combes, C.; Bahechar, I.A.; Lucena, C.A.; Py-Daniel, L.R.; Soares, L.M.S.; Nylinder, S.; Oliveira, C.; Parente, T.E.; et al. Evolutionary units delimitation and continental multilocus phylogeny of the hyperdiverse catfish genus Hypostomus. Mol. Phylogenetics Evol. 2020, 145, 106711. [Google Scholar] [CrossRef]
- Ferrette, B.L.D.S.; Domingues, R.R.; Ussami, L.H.F.; Moraes, L.; Magalhães, C.D.O.; De Amorim, A.F.; Hilsdorf, A.W.S.; Oliveira, C.; Foresti, F.; Mendonça, F.F. DNA-based species identification of shark finning seizures in Southwest Atlantic: Implications for wildlife trade surveillance and law enforcement. Biodivers. Conserv. 2019, 28, 4007–4025. [Google Scholar] [CrossRef]
- Mateussi, N.T.B.; Melo, B.F.; Oliveira, C. Molecular Delimitation and Taxonomic Revision of the Wimple Piranhacatoprion (Characiformes: Serrasalmidae) with the Description of a New Species. J. Fish Biol. 2020, 97, 668–685. [Google Scholar] [CrossRef]
- Mattox, G.M.T.; Souza, C.S.; Toledo-Piza, M.; Britz, R.; Oliveira, C. A New Miniature Species of Priocharax (Teleostei: Characiformes: Characidae) from the Rio Madeira Drainage, Brazil, with Comments on the Adipose Fin in Characiforms. Vertebr. Zool. 2020, 70, 417–433. [Google Scholar]
- Hashimoto, S.; Py-Daniel, L.H.R.; Batista, J.S. A molecular assessment of species diversity in Tympanopleura and Ageneiosus catfishes (Auchenipteridae: Siluriformes). J. Fish Biol. 2020, 96, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.H.G.; Pazian, M.; Hanner, R.; Foresti, F.; Oliveira, C. DNA barcoding reveals hidden diversity in the Neotropical freshwater fish Piabina argentea (Characiformes: Characidae) from the Upper Paraná Basin of Brazil. Mitochondrial DNA 2011, 22, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Castro Paz, F.P.; Batista, J.D.; Porto, J.I.R. DNA Barcodes of Rosy Tetras and Allied Species (Characiformes: Characidae: Hyphessobrycon) from the Brazilian Amazon Basin. PLoS ONE 2014, 9, e98603. [Google Scholar] [CrossRef] [Green Version]
- Benzaquem, D.C.; Oliveira, C.; Batista, J.D.S.; Zuanon, J.; Porto, J.I.R. DNA Barcoding in Pencilfishes (Lebiasinidae: Nannostomus) Reveals Cryptic Diversity across the Brazilian Amazon. PLoS ONE 2015, 10, e0112217. [Google Scholar] [CrossRef] [Green Version]
- Rossini, B.C.; Oliveira, C.A.M.; de Melo, F.A.G.; Bertaco, V.D.; de Astarloa, J.M.D.; Rosso, J.J.; Foresti, F.; Oliveira, C. Highlighting Astyanax Species Diversity through DNA Barcoding. PLoS ONE 2016, 11, e0167203. [Google Scholar] [CrossRef]
- Machado, V.N.; Collins, R.A.; Ota, R.P.; Andrade, M.C.; Farias, I.; Hrbek, T. One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognised diversity in the Amazon. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Carvalho, A.P.C.; Collins, R.A.; Martinez, J.G.; Farias, I.P.; Hrbek, T. From Shallow to Deep Divergences: Mixed Messages from Amazon Basin Cichlids. Hydrobiologia 2019, 832, 317–329. [Google Scholar] [CrossRef]
- Hubert, N.; Hadiaty, R.K.; Paradis, E.; Pouyaud, L. Cryptic Diversity in Indo-Australian Rainbowfishes Revealed by DNA Barcoding: Implications for Conservation in a Biodiversity Hotspot Candidate. PLoS ONE 2012, 7, e40627. [Google Scholar] [CrossRef]
- Keith, P.; Hadiaty, R.; Hubert, N.; Busson, F.; Lord, C. Three New Species of Lentipes from Indonesia (Gobiidae). Cybium 2014, 38, 133–146. [Google Scholar]
- Lim, H.; Abidin, M.Z.; Pulungan, C.P.; de Bruyn, M.; Nor, S.A.M. DNA Barcoding Reveals High Cryptic Diversity of the Freshwater Halfbeak Genus Hemirhamphodon from Sundaland. PLoS ONE 2016, 11, e0163596. [Google Scholar] [CrossRef]
- Beck, S.V.; Carvalho, G.R.; Barlow, A.; Rüber, L.; Tan, H.H.; Nugroho, E.; Wowor, D.; Nor, S.A.M.; Herder, F.; Muchlisin, Z.A.; et al. Plio-Pleistocene phylogeography of the Southeast Asian Blue Panchax killifish, Aplocheilus panchax. PLoS ONE 2017, 12, e0179557. [Google Scholar] [CrossRef] [Green Version]
- Dahruddin, H.; Hutama, A.; Busson, F.; Sauri, S.; Hanner, R.; Keith, P.; Hadiaty, R.; Hubert, N. Data from: Revisiting the ichthyodiversity of Java and Bali through DNA barcodes: Taxonomic coverage, identification accuracy, cryptic diversity and identification of exotic species. Mol. Ecol. Resour. 2017, 17, 288–299. [Google Scholar] [CrossRef]
