Sunscreens’ UV Filters Risk for Coastal Marine Environment Biodiversity: A Review
Abstract
:1. Introduction
1.1. Sunscreen Definition
1.1.1. Organic Filters
1.1.2. Inorganic Filters
1.1.3. Other Compounds
2. Abiotic Compartment
2.1. Mineral Filters Behavior in Water
2.2. Organic UV Filters and Derivatives Behavior in Water
2.3. Release of Inorganic Nutrients and Metals in the Aquatic Environment
3. Biotic Compartment
3.1. Toxicity of Organic UV Filters
3.2. Toxicity of Inorganic UV Filters
4. Toxicity on Coral Reef
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- UNEP. Sustainable Coastal Tourism—An Integrated Planning and Management Approach. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/7819/-Sustainable%20Coastal%20Tourism%E2%80%94An%20integrated%20planning%20and%20management%20approach-2009913.pdf?sequence=3&isAllowed=y (accessed on 30 April 2020).
- Tovar-Sánchez, A.; Sánchez-Quiles, D.; Rodríguez-Romero, A. The mediterranean sea. In Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2020; Volume 94, pp. 131–161. [Google Scholar]
- UNDP. Annual Report; UNDP: New York, NY, USA, 2017. [Google Scholar]
- Sánchez-Quiles, D.; Tovar-Sánchez, A. Are sunscreens a new environmental risk associated with coastal tourism? Environ. Int. 2015, 83, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Tovar-Sánchez, A.; Sánchez-Quiles, D.; Basterretxea, G.; Benedé, J.L.; Chisvert, A.; Salvador, A.; Moreno-Garrido, I.; Blasco, J. Sunscreen Products as Emerging Pollutants to Coastal Waters. PLoS ONE 2013, 8, e65451. [Google Scholar] [CrossRef] [Green Version]
- Giokas, D.L.; Salvador, A.; Chisvert, A. UV filters: From sunscreens to human body and the environment. TrAC Trends Anal. Chem. 2007, 26, 360–374. [Google Scholar] [CrossRef]
- Balmer, M.E.; Buser, H.R.; Müller, M.D.; Poiger, T. Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss lakes. Environ. Sci. Technol. 2005, 39, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Amine, H.; Gomez, E.; Halwani, J.; Casellas, C.; Fenet, H. UV filters, ethylhexyl methoxycinnamate, octocrylene and ethylhexyl dimethyl PABA from untreated wastewater in sediment from eastern Mediterranean river transition and coastal zones. Mar. Pollut. Bull. 2012, 64, 2435–2442. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.L.; Lim, H.W. Review of environmental effects of oxybenzone and other sunscreen active ingredients. J. Am. Acad. Dermatol. 2019, 80, 266–271. [Google Scholar] [CrossRef]
- Buser, H.R.; Balmer, M.E.; Schmid, P.; Kohler, M. Occurrence of UV filters 4-methylbenzylidene camphor and octocrylene in fish from various Swiss rivers with inputs from wastewater treatment plants. Environ. Sci. Technol. 2006, 40, 1427–1431. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.; Homem, V.; Alves, A.; Santos, L. Advances in analytical methods and occurrence of organic UV-filters in the environment—A review. Sci. Total Environ. 2015, 526, 278–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gago-Ferrero, P.; Díaz-Cruz, M.S.; Barceló, D. An overview of UV-absorbing compounds (organic UV filters) in aquatic biota. Anal. Bioanal. Chem. 2012, 404, 2597–2610. [Google Scholar] [CrossRef] [PubMed]
- Danovaro, R.; Bongiorni, L.; Corinaldesi, C.; Giovannelli, D.; Damiani, E.; Astolfi, P.; Greci, L.; Pusceddu, A. Sunscreens cause coral bleaching by promoting viral infections. Environ. Health Perspect. 2008, 116, 441–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labille, J.; Slomberg, D.; Catalano, R.; Robert, S.; Apers-Tremelo, M.L.; Boudenne, J.L.; Manasfi, T.; Radakovitch, O. Assessing UV filter inputs into beach waters during recreational activity: A field study of three French Mediterranean beaches from consumer survey to water analysis. Sci. Total Environ. 2020, 706. [Google Scholar] [CrossRef]
- la Farré, M.; Pérez, S.; Kantiani, L.; Barceló, D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal. Chem. 2008, 27, 991–1007. [Google Scholar] [CrossRef]
- Sendra, M.; Sánchez-Quiles, D.; Blasco, J.; Moreno-Garrido, I.; Lubián, L.M.; Pérez-García, S.; Tovar-Sánchez, A. Effects of TiO2nanoparticles and sunscreens on coastal marine microalgae: Ultraviolet radiation is key variable for toxicity assessment. Environ. Int. 2017, 98, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Matranga, V.; Corsi, I. Toxic effects of engineered nanoparticles in the marine environment: Model organisms and molecular approaches. Mar. Environ. Res. 2012, 76, 32–40. [Google Scholar] [CrossRef] [PubMed]
- European Council Regulation (EC). No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products 1–21. Off. J. Eur. Union 2009, 342, 59–209. [Google Scholar]
- Sánchez-Quiles, D.; Tovar-Sánchez, A. Sunscreens as a source of hydrogen peroxide production in coastal waters. Environ. Sci. Technol. 2014, 48, 9037–9042. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.; Joo, S.H.; Blackwelder, P.; Toborek, M. Effects of coating materials on antibacterial properties of industrial and sunscreen-derived titanium-dioxide nanoparticles on Escherichia coli. Chemosphere 2018, 208, 196–206. [Google Scholar] [CrossRef]
- Botta, C.; Labille, J.; Auffan, M.; Borschneck, D.; Miche, H.; Cabié, M.; Masion, A.; Rose, J.; Bottero, J.Y. TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: Structures and quantities. Environ. Pollut. 2011, 159, 1543–1550. [Google Scholar] [CrossRef]
- Auffan, M.; Pedeutour, M.; Rose, J.; Masion, A.; Ziarelli, F.; Borschneck, D.; Chaneac, C.; Botta, C.; Chaurand, P.; Labille, J.; et al. Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environ. Sci. Technol. 2010, 44, 2689–2694. [Google Scholar] [CrossRef]
- Tsui, M.M.P.; Leung, H.W.; Wai, T.C.; Yamashita, N.; Taniyasu, S.; Liu, W.; Lam, P.K.S.; Murphy, M.B. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries. Water Res. 2014, 67, 55–65. [Google Scholar] [CrossRef]
- Fagervold, S.K.; Rodrigues, A.S.; Rohée, C.; Roe, R.; Bourrain, M.; Stien, D.; Lebaron, P. Occurrence and Environmental Distribution of 5 UV Filters During the Summer Season in Different Water Bodies. Water Air Soil Pollut. 2019, 230, 1–13. [Google Scholar] [CrossRef]
- Ma, B.; Lu, G.; Liu, F.; Nie, Y.; Zhang, Z.; Li, Y. Organic UV Filters in the Surface Water of Nanjing, China: Occurrence, Distribution and Ecological Risk Assessment. Bull. Environ. Contam. Toxicol. 2016, 96, 530–535. [Google Scholar] [CrossRef]
- Picot-Groz, M.; Fenet, H.; Martinez Bueno, M.J.; Rosain, D.; Gomez, E. Diurnal variations in personal care products in seawater and mussels at three Mediterranean coastal sites. Environ. Sci. Pollut. Res. 2018, 25, 9051–9059. [Google Scholar] [CrossRef]
- Tovar-Sanchez, A.; Sparaventi, E.; Gaudron, A.; Rodriguez-Romero, A. A new approach for the determination of sunscreen levels in seawater by ultraviolet absorption spectrophotometry. PLoS ONE 2020, 15, e0243591. [Google Scholar] [CrossRef] [PubMed]
- Engel, A.; Bange, H.W.; Cunliffe, M.; Burrows, S.M.; Friedrichs, G.; Galgani, L.; Herrmann, H.; Hertkorn, N.; Johnson, M.; Liss, P.S.; et al. The ocean’s vital skin: Toward an integrated understanding of the sea surface microlayer. Front. Mar. Sci. 2017, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.M.; Gossett, C.J. Photochemical formation of singlet molecular oxygen in illuminated aqueous solutions of several commercially available sunscreen active ingredients. Chem. Res. Toxicol. 1996, 9, 605–609. [Google Scholar] [CrossRef]
- Wong, S.W.Y.; Zhou, G.J.; Leung, P.T.Y.; Han, J.; Lee, J.S.; Kwok, K.W.H.; Leung, K.M.Y. Sunscreens containing zinc oxide nanoparticles can trigger oxidative stress and toxicity to the marine copepod Tigriopus japonicus. Mar. Pollut. Bull. 2020, 154, 111078. [Google Scholar] [CrossRef]
- Rodríguez-Romero, A.; Ruiz-Gutiérrez, G.; Viguri, J.R.; Tovar-Sánchez, A. Sunscreens as a New Source of Metals and Nutrients to Coastal Waters. Environ. Sci. Technol. 2019, 53, 10177–10187. [Google Scholar] [CrossRef]
- Keller, A.A.; Wang, H.; Zhou, D.; Lenihan, H.S.; Cherr, G.; Cardinale, B.J.; Miller, R.; Zhaoxia, J.I. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 2010, 44, 1962–1967. [Google Scholar] [CrossRef]
- Thio, B.J.R.; Zhou, D.; Keller, A.A. Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J. Hazard. Mater. 2011, 189, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Lewicka, Z.A.; Yu, W.W.; Oliva, B.L.; Contreras, E.Q.; Colvin, V.L. Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients. J. Photochem. Photobiol. A Chem. 2013, 263, 24–33. [Google Scholar] [CrossRef]
- Li, Y.; Yang, D.; Lu, S.; Qiu, X.; Qian, Y.; Li, P. Encapsulating TiO2 in Lignin-Based Colloidal Spheres for High Sunscreen Performance and Weak Photocatalytic Activity. ACS Sustain. Chem. Eng. 2019, 7, 6234–6242. [Google Scholar] [CrossRef]
- McCoshum, S.M.; Schlarb, A.M.; Baum, K.A. Direct and indirect effects of sunscreen exposure for reef biota. Hydrobiologia 2016, 776, 139–146. [Google Scholar] [CrossRef]
- Inbaraj, J.J.; Bilski, P.; Chignell, C.F. Photophysical and Photochemical Studies of 2-Phenylbenzimidazole and UVB Sunscreen 2-Phenylbenzimidazole-5-sulfonic Acid. Photochem. Photobiol. 2002, 75, 107. [Google Scholar] [CrossRef]
- Morel, F.M.M.; Price, N.M. The biogeochemical cycles of trace metals in the oceans. Science 2003, 300, 944–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotnik, K.; Kosjek, T.; Žegura, B.; Filipič, M.; Heath, E. Photolytic fate and genotoxicity of benzophenone-derived compounds and their photodegradation mixtures in the aqueous environment. Chemosphere 2016, 147, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Rodil, R.; Moeder, M.; Altenburger, R.; Schmitt-Jansen, M. Photostability and phytotoxicity of selected sunscreen agents and their degradation mixtures in water. Anal. Bioanal. Chem. 2009, 395, 1513–1524. [Google Scholar] [CrossRef]
- MacManus-Spencer, L.A.; Tse, M.L.; Klein, J.L.; Kracunas, A.E. Aqueous photolysis of the organic ultraviolet filter chemical octyl methoxycinnamate. Environ. Sci. Technol. 2011, 45, 3931–3937. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Sánchez, A.; Sánchez-Quiles, D.; Rodríguez-Romero, A. Massive coastal tourism influx to the Mediterranean Sea: The environmental risk of sunscreens. Sci. Total Environ. 2019, 656, 316–321. [Google Scholar] [CrossRef]
- Paredes, E.; Perez, S.; Rodil, R.; Quintana, J.B.; Beiras, R. Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata. Chemosphere 2014, 104, 44–50. [Google Scholar] [CrossRef]
- Canesi, L.; Fabbri, R.; Gallo, G.; Vallotto, D.; Marcomini, A.; Pojana, G. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquat. Toxicol. 2010, 100, 168–177. [Google Scholar] [CrossRef]
- Sureda, A.; Capó, X.; Busquets-Cortés, C.; Tejada, S. Acute exposure to sunscreen containing titanium induces an adaptive response and oxidative stress in Mytillus galloprovincialis. Ecotoxicol. Environ. Saf. 2018, 149, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhou, J.; Cai, Z. The toxicity and oxidative stress of TiO2 nanoparticles in marine abalone (Haliotis diversicolor supertexta). Mar. Pollut. Bull. 2011, 63, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Galloway, T.; Lewis, C.; Dolciotti, I.; Johnston, B.D.; Moger, J.; Regoli, F. Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environ. Pollut. 2010, 158, 1748–1755. [Google Scholar] [CrossRef] [PubMed]
- Manzo, S.; Schiavo, S.; Oliviero, M.; Toscano, A.; Ciaravolo, M.; Cirino, P. Immune and reproductive system impairment in adult sea urchin exposed to nanosized ZnO via food. Sci. Total Environ. 2017, 599–600, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.J.; Rocha, R.J.M.; Soares, A.M.V.M.; Benedé, J.L.; Chisvert, A.; Monteiro, M.S. Effects of UV filter 4-methylbenzylidene camphor during early development of Solea senegalensis Kaup, 1858. Sci. Total Environ. 2018, 628–629, 1395–1404. [Google Scholar] [CrossRef]
- Liu, H.; Sun, P.; Liu, H.; Yang, S.; Wang, L.; Wang, Z. Acute toxicity of benzophenone-type UV filters for Photobacterium phosphoreum and Daphnia magna: QSAR analysis, interspecies relationship and integrated assessment. Chemosphere 2015, 135, 182–188. [Google Scholar] [CrossRef]
- Grabicova, K.; Fedorova, G.; Burkina, V.; Steinbach, C.; Schmidt-Posthaus, H.; Zlabek, V.; Kocour Kroupova, H.; Grabic, R.; Randak, T. Presence of UV filters in surface water and the effects of phenylbenzimidazole sulfonic acid on rainbow trout (Oncorhynchus mykiss) following a chronic toxicity test. Ecotoxicol. Environ. Saf. 2013, 96, 41–47. [Google Scholar] [CrossRef]
- Gao, L.; Yuan, T.; Cheng, P.; Zhou, C.; Ao, J.; Wang, W.; Zhang, H. Organic UV filters inhibit multixenobiotic resistance (MXR) activity in Tetrahymena thermophila: Investigations by the Rhodamine 123 accumulation assay and molecular docking. Ecotoxicology 2016, 25, 1318–1326. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, X.; Dzakpasu, M.; Wang, X.C. Evaluation of ecotoxicological effects of benzophenone UV filters: Luminescent bacteria toxicity, genotoxicity and hormonal activity. Ecotoxicol. Environ. Saf. 2017, 142, 338–347. [Google Scholar] [CrossRef]
- Mao, F.; He, Y.; Gin, K.Y.H. Evaluating the joint toxicity of two benzophenone-type UV filters on the green alga Chlamydomonas reinhardtii with response surface methodology. Toxics 2018, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Fent, K.; Kunz, P.Y.; Gomez, E. UV filters in the aquatic environment induce hormonal effects and affect fertility and reproduction in fish. Chimia 2008, 62, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Blüthgen, N.; Zucchi, S.; Fent, K. Effects of the UV filter benzophenone-3 (oxybenzone) at low concentrations in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 2012, 263, 184–194. [Google Scholar] [CrossRef]
- Kim, S.; Jung, D.; Kho, Y.; Choi, K. Effects of benzophenone-3 exposure on endocrine disruption and reproduction of japanese medaka (Oryzias latipes)-A two generation exposure study. Aquat. Toxicol. 2014, 155, 244–252. [Google Scholar] [CrossRef]
- Kaiser, D.; Sieratowicz, A.; Zielke, H.; Oetken, M.; Hollert, H.; Oehlmann, J. Ecotoxicological effect characterisation of widely used organic UV filters. Environ. Pollut. 2012, 163, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Park, C.B.; Jang, J.; Kim, S.; Kim, Y.J. Single- and mixture toxicity of three organic UV-filters, ethylhexyl methoxycinnamate, octocrylene, and avobenzone on Daphnia magna. Ecotoxicol. Environ. Saf. 2017, 137, 57–63. [Google Scholar] [CrossRef]
- Cherchi, C.; Gu, A.Z. Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environ. Sci. Technol. 2010, 44, 8302–8307. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, B.; Whitley, E.M.; Kimura, K.; Crumpton, A.; Palić, D. Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens. Environ. Pollut. 2015, 203, 153–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigro, M.; Bernardeschi, M.; Costagliola, D.; Della Torre, C.; Frenzilli, G.; Guidi, P.; Lucchesi, P.; Mottola, F.; Santonastaso, M.; Scarcelli, V.; et al. n-TiO2 and CdCl2 co-exposure to titanium dioxide nanoparticles and cadmium: Genomic, DNA and chromosomal damage evaluation in the marine fish European sea bass (Dicentrarchus labrax). Aquat. Toxicol. 2015, 168, 72–77. [Google Scholar] [CrossRef]
- Xia, B.; Zhu, L.; Han, Q.; Sun, X.; Chen, B.; Qu, K. Effects of TiO2 nanoparticles at predicted environmental relevant concentration on the marine scallop Chlamys farreri: An integrated biomarker approach. Environ. Toxicol. Pharmacol. 2017, 50, 128–135. [Google Scholar] [CrossRef]
- Miller, R.J.; Lenihan, H.S.; Muller, E.B.; Tseng, N.; Hanna, S.K.; Keller, A.A. Impacts of metal oxide nanoparticles on marine phytoplankton. Environ. Sci. Technol. 2010, 44, 7329–7334. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Palma, S.; Fisher, N.S.; Wong, S.S. Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat. Toxicol. 2011, 102, 186–196. [Google Scholar] [CrossRef]
- Wong, S.W.Y.; Leung, P.T.Y.; Djurišić, A.B.; Leung, K.M.Y. Toxicities of nano zinc oxide to five marine organisms: Influences of aggregate size and ion solubility. Anal. Bioanal. Chem. 2010, 396, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, S.; Oliviero, M.; Li, J.; Manzo, S. Testing ZnO nanoparticle ecotoxicity: Linking time variable exposure to effects on different marine model organisms. Environ. Sci. Pollut. Res. 2018, 25, 4871–4880. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, A.; Montes, R.; Rodil, R.; Quintana, J.B.; Vidal-Liñán, L.; Beiras, R. Ecotoxicological Evaluation of the UV Filters Ethylhexyl Dimethyl p-Aminobenzoic Acid and Octocrylene Using Marine Organisms Isochrysis galbana, Mytilus galloprovincialis and Paracentrotus lividus. Arch. Environ. Contam. Toxicol. 2017, 72, 606–611. [Google Scholar] [CrossRef]
- Barmo, C.; Ciacci, C.; Canonico, B.; Fabbri, R.; Cortese, K.; Balbi, T.; Marcomini, A.; Pojana, G.; Gallo, G.; Canesi, L. In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquat. Toxicol. 2013, 132–133, 9–18. [Google Scholar] [CrossRef]
- Barone, A.N.; Hayes, C.E.; Kerr, J.J.; Lee, R.C.; Flaherty, D.B. Acute toxicity testing of TiO2-based vs. oxybenzone-based sunscreens on clownfish (Amphiprion ocellaris). Environ. Sci. Pollut. Res. 2019, 14513–14520. [Google Scholar] [CrossRef] [PubMed]
- Santonocito, M.; Salerno, B.; Trombini, C.; Tonini, F.; Pintado-Herrera, M.G.; Martínez-Rodríguez, G.; Blasco, J.; Lara-Martín, P.A.; Hampel, M. Stress under the sun: Effects of exposure to low concentrations of UV-filter 4-methylbenzylidene camphor (4-MBC) in a marine bivalve filter feeder, the Manila clam Ruditapes philippinarum. Aquat. Toxicol. 2020, 221. [Google Scholar] [CrossRef]
- Hong, H.; Wang, J.; Shi, D. Effects of salinity on the chronic toxicity of 4-methylbenzylidene camphor (4-MBC) in the marine copepod Tigriopus japonicus. Aquat. Toxicol. 2021, 232, 105742. [Google Scholar] [CrossRef] [PubMed]
- Thorel, E.; Clergeaud, F.; Jaugeon, L.; Rodrigues, A.M.S.; Lucas, J.; Stien, D.; Lebaron, P. Effect of 10 UV filters on the brine shrimp Artemia salina and themarinemicroalga Tetraselmis sp. Toxics 2020, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Bachelot, M.; Li, Z.; Munaron, D.; Le Gall, P.; Casellas, C.; Fenet, H.; Gomez, E. Organic UV filter concentrations in marine mussels from French coastal regions. Sci. Total Environ. 2012, 420, 273–279. [Google Scholar] [CrossRef]
- Sang, Z.; Leung, K.S.Y. Environmental occurrence and ecological risk assessment of organic UV filters in marine organisms from Hong Kong coastal waters. Sci. Total Environ. 2016, 566–567, 489–498. [Google Scholar] [CrossRef]
- Amine, H.; Gomez, E.; Halwani, J.; Casellas, C.; Fenet, H.; Araújo, M.J.; Rocha, R.J.M.; Soares, A.M.V.M.; Benedé, J.L.; Chisvert, A.; et al. Photostability and phytotoxicity of selected sunscreen agents and their degradation mixtures in water. Sci. Total Environ. 2018, 25, 368–375. [Google Scholar] [CrossRef]
- Moschino, V.; Schintu, M.; Marrucci, A.; Marras, B.; Nesto, N.; Da Ros, L. An ecotoxicological approach to evaluate the effects of tourism impacts in the Marine Protected Area of La Maddalena (Sardinia, Italy). Mar. Pollut. Bull. 2017, 122, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Kunz, P.Y.; Fent, K. Estrogenic activity of UV filter mixtures. Toxicol. Appl. Pharmacol. 2006, 217, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Lorigo, M.; Mariana, M.; Cairrao, E. Photoprotection of ultraviolet-B filters: Updated review of endocrine disrupting properties. Steroids 2018, 131, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Silvia Díaz-Cruz, M.; Llorca, M.; Barceló, D. Organic UV filters and their photodegradates, metabolites and disinfection by-products in the aquatic environment. TrAC Trends Anal. Chem. 2008, 27, 873–887. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Alonso, M.B.; Bertozzi, C.P.; Marigo, J.; Barbosa, L.; Cremer, M.; Secchi, E.R.; Azevedo, A.; Lailson-Brito, J.; Torres, J.P.M.; et al. First determination of UV filters in marine mammals. octocrylene levels in Franciscana dolphins. Environ. Sci. Technol. 2013, 47, 5619–5625. [Google Scholar] [CrossRef]
- He, K.; Hain, E.; Timm, A.; Blaney, L. Bioaccumulation of estrogenic hormones and UV-filters in red swamp crayfish (Procambarus clarkii). Sci. Total Environ. 2021, 764, 142871. [Google Scholar] [CrossRef]
- Molins-Delgado, D.; Muñoz, R.; Nogueira, S.; Alonso, M.B.; Torres, J.P.; Malm, O.; Ziolli, R.L.; Hauser-Davis, R.A.; Eljarrat, E.; Barceló, D.; et al. Occurrence of organic UV filters and metabolites in lebranche mullet (Mugil liza) from Brazil. Sci. Total Environ. 2018, 618, 451–459. [Google Scholar] [CrossRef]
- Zenker, A.; Schmutz, H.; Fent, K. Simultaneous trace determination of nine organic UV-absorbing compounds (UV filters) in environmental samples. J. Chromatogr. A 2008, 1202, 64–74. [Google Scholar] [CrossRef]
- Baker, T.J.; Tyler, C.R.; Galloway, T.S. Impacts of metal and metal oxide nanoparticles on marine organisms. Environ. Pollut. 2014, 186, 257–271. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Han, X.; Wei, X. Transmission and Accumulation of Nano-TiO2 in a 2-Step Food Chain (Scenedesmus obliquus to Daphnia magna). Bull. Environ. Contam. Toxicol. 2015, 95, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yin, L.; Zhao, J.; Xing, B. Trophic transfer and accumulation of TiO2 nanoparticles from clamworm (Perinereis aibuhitensis) to juvenile turbot (Scophthalmus maximus) along a marine benthic food chain. Water Res. 2016, 95, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Della Torre, C.; Buonocore, F.; Frenzilli, G.; Corsolini, S.; Brunelli, A.; Guidi, P.; Kocan, A.; Mariottini, M.; Mottola, F.; Nigro, M.; et al. Influence of titanium dioxide nanoparticles on 2,3,7,8-tetrachlorodibenzo-p-dioxin bioconcentration and toxicity in the marine fish European sea bass (Dicentrarchus labrax). Environ. Pollut. 2015, 196, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wu, Y.; Li, X.; Wei, B.; Li, S.; Wang, X. Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere 2018, 193, 852–860. [Google Scholar] [CrossRef]
- De Schamphelaere, K.A.C.; Canli, M.; Van Lierde, V.; Forrez, I.; Vanhaecke, F.; Janssen, C.R. Reproductive toxicity of dietary zinc to Daphnia magna. Aquat. Toxicol. 2004, 70, 233–244. [Google Scholar] [CrossRef]
- Danovaro, R.; Armeni, M.; Corinaldesi, C.; Mei, M.L. Viruses and marine pollution. Mar. Pollut. Bull. 2003, 46, 301–304. [Google Scholar] [CrossRef]
- He, T.; Tsui, M.M.P.; Tan, C.J.; Ng, K.Y.; Guo, F.W.; Wang, L.H.; Chen, T.H.; Fan, T.Y.; Lam, P.K.S.; Murphy, M.B. Comparative toxicities of four benzophenone ultraviolet filters to two life stages of two coral species. Sci. Total Environ. 2019, 651, 2391–2399. [Google Scholar] [CrossRef]
- Tsui, M.M.P.; Lam, J.C.W.; Ng, T.Y.; Ang, P.O.; Murphy, M.B.; Lam, P.K.S. Occurrence, Distribution, and Fate of Organic UV Filters in Coral Communities. Environ. Sci. Technol. 2017, 51, 4182–4190. [Google Scholar] [CrossRef]
- Mitchