Mass Mortality of Invasive Snails: Impact of Nutrient Release on Littoral Water Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Laboratory Experiment
2.3. Field Study
3. Results
3.1. Abundance and Biomass of Dead Mollusks in the Dried Zone of the Reservoir
3.2. Laboratory Experiment
3.3. Field Data on Nutrient Concentrations
4. Discussion
4.1. Ecological Mechanisms of Population Decline
4.2. Assessment of Nutrient Release
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaiko, A.; Minchin, D.; Olenin, S. “The day after tomorrow”: Anatomy of an ‘r’ strategist aquatic invasion. Aquat. Invasions 2014, 92, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Strayer, D.L.; D’Antonio, C.M.; Essl, F.; Fowler, M.S.; Geist, J.; Hilt, S.; Jeschke, J.M. Boom-bust dynamics in biological invasions: Towards an improved application of the concept. Ecol. Lett. 2017, 20, 1337–1350. [Google Scholar] [CrossRef]
- Fey, S.B.; Siepielski, A.M.; Nusslé, S.; Cervantes-Yoshida, K.; Hwan, J.L.; Huber, E.R.; Carlson, S.M. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc. Natl. Acad. Sci. USA 2015, 112, 1083–1088. [Google Scholar] [CrossRef] [Green Version]
- Strayer, D.L.; Malcom, H.M. Long-term demography of a zebra mussel (Dreissena polymorpha) population. Freshw. Biol. 2006, 51, 117–130. [Google Scholar] [CrossRef]
- Moore, J.W.; Herbst, D.B.; Heady, W.N.; Carlson, S.M. Stream community and ecosystem responses to the boom and bust of an invading snail. Biol. Invasions 2012, 14, 2435–2446. [Google Scholar] [CrossRef]
- McDowell, W.G.; Sousa, R. Mass mortality events of invasive freshwater bivalves: Current understanding and potential directions for future research. Front. Ecol. Evol. 2019, 7, 331. [Google Scholar] [CrossRef] [Green Version]
- Cherry, D.S.; Scheller, J.L.; Cooper, N.L.; Bidwell, J.R. Potential effects of Asian clam (Corbicula fluminea) die-offs on native freshwater mussels (Unionidae) I: Water-column ammonia levels and ammonia toxicity. J. N. Am. Benthol. Soc. 2005, 24, 369–380. [Google Scholar] [CrossRef]
- Wesner, J.S.; Walters, D.M.; Zuellig, R.E. Pulsed salmonfly emergence and its potential contribution to terrestrial detrital pools. Food Webs 2019, 18, e00105. [Google Scholar] [CrossRef]
- Yanygina, L.V.; Vizer, A.M. Long-term dynamics and current distribution of the River snail (Viviparus viviparus) in the Novosibirsk reservoir. Tomsk. State Univ. J. Biol. 2020, 49, 149–165. [Google Scholar] [CrossRef]
- Yanygina, L.V.; Kotovshchikov, A.V.; Kipriyanova, L.M.; Volgina, D.D. Factors of spatial distribution and risk assessment of Viviparus viviparus L. invasion in aquatic ecosystems of the Ob River basin. Contemp. Probl. Ecol. 2020, 13, 162–171. [Google Scholar]
- Jakubik, B. Life strategies of Viviparidae (Gastropoda: Caenogastropoda: Architaenioglossa) in various aquatic habitats: Viviparus viviparus (Linnaeus, 1758) and V. contectus (Millet, 1813). Folia Malacol. 2012, 20, 145–179. [Google Scholar] [CrossRef] [Green Version]
- Vizer, A.M. Zoobenthos of the drainage zone of Novosibirsk Reservoir. Contemp. Probl. Ecol. 2011, 4, 50–55. [Google Scholar] [CrossRef]
- Savkin, V.M.; Dvurechenskaya, S.Y.; Yermolaeva, N.I.; Kipriyanova, L.M.; Kirillov, V.V.; Romanov, R.E.; Popov, P.; Shlychkov, V.A.; Yanygina, L.V.; Atavin, A.A.; et al. Long-Term Dynamics of Water and Ecological Regime of Novosibirsk Reservoir; Publishing House of SB RAS: Novosibirsk, Russia, 2014. [Google Scholar]
- Kotovshchikov, A.V.; Yanygina, L.V. Spatial heterogeneity of chlorophyll a content in Novosibirsk reservoir. Bull. AB RGS 2018, 3, 46–52. [Google Scholar]
- Savkin, V.M.; Dvurechenskaya, S.Y. Influence of long-term complex use of water resources of the ecosystem of the Novosibirsk. Water Ecol. 2018, 73, 71–82. [Google Scholar] [CrossRef]
- Vasilyev, O.F.; Savkin, V.M.; Dvurechenskaya, S.Y. Ecological state of the Novosibirsk reservoir. Sibirskij Ehkologicheskij Zhurnal 2000, 2, 149–163. [Google Scholar]
- Sousa, R.; Ferreira, A.; Carvalho, F.; Lopes-Lima, M.; Varandas, S.; Teixeira, A. Die-offs of the endangered pearl mussel Margaritifera margaritifera during an extreme drought. Aquat. Conserv. 2018, 1–5. [Google Scholar] [CrossRef] [Green Version]
- McDowell, W.G.; McDowell, W.H.; Byers, J.E. Mass mortality of a dominant invasive species in response to an extreme climate event: Implications for ecosystem function. Limnol. Oceanogr. 2017, 62, 177–188. [Google Scholar] [CrossRef]