- Hutama, A.; Dahruddin, H.; Busson, F.; Sauri, S.; Keith, P.; Hadiaty, R.K.; Hanner, R.; Suryobroto, B.; Hubert, N. Identifying spatially concordant evolutionary significant units across multiple species through DNA barcodes: Application to the conservation genetics of the freshwater fishes of Java and Bali. Glob. Ecol. Conserv. 2017, 12, 170–187. [Google Scholar] [CrossRef]
- Conte-Grand, C.; Britz, R.; Dahanukar, N.; Raghavan, R.; Pethiyagoda, R.; Tan, H.H.; Hadiaty, R.K.; Yaakob, N.S.; Rüber, L. Barcoding snakeheads (Teleostei, Channidae) revisited: Discovering greater species diversity and resolving perpetuated taxonomic confusions. PLoS ONE 2017, 12, e0184017. [Google Scholar] [CrossRef]
- Farhana, S.N.; Muchlisin, Z.A.; Duong, T.Y.; Tanyaros, S.; Page, L.M.; Zhao, Y.H.; Adamson, E.A.S.; Khaironizam, M.Z.; de Bruyn, M.; Azizah, M.N.S. Exploring Hidden Diversity in Southeast Asia’s Dermogenys spp. (Beloniformes: Zenarchopteridae) through DNA Barcoding. Sci. Rep. 2018, 8, 1–11. [Google Scholar]
- Shen, Y.; Hubert, N.; Huang, Y.; Wang, X.; Gan, X.; Peng, Z.; He, S. DNA barcoding the ichthyofauna of the Yangtze River: Insights from the molecular inventory of a mega-diverse temperate fauna. Mol. Ecol. Resour. 2019, 19, 1278–1291. [Google Scholar] [CrossRef]
- Hubert, N.; Lumbantobing, D.; Sholihah, A.; Dahruddin, H.; Delrieu-Trottin, E.; Busson, F.; Sauri, S.; Hadiaty, R.; Keith, P. Revisiting Species Boundaries and Distribution Ranges of Nemacheilus spp. (Cypriniformes: Nemacheilidae) and Rasbora spp. (Cypriniformes: Cyprinidae) in Java, Bali and Lombok through DNA Barcodes: Implications for Conservation in a Biodiversity Hotspot. Conserv. Genet. 2019, 20, 517–529. [Google Scholar] [CrossRef]
- Sholihah, A.; Delrieu-Trottin, E.; Condamine, F.L.; Wowor, D.; Rüber, L.; Pouyaud, L.; Agnèse, J.-F.; Hubert, N. Impact of Pleistocene Eustatic Fluctuations on Evolutionary Dynamics in Southeast Asian Biodiversity Hotspots. Syst. Biol. 2021, syab006. [Google Scholar] [CrossRef] [PubMed]
- Sholihah, A.; Delrieu-Trottin, E.; Sukmono, T.; Dahruddin, H.; Risdawati, R.; Elvyra, R.; Wibowo, A.; Kustiati, K.; Busson, F.; Sauri, S.; et al. Disentangling the taxonomy of the subfamily Rasborinae (Cypriniformes, Danionidae) in Sundaland using DNA barcodes. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delrieu-Trottin, E.; Durand, J.; Limmon, G.; Sukmono, T.; Sugeha, H.Y.; Chen, W.-J.; Busson, F.; Borsa, P.; Dahruddin, H.; Sauri, S.; et al. Biodiversity inventory of the grey mullets (Actinopterygii: Mugilidae) of the Indo-Australian Archipelago through the iterative use of DNA-based species delimitation and specimen assignment methods. Evol. Appl. 2020, 13, 1451–1467. [Google Scholar] [CrossRef] [Green Version]
- Rüber, L.; Tan, H.H.; Britz, R. Snakehead (Teleostei: Channidae) diversity and the Eastern Himalaya biodiversity hotspot. J. Zool. Syst. Evol. Res. 2019, 58, 356–386. [Google Scholar] [CrossRef] [Green Version]
- Chakona, A.; Kadye, W.T.; Bere, T.; Mazungula, D.N.; Vreven, E. Evidence of hidden diversity and taxonomic conflicts in five stream fishes from the Eastern Zimbabwe Highlands freshwater ecoregion. ZooKeys 2018, 768, 69–95. [Google Scholar] [CrossRef] [PubMed]
- Iyiola, O.A.; Nneji, L.M.; Mustapha, M.K.; Nzeh, C.G.; Oladipo, S.; Nneji, I.C.; Okeyoyin, A.O.; Nwani, C.D.; Ugwumba, O.A.; Ugwumba, A.A.A.; et al. DNA barcoding of economically important freshwater fish species from north-central Nigeria uncovers cryptic diversity. Ecol. Evol. 2018, 8, 6932–6951. [Google Scholar] [CrossRef]
- Sonet, G.; Snoeks, J.; Nagy, Z.T.; Vreven, E.; Boden, G.; Breman, F.C.; Decru, E.; Hanssens, M.; Zamba, A.I.; Jordaens, K.; et al. DNA barcoding fishes from the Congo and the Lower Guinean provinces: Assembling a reference library for poorly inventoried fauna. Mol. Ecol. Resour. 2018, 19, 728–743. [Google Scholar] [CrossRef]
- Ward, R.D.; Zemlak, T.S.; Innes, B.H.; Last, P.R.; Hebert, P.D.N. DNA Barcoding Australia’s Fish Species. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1847–1857. [Google Scholar] [CrossRef]
- Ward, R.D.; Holmes, B.H.; White, W.; Last, P.R. DNA barcoding Australasian chondrichthyans: Results and potential uses in conservation. Mar. Freshw. Res. 2008, 59, 57–71. [Google Scholar] [CrossRef]
- Hubert, N.; Paradis, E.; Bruggemann, H.; Planes, S. Community assembly and diversification in Indo-Pacific coral reef fishes. Ecol. Evol. 2011, 1, 229–277. [Google Scholar] [CrossRef]
- Hubert, N.; Meyer, C.P.; Bruggemann, H.J.; Guérin, F.; Komeno, R.J.L.; Espiau, B.; Causse, R.; Williams, J.T.; Planes, S. Cryptic Diversity in Indo-Pacific Coral-Reef Fishes Revealed by DNA-Barcoding Provides New Support to the Centre-of-Overlap Hypothesis. PLoS ONE 2012, 7, e28987. [Google Scholar] [CrossRef]
- Jaafar, T.N.A.M.; Taylor, M.I.; Nor, S.A.M.; de Bruyn, M.; Carvalho, G.R. DNA Barcoding Reveals Cryptic Diversity within Commercially Exploited Indo-Malay Carangidae (Teleosteii: Perciformes). PLoS ONE 2012, 7, e49623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winterbottom, R.; Hanner, R.H.; Burridge, M.; Zur, M. A cornucopia of cryptic species—A DNA barcode analysis of the gobiid fish genus Trimma (Percomorpha, Gobiiformes). ZooKeys 2014, 381, 79–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durand, J.-D.; Hubert, N.; Shen, K.-N.; Borsa, P. DNA barcoding grey mullets. Rev. Fish Biol. Fish. 2017, 27, 233–243. [Google Scholar] [CrossRef]
- Delrieu-Trottin, E.; Williams, J.T.; Pitassy, D.; Driskell, A.; Hubert, N.; Viviani, J.; Cribb, T.; Espiau, B.; Galzin, R.; Kulbicki, M.; et al. A DNA barcode reference library of French Polynesian shore fishes. Sci. Data 2019, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinke, D.; Zemlak, T.S.; Hebert, P. Barcoding Nemo: DNA-Based Identifications for the Ornamental Fish Trade. PLoS ONE 2009, 4, e6300. [Google Scholar] [CrossRef] [PubMed]
- Skelton, P.H.; Swartz, E.R. Walking the tightrope: Trends in African freshwater systematic ichthyology. J. Fish Biol. 2011, 79, 1413–1435. [Google Scholar] [CrossRef]
- Adeoba, M.I.; Tesfamichael, S.G.; Yessoufou, K. Preserving the tree of life of the fish family Cyprinidae in Africa in the face of the ongoing extinction crisis. Genome 2019, 62, 170–182. [Google Scholar] [CrossRef]
- Montes-Ortiz, L.; Elías-Gutiérrez, M. Water Mite Diversity (Acariformes: Prostigmata: Parasitengonina: Hydrachnidiae) from Karst Ecosystems in Southern of Mexico: A Barcoding Approach. Diversity 2020, 12, 329. [Google Scholar] [CrossRef]
- De León, L.F.; Cornejo, A.; Gavilán, R.G.; Aguilar, C. Hidden biodiversity in Neotropical streams: DNA barcoding uncovers high endemicity of freshwater macroinvertebrates at small spatial scales. PLoS ONE 2020, 15, e0231683. [Google Scholar] [CrossRef] [PubMed]
- García-Morales, A.E.; Domínguez-Domínguez, O. Cryptic species within the rotifer Lecane bulla (Rotifera: Monogononta: Lecanidae) from North America based on molecular species delimitation. Rev. Mex. Biodivers. 2020, 91, 913116. [Google Scholar] [CrossRef]
- Gischler, E.; Gibson, M.A.; Oschmann, W. Giant Holocene Freshwater Microbialites, Laguna Bacalar, Quintana Roo, Mexico. Sedimentology 2008, 55, 1293–1309. [Google Scholar] [CrossRef]
- Elías-Gutiérrez, M.; Montes-Ortiz, L. Present Day Kwnoledge on Diversity of Freshwater Zooplancton (Invertebrates) of the Yucatan Peninsula, Using Integrated Taxonomy. Teor. Y Prax. 2018, 14, 31–48. [Google Scholar]
- Montes-Ortiz, L.; Elías-Gutiérrez, M. Faunistic survey of the zooplankton community in an oligotrophic sinkhole, Cenote Azul (Quintana Roo, Mexico), using different sampling methods, and documented with DNA barcodes. J. Limnol. 2018, 77, 428–440. [Google Scholar] [CrossRef]
- Perry, E.; Velazquez-Oliman, G.; Marin, L. The Hydrogeochemistry of the Karst Aquifer System of the Northern Yucatan Peninsula, Mexico. Int. Geol. Rev. 2002, 44, 191–221. [Google Scholar] [CrossRef]
- von Rintelen, K.; von Rintelen, T.; Glaubrecht, M. Molecular Phylogeny and Diversification of Freshwater Shrimps (Decapoda, Atyidae, Caridina) from Ancient Lake Poso (Sulawesi, Indonesia)—The Importance of Being Colourful. Mol. Phylogenetics Evol. 2007, 45, 1033–1041. [Google Scholar] [CrossRef]
- Castelin, M.; De Mazancourt, V.; Marquet, G.; Zimmerman, G.; Keith, P. Genetic and morphological evidence for cryptic species in Macrobrachium australe and resurrection of M. ustulatum (Crustacea, Palaemonidae). Eur. J. Taxon. 2017, 289, 1–27. [Google Scholar] [CrossRef] [Green Version]
- de Mazancourt, V.; Klotz, W.; Marquet, G.; Mos, B.; Rogers, D.C.; Keith, P. The complex study of complexes: The first well-supported phylogeny of two species complexes within genus Caridina (Decapoda: Caridea: Atyidae) sheds light on evolution, biogeography, and habitat. Mol. Phylogenetics Evol. 2019, 131, 164–180. [Google Scholar] [CrossRef]
- Hernawati, R.; Nurhaman, U.; Busson, F.; Suryobroto, B.; Hanner, R.; Keith, P.; Wowor, D.; Hubert, N. Exploring community assembly among Javanese and Balinese freshwater shrimps (Atyidae, Palaemonidae) through DNA barcodes. Hydrobiology 2019, 847, 647–663. [Google Scholar] [CrossRef]
- Garibian, P.G.; Neretina, A.N.; Taylor, D.J.; Kotov, A.A. Partial Revision of the Neustonic Genus Scapholeberis Schoedler, 1858 (Crustacea: Cladocera): Decoding of the Barcoding.Results. PeerJ 2020, 8, e10410. [Google Scholar] [CrossRef]
- Yamamoto, A.; Makino, W.; Urabe, J. The taxonomic position of Asian Holopedium (Crustacea: Cladocera) confirmed by morphological and genetic analyses. Limnology 2019, 21, 97–106. [Google Scholar] [CrossRef]
- Liu, Y.; Fend, S.V.; Martinsson, S.; Erséus, C. Extensive cryptic diversity in the cosmopolitan sludge worm Limnodrilus hoffmeisteri (Clitellata, Naididae). Org. Divers. Evol. 2017, 17, 477–495. [Google Scholar] [CrossRef] [Green Version]
- Chuluunbat, S.; Morse, J.C.; Boldbaatar, S. Caddisflies of Mongolia: Distribution and diversity. Zoosymposia 2016, 10, 96–116. [Google Scholar] [CrossRef]
- Wu, R.-W.; Liu, Y.-T.; Wang, S.; Liu, X.-J.; Zanatta, D.; Roe, K.J.; Song, X.-L.; An, C.-T.; Wu, X.-P. Testing the utility of DNA barcodes and a preliminary phylogenetic framework for Chinese freshwater mussels (Bivalvia: Unionidae) from the middle and lower Yangtze River. PLoS ONE 2018, 13, e0200956. [Google Scholar] [CrossRef] [PubMed]
- Makino, W.; Machida, R.J.; Okitsu, J.; Usio, N. Underestimated species diversity and hidden habitat preference in Moina (Crustacea, Cladocera) revealed by integrative taxonomy. Hydrobiology 2020, 847, 857–878. [Google Scholar] [CrossRef]
- Locke, S.A.; Al-Nasiri, F.S.; Caffara, M.; Drago, F.; Kalbe, M.; Lapierre, A.R.; McLaughlin, J.D.; Nie, P.; Overstreet, R.M.; Souza, G.T.; et al. Diversity, specificity and speciation in larval Diplostomidae (Platyhelminthes: Digenea) in the eyes of freshwater fish, as revealed by DNA barcodes. Int. J. Parasitol. 2015, 45, 841–855. [Google Scholar] [CrossRef] [PubMed]
- Locke, S.A.; Caffara, M.; Barčák, D.; Sonko, P.; Tedesco, P.; Fioravanti, M.L.; Li, W. A new species of Clinostomum Leidy, 1856 in East Asia based on genomic and morphological data. Parasitol. Res. 2019, 118, 3253–3265. [Google Scholar] [CrossRef]
- Ng, T.H.; Annate, S.; Jeratthitikul, E.; Sutcharit, C.; Limpanont, Y.; Panha, S. Disappearing Apple Snails (Caenogastropoda: Ampullariidae) of Thailand: A Comprehensive Update of Their Taxonomic Status and Distribution. J. Molluscan Stud. 2020, 86, 290–305. [Google Scholar] [CrossRef]
- Vikhrev, I.V.; Konopleva, E.S.; Gofarov, M.Y.; Kondakov, A.V.; Chapurina, Y.E.; Bolotov, I.N. A Tropical Biodiversity Hotspot under the New Threat: Discovery and DNA Barcoding of the Invasive Chinese Pond Mussel Sinanodonta Woodiana in Myanmar. Trop. Conserv. Sci. 2017, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lima, F.D.; Berbel-Filho, W.M.; Leite, T.S.; Rosas, C.; Lima, S.M.Q. Occurrence of Octopus insularis Leite and Haimovici, 2008 in the Tropical Northwestern Atlantic and implications of species misidentification to octopus fisheries management. Mar. Biodivers. 2017, 47, 723–734. [Google Scholar] [CrossRef]
- Rosas-Luis, R.; Badillo, M.D.L.J.; Elena, L.M.; Morillo-Velarde, P.S. Food and feeding habits of Octopus insularis in the Veracruz Reef System National Park and confirmation of its presence in the southwest Gulf of Mexico. Mar. Ecol. 2019, 40, e12535. [Google Scholar] [CrossRef] [Green Version]
- Caffara, M.; Locke, S.A.; Echi, P.C.; Halajian, A.; Benini, D.; Luus-Powell, W.J.; Tavakol, S.; Fioravanti, M.L. A morphological and molecular study of Clinostomid metacercariae from African fish with a redescription of Clinostomum tilapiae. Parasitology 2017, 144, 1519–1529. [Google Scholar] [CrossRef]
- Chibwana, F.D.; Blasco-Costa, I.; Georgieva, S.; Hosea, K.M.; Nkwengulila, G.; Scholz, T.; Kostadinova, A. A first insight into the barcodes for African diplostomids (Digenea: Diplostomidae): Brain parasites in Clarias gariepinus (Siluriformes: Clariidae). Infect. Genet. Evol. 2013, 17, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Laidemitt, M.R.; Brant, S.V.; Mutuku, M.W.; Mkoji, G.M.; Loker, E.S. The diverse echinostomes from East Africa: With a focus on species that use Biomphalaria and Bulinus as intermediate hosts. Acta Trop. 2019, 193, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Webster, B.; Webster, J.P.; Gouvras, A.; Garba, A.; Lamine, M.S.; Diaw, O.T.; Seye, M.M.; Tchuenté, L.-A.T.; Simoonga, C.; Mubila, L.; et al. DNA ‘barcoding’ of Schistosoma mansoni across sub-Saharan Africa supports substantial within locality diversity and geographical separation of genotypes. Acta Trop. 2013, 128, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Stothard, J.R.; Ameri, H.; Khamis, I.S.; Blair, L.; Nyandindi, U.S.; Kane, R.A.; Johnston, D.A.; Webster, B.; Rollinson, D. Parasitological and malacological surveys reveal urogenital schistosomiasis on Mafia Island, Tanzania to be an imported infection. Acta Trop. 2013, 128, 326–333. [Google Scholar] [CrossRef]
- Alcántar-Escalera, F.A.; García-Varela, M.; Vázquez-Domínguez, E.; de León, G.P. Using DNA Barcoding to Link Cystacanths and Adults of the Acanthocephalan Polymorphus brevis in Central Mexico. Mol. Ecol. Resour. 2013, 13, 1116–1124. [Google Scholar]
- Lawton, S.P.; Allan, F.; Hayes, P.M.; Smit, N.J. DNA barcoding of the medically important freshwater snail Physa acuta reveals multiple invasion events into Africa. Acta Trop. 2018, 188, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Angyal, D.; Balázs, G.; Krízsik, V.; Herczeg, G.; Fehér, Z. Molecular and morphological divergence in a stygobiont gastropod lineage (Truncatelloidea, Moitessieriidae, Paladilhiopsis) within an isolated karstic area in the Mecsek Mountains (Hungary). J. Zool. Syst. Evol. Res. 2018, 56, 493–504. [Google Scholar] [CrossRef]
- Elderkin, C.L.; Clewing, C.; Ndeo, O.W.; Albrecht, C. Molecular Phylogeny and DNA Barcoding Confirm Cryptic Species in the African Freshwater Oyster Etheria elliptica Lamarck, 1807 (Bivalvia: Etheriidae). Biol. J. Linn. Soc. 2016, 118, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Carr, C.M.; Hardy, S.M.; Brown, T.M.; Macdonald, T.A.; Hebert, P. A Tri-Oceanic Perspective: DNA Barcoding Reveals Geographic Structure and Cryptic Diversity in Canadian Polychaetes. PLoS ONE 2011, 6, e22232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villalobos-Guerrero, T.F.; Carrera-Parra, L.F. Redescription of Alitta succinea (Leuckart, 1847) and reinstatement of A. acutifolia (Ehlers, 1901) n. comb. based upon morphological and molecular data (Polychaeta: Nereididae). Zootaxa 2015, 3919, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Salazar-Silva, P.; Carrera-Parra, L.F. Revision of Lepidonopsis humilis (Augener, 1922) and description of L. barnichae sp. nov. (Annelida: Polychaeta: Polynoidae) based upon morphological and molecular characters. Zootaxa 2014, 3790, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Carrera-Parra, L.F.; Salazar-Vallejo, S.I. Redescriptions of Eunice filamentosa and E. denticulata and Description of E. tovarae n. sp. (Polychaeta: Eunicidae), Highlighted with Morphological and Molecular Data. Zootaxa 2011, 2880, 51–64. [Google Scholar] [CrossRef]
- Keith, P.; Dahruddin, H.; Limmon, G.; Hubert, N. A New Species of Schismatogobius (Teleostei: Gobiidae) from Halmahera (Indonesia). Cybium 2018, 42, 195–200. [Google Scholar]
- Keith, P.; Lord, C.; Darhuddin, H.; Limmon, G.; Sukmono, T.; Hadiaty, R.; Hubert, N. Schismatogobius (Gobiidae) from Indonesia, with Description of Four New Species. Cybium 2017, 41, 195–211. [Google Scholar]
- Gutiérrez-Aguirre, M.A.; Cervantes-Martínez, A.; Elías-Gutiérrez, M.; Lugo-Vázquez, A. Remarks on Mastigodiaptomus (Calanoida: Diaptomidae) from Mexico using integrative taxonomy, with a key of identification and three new species. PeerJ 2020, 8, e8416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade-Sossa, C.; Buitron-Caicedo, L.; Elías-Gutiérrez, M. A new species of Scapholeberis Schoedler, 1858 (Anomopoda: Daphniidae: Scapholeberinae) from the Colombian Amazon basin highlighted by DNA barcodes and morphology. PeerJ 2020, 8, e9989. [Google Scholar] [CrossRef]
- Elías-Gutiérrez, M.; Valdez-Moreno, M. A New Cryptic Species of Leberis Smirnov, 1989 (Crustacea, Cladocera, Chydoridae) from the Mexican Semi-Desert Region, Highlighted by DNA Barcoding. Hidrobiologica 2008, 18, 63–74. [Google Scholar]
- Keith, P.; Mennesson, M.I.; Sauri, S.; Busson, F.; Delrieu-Trottin, E.; Limmon, G.; Dahruddin, H.; Hubert, N. Giuris (Teleostei: Eleotridae) from Indonesia, with Description of a New Species. Cybium 2020, 44, 317–329. [Google Scholar]
- Escobar L, M.D.; Ota, R.P.; Machado-Allison, A.; Andrade-López, J.; Farias, I.P.; Hrbek, T. A new species of Piaractus (Characiformes: Serrasalmidae) from the Orinoco Basin with a redescription of Piaractus brachypomus. J. Fish Biol. 2019, 95, 411–427. [Google Scholar] [CrossRef]
- Ota, R.P.; Machado, V.N.; Andrade, M.C.; Collins, R.A.; Farias, I.P.; Hrbek, T. Integrative Taxonomy Reveals a New Species of Pacu (Characiformes: Serrasalmidae: Myloplus) from the Brazilian Amazon. Neotrop. Ichthyol. 2020, 18. [Google Scholar] [CrossRef]
- Bekker, E.I.; Karabanov, D.; Galimov, Y.R.; Kotov, A.A. DNA Barcoding Reveals High Cryptic Diversity in the North Eurasian Moina Species (Crustacea: Cladocera). PLoS ONE 2016, 11, e0161737. [Google Scholar] [CrossRef] [Green Version]
- Elías-Gutiérrez, M.; Juracka, P.J.; Montoliu-Elena, L.; Miracle, M.R.; Petrusek, A.; Korinek, V. Who Is Moina micrura? Redescription of One of the Most Confusing Cladocerans from Terra Typica, Based on Integrative Taxonomy. Limnetica 2019, 38, 227–252. [Google Scholar]
- Quiroz-Vázquez, P.; Elías-Gutiérrez, M. A New Species of the Freshwater Cladoceran Genus Scapholeberis Schoedler, 1858 (Cladocera: Anomopoda) from the Semidesert Northern Mexico, Highlighted by DNA Barcoding. Zootaxa 2009, 2236, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Mercado-Salas, N.F.; Khodami, S.; Kihara, T.C.; Elías-Gutiérrez, M.; Arbizu, P.M. Genetic Structure and Distributional Patterns of the Genus Mastigodiaptomus (Copepoda) in Mexico, with the Description of a New Species from the Yucatan Peninsula. Arthropod Syst. Phylogeny 2018, 76, 487–507. [Google Scholar]
- Gutiérrez-Aguirre, M.A.; Cervantes-Martínez, A. A new species of Mastigodiaptomus Light, 1939 from Mexico, with notes of species diversity of the genus (Copepoda, Calanoida, Diaptomidae). ZooKeys 2016, 637, 61–79. [Google Scholar] [CrossRef] [Green Version]
- Pegg, G.G.; Sinclair, B.; Briskey, L.; Aspden, W.J. MtDNA barcode identification of fish larvae in the southern Great Barrier Reef—Australia. Sci. Mar. 2006, 70, 7–12. [Google Scholar] [CrossRef]
- Hubert, N.; Delrieu-Trottin, E.; Irisson, J.-O.; Meyer, C.; Planes, S. Identifying coral reef fish larvae through DNA barcoding: A test case with the families Acanthuridae and Holocentridae. Mol. Phylogenetics Evol. 2010, 55, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Hubert, N.; Espiau, B.; Meyer, C.; Planes, S. Identifying the ichthyoplankton of a coral reef using DNA barcodes. Mol. Ecol. Resour. 2015, 15, 57–67. [Google Scholar] [CrossRef]
- Ko, H.-L.; Wang, Y.-T.; Chiu, T.-S.; Lee, M.-A.; Leu, M.-Y.; Chang, K.-Z.; Chen, W.-Y.; Shao, K.-T. Evaluating the Accuracy of Morphological Identification of Larval Fishes by Applying DNA Barcoding. PLoS ONE 2013, 8, e53451. [Google Scholar] [CrossRef]
- Azmir, I.A.; Esa, Y.; Amin, S.M.N.; Yasin, I.S.M.; Yusof, F.Z.M.; Azmir, I.A.; Esa, Y.; Amin, S.M.N.; Yasin, I.S.M.; Yusof, F.Z.M. Identification of larval fish in mangrove areas of Peninsular Malaysia using morphology and DNA barcoding methods. J. Appl. Ichthyol. 2017, 33, 998–1006. [Google Scholar] [CrossRef]
- Collet, A.; Durand, J.-D.; Desmarais, E.; Cerqueira, F.; Cantinelli, T.; Valade, P.; Ponton, D. DNA barcoding post-larvae can improve the knowledge about fish biodiversity: An example from La Reunion, SW Indian Ocean. Mitochondrial DNA Part A 2018, 29, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Mariac, C.; Vigouroux, Y.; Duponchelle, F.; García-Dávila, C.; Nunez, J.; Desmarais, E.; Renno, J. Metabarcoding by capture using a single COI probe (MCSP) to identify and quantify fish species in ichthyoplankton swarms. PLoS ONE 2018, 13, e0202976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinke, D.; Connell, A.D.; Hebert, P.D. Linking adults and immatures of South African marine fishes. Genome 2016, 59, 959–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Jacobus, L.M.; DeWalt, R.E.; Adamowicz, S.J.; Hebert, P.D.N. Ephemeroptera, Plecoptera, and Trichoptera fauna of Churchill (Manitoba, Canada): Insights into biodiversity patterns from DNA barcoding. J. N. Am. Benthol. Soc. 2010, 29, 814–837. [Google Scholar] [CrossRef] [Green Version]
- Carew, M.E.; Pettigrove, V.; Cox, R.L.; Hoffmann, A.A. DNA identification of urban Tanytarsini chironomids (Diptera: Chironomidae). J. N. Am. Benthol. Soc. 2007, 26, 587–600. [Google Scholar] [CrossRef]
- Kusche, H.; Hanel, R. Consumers of mislabeled tropical fish exhibit increased risks of ciguatera intoxication: A report on substitution patterns in fish imported at Frankfurt Airport, Germany. Food Control 2021, 121, 107647. [Google Scholar] [CrossRef]
- Wong, E.H.K.; Hanner, R. DNA Barcoding Detects Market Substitution in North American Seafood. Food Res. Int. 2008, 41, 828–837. [Google Scholar] [CrossRef]
- Sarmiento-Camacho, S.; Valdez-Moreno, M. DNA barcode identification of commercial fish sold in Mexican markets. Genome 2018, 61, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.H.; Lin, H.Y.; Ren, Q.; Lin, Y.S.; Shao, K.T. DNA Barcode Identification of Fish Products in Taiwan: Government-Commissioned Authentication Cases. Food Control 2016, 66, 38–43. [Google Scholar] [CrossRef]
- Günther, B.; Raupach, M.J.; Knebelsberger, T. Full-length and mini-length DNA barcoding for the identification of seafood commercially traded in Germany. Food Control 2017, 73, 922–929. [Google Scholar] [CrossRef]
- Christiansen, H.; Fournier, N.; Hellemans, B.; Volckaert, F.A. Seafood substitution and mislabeling in Brussels’ restaurants and canteens. Food Control 2018, 85, 66–75. [Google Scholar] [CrossRef]
- Vandamme, S.G.; Griffiths, A.M.; Taylor, S.-A.; Di Muri, C.; Hankard, E.A.; Towne, J.A.; Watson, M.; Mariani, S. Sushi barcoding in the UK: Another kettle of fish. PeerJ 2016, 4, e1891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cawthorn, D.-M.; Baillie, C.; Mariani, S. Generic names and mislabeling conceal high species diversity in global fisheries markets. Conserv. Lett. 2018, 11, e12573. [Google Scholar] [CrossRef]
- Delpiani, G.; Delpiani, S.; Antoni, M.D.; Ale, M.C.; Fischer, L.; Lucifora, L.; de Astarloa, J.D. Are we sure we eat what we buy? Fish mislabelling in Buenos Aires province, the largest sea food market in Argentina. Fish. Res. 2020, 221, 105373. [Google Scholar] [CrossRef]
- Valdez-Moreno, M.; Quintal-Lizama, C.; Gómez-Lozano, R.; García-Rivas, M.D.C. Monitoring an Alien Invasion: DNA Barcoding and the Identification of Lionfish and Their Prey on Coral Reefs of the Mexican Caribbean. PLoS ONE 2012, 7, e36636. [Google Scholar] [CrossRef] [Green Version]
- Valdez-Moreno, M.; Ivanova, N.V.; Elías-Gutiérrez, M.; Pedersen, S.L.; Bessonov, K.; Hebert, P.D.N. Using eDNA to biomonitor the fish community in a tropical oligotrophic lake. PLoS ONE 2019, 14, e0215505. [Google Scholar] [CrossRef] [Green Version]
- Hebert, P.D.N.; Braukmann, T.W.A.; Prosser, S.W.J.; Ratnasingham, S.; Dewaard, J.R.; Ivanova, N.V.; Janzen, D.H.; Hallwachs, W.; Naik, S.; Sones, J.E.; et al. A Sequel to Sanger: Amplicon sequencing that scales. BMC Genom. 2018, 19, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pomerantz, A.; Penafiel, N.; Arteaga, A.; Bustamante, L.; Pichardo, F.; Coloma, L.A.; Barrio-Amoros, C.L.; Salazar-Valenzuela, D.; Prost, S. Real-Time DNA Barcoding in a Rainforest Using Nanopore Sequencing: Opportunities for Rapid Biodiversity Assessments and Local Capacity Building. Gigascience 2018, 7, giy033. [Google Scholar] [CrossRef] [Green Version]
- Srivathsan, A.; Baloglu, B.; Wang, W.; Tan, W.X.; Bertrand, D.; Ng, A.H.Q.; Boey, E.J.H.; Koh, J.J.Y.; Nagarajan, N.; Meier, R. A Minion-Based Pipeline for Fast and Cost-Effective DNA Barcoding. Mol. Ecol. Resour. 2018, 18, 1035–1049. [Google Scholar] [CrossRef] [PubMed]
- Berry, T.E.; Osterrieder, S.K.; Murray, D.C.; Coghlan, M.L.; Richardson, A.J.; Grealy, A.K.; Stat, M.; Bejder, L.; Bunce, M. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 2017, 7, 5435–5453. [Google Scholar] [CrossRef] [Green Version]
- Suter, L.; Polanowski, A.; Clarke, L.J.; Kitchener, J.; Deagle, B.E. Capturing open ocean biodiversity: Comparing environmental DNA metabarcoding to the continuous plankton recorder. Mol. Ecol. 2020. [Google Scholar] [CrossRef]
- Zamora-Terol, S.; Novotny, A.; Winder, M. Reconstructing Marine Plankton Food Web Interactions Using DNA Metabarcoding. Mol. Ecol. 2020, 29, 3380–3395. [Google Scholar] [CrossRef]
- Mauffrey, F.; Cordier, T.; Apothéloz-Perret-Gentil, L.; Cermakova, K.; Merzi, T.; Delefosse, M.; Blanc, P.; Pawlowski, J. Benthic monitoring of oil and gas offshore platforms in the North Sea using environmental DNA metabarcoding. Mol. Ecol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Elbrecht, V.; Vamos, E.E.; Meissner, K.; Aroviita, J.; Leese, F. Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring. Methods Ecol. Evol. 2017, 8, 1265–1275. [Google Scholar] [CrossRef] [Green Version]
- Andújar, C.; Arribas, P.; Yu, D.W.; Vogler, A.P.; Emerson, B.C. Why the COI barcode should be the community DNA metabarcode for the metazoa. Mol. Ecol. 2018, 27, 3968–3975. [Google Scholar] [CrossRef]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; De Vere, N.; et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef]
- Rees, H.C.; Maddison, B.C.; Middleditch, D.J.; Patmore, J.R.M.; Gough, K.C. Review the Detection of Aquatic Animal Species Using Environmental DNA—A Review of eDNA as a Survey Tool in Ecology. J. Appl. Ecol. 2014, 51, 1450–1459. [Google Scholar] [CrossRef]
- Valentini, A.; Taberlet, P.; Miaud, C.; Civade, R.; Herder, J.; Thomsen, P.F.; Bellemain, E.; Besnard, A.; Coissac, E.; Boyer, F.; et al. Data from: Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 2016, 25, 929–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, R.A.; Bakker, J.; Wangensteen, O.S.; Soto, A.Z.; Corrigan, L.; Sims, D.W.; Genner, M.J.; Mariani, S. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol. 2019, 10, 1985–2001. [Google Scholar] [CrossRef]
- Cordier, T.; Esling, P.; Lejzerowicz, F.; Visco, J.A.; Ouadahi, A.; Martins, C.I.M.; Cedhagen, T.; Pawlowski, J. Predicting the Ecological Quality Status of Marine Environments from eDNA Metabarcoding Data Using Supervised Machine Learning. Environ. Sci. Technol. 2017, 51, 9118–9126. [Google Scholar] [CrossRef]
- Mächler, E.; Walser, J.; Altermatt, F. Decision-making and best practices for taxonomy-free environmental DNA metabarcoding in biomonitoring using Hill numbers. Mol. Ecol. 2020. [Google Scholar] [CrossRef]
- Van Der Walt, K.; Mäkinen, T.; Swartz, E.; Weyl, O. DNA barcoding of South Africa’s ornamental freshwater fish—Are the names reliable? Afr. J. Aquat. Sci. 2017, 42, 155–160. [Google Scholar] [CrossRef]
- Collins, R.A.; Armstrong, K.; Meier, R.; Yi, Y.; Brown, S.; Cruickshank, R.H.; Keeling, S.; Johnston, C. Barcoding and Border Biosecurity: Identifying Cyprinid Fishes in the Aquarium Trade. PLoS ONE 2012, 7, e28381. [Google Scholar] [CrossRef] [PubMed]
- Curry, C.J.; Gibson, J.F.; Shokralla, S.; Hajibabaei, M.; Baird, D.J. Identifying North American freshwater invertebrates using DNA barcodes: Are existing COI sequence libraries fit for purpose? Freshw. Sci. 2018, 37, 178–189. [Google Scholar] [CrossRef]
- Jo, H.; Gim, J.A.; Jeong, K.S.; Kim, H.S.; Joo, G.J. Application of DNA Barcoding for Identification of Freshwater Carnivorous Fish Diets: Is Number of Prey Items Dependent on Size Class for Micropterus Salmoides? Ecol. Evol. 2014, 4, 219–229. [Google Scholar] [CrossRef]
- Jo, H.; Ventura, M.; Vidal, N.; Gim, J.S.; Buchaca, T.; Barmuta, L.A.; Jeppesen, E.; Joo, G.J. Discovering Hidden Biodiversity: The Use of Complementary Monitoring of Fish Diet Based on DNA Barcoding in Freshwater Ecosystems. Ecol. Evol. 2016, 6, 219–232. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elías-Gutiérrez, M.; Hubert, N.; Collins, R.A.; Andrade-Sossa, C. Aquatic Organisms Research with DNA Barcodes. Diversity 2021, 13, 306. https://doi.org/10.3390/d13070306
Elías-Gutiérrez M, Hubert N, Collins RA, Andrade-Sossa C. Aquatic Organisms Research with DNA Barcodes. Diversity. 2021; 13(7):306. https://doi.org/10.3390/d13070306
Chicago/Turabian StyleElías-Gutiérrez, Manuel, Nicolas Hubert, Rupert A. Collins, and Camilo Andrade-Sossa. 2021. "Aquatic Organisms Research with DNA Barcodes" Diversity 13, no. 7: 306. https://doi.org/10.3390/d13070306
APA StyleElías-Gutiérrez, M., Hubert, N., Collins, R. A., & Andrade-Sossa, C. (2021). Aquatic Organisms Research with DNA Barcodes. Diversity, 13(7), 306. https://doi.org/10.3390/d13070306