- Unstad, K.M.; Uden, D.R.; Allen, C.R.; Chaine, N.M.; Haak, D.M.; Kill, R.A.; Pope, K.L.; Stephen, B.J.; Wong, A. Survival and behavior of Chinese mystery snails (Bellamya chinensis) in response to simulated water body drawdowns and extended air exposure. Manag. Biol. Invasions 2013, 4, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Havel, J.E.; Bruckerhoff, L.A.; Funkhouser, M.A.; Gemberling, A.R. Resistance to desiccation in aquatic invasive snails and implications for their overland dispersal. Hydrobiologia 2014, 741, 89–100. [Google Scholar] [CrossRef]
- Chidami, S.; Amyot, M. Fish decomposition in boreal lakes and biogeochemical implications. Limnol. Oceanogr. 2008, 53, 1988–1996. [Google Scholar] [CrossRef] [Green Version]
- Premke, K.; Fischer, P.; Hempel, M.; Rothhaupt, K.-O. Ecological studies on the decomposition rate of fish carcasses by benthic organisms in the littoral zone of Lake Constance, Germany. Ann. Limnol. 2010, 46, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Nobre, R.L.G.; Carneiro, L.S.; Panek, S.E.; González, M.J.; Vanni, M.J. Fish, including their carcasses, are net nutrient sources to the water column of a eutrophic lake. Front. Ecol. Evol. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Newton, T.J. The effects of ammonia on freshwater unionid mussels. Environ. Toxicol. Chem. 2003, 22, 2543–2544. [Google Scholar] [CrossRef] [PubMed]
- Thangarajan, R.; Bolan, N.S.; Naidu, R.; Surapaneni, A. Effects of temperature and amendments on nitrogen mineralization in selected Australian soils. Environ. Sci. Pollut. Res. 2013, 22, 8843–8854. [Google Scholar] [CrossRef]
- Vaughn, C.C.; Atkinson, C.L.; Julian, J.P. Drought-induced changes in flow regimes lead to long-term losses in mussel-provided ecosystem services. Ecol. Evol. 2015, 5, 1291–1305. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.T.J.; Olden, J.D.; Solomon, C.; Vander Zanden, M.J. Interactions among invaders: Community and ecosystem effects of multiple invasive species in an experimental aquatic system. Oecologia 2009, 159, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Höckelmann, C.; Pusch, M. The respiration and filter-feeding rates of the snail Viviparus viviparus (Gastropoda) under simulated stream conditions. Arch. Hydrobiol. 2000, 149, 553–568. [Google Scholar] [CrossRef]
- DuBose, T.P.; Atkinson, C.L.; Vaughn, C.C.; Golladay, S.W. Drought-induced, punctuated loss of freshwater mussels alters ecosystem function across temporal scales. Front. Ecol. Evol. 2019, 7, 274. [Google Scholar] [CrossRef] [Green Version]
- Ilarri, M.I.; Souza, A.T.; Sousa, R. Contrasting decay rates of freshwater bivalves’ shells: Aquatic versus terrestrial habitats. Limnologica 2015, 51, 8–14. [Google Scholar] [CrossRef]
- Bódis, E.; Tóth, B.; Sousa, R. Massive mortality of invasive bivalves as a potential resource subsidy for the adjacent terrestrial food web. Hydrobiologia 2014, 735, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Schlacher, T.A.; Strydom, S.; Connolly, R.M. Multiple scavengers respond rapidly to pulsed carrion resources at the land–ocean interface. Acta Oecol. 2013, 48, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Novais, A.; Souza, A.T.; Ilarri, M.; Pascoal, C.; Sousa, R. From water to land: How an invasive clam may function as a resource pulse to terrestrial invertebrates. Sci. Total. Environ. 2015, 538, 664–671. [Google Scholar] [CrossRef] [PubMed]
Indicator | NH4+, mg/L | NO3−, mg/L | Ptotal, mg/L |
---|---|---|---|
Over dead mollusks 27.04.2020 30.04.2020 06.05.2020 12.05.2020 18.05.2020 | |||
2.70 ± 0.10 | 2.40 ± 0.30 | 0.300 ± 0.020 | |
1.23 ± 0.26 | 3.13 ± 0.38 | – | |
0.44 ± 0.15 | 2.27 ± 0.40 | – | |
0.44 ± 0.15 | 1.66 ± 0.30 | – | |
0.26 ± 0.01 | 0.37 ± 0.05 | 0.033 ± 0.006 | |
Control site | 0.12 ± 0.01 | 0.34 ± 0.04 | 0.025 ± 0.006 |
Background values, mg/L [13] | 0.1 | 0.3 | 0.06 |
Calculated potential concentration, mg/L | 44.8 ± 9.5 | 0.21 ± 0.05 | 6.3 ± 1.3 |
Maximum allowable concentration, mg/L | 0.4 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanygina, L. Mass Mortality of Invasive Snails: Impact of Nutrient Release on Littoral Water Quality. Diversity 2021, 13, 362. https://doi.org/10.3390/d13080362
Yanygina L. Mass Mortality of Invasive Snails: Impact of Nutrient Release on Littoral Water Quality. Diversity. 2021; 13(8):362. https://doi.org/10.3390/d13080362
Chicago/Turabian StyleYanygina, Liubov. 2021. "Mass Mortality of Invasive Snails: Impact of Nutrient Release on Littoral Water Quality" Diversity 13, no. 8: 362. https://doi.org/10.3390/d13080362
APA StyleYanygina, L. (2021). Mass Mortality of Invasive Snails: Impact of Nutrient Release on Littoral Water Quality. Diversity, 13(8), 362. https://doi.org/10.3390/d13080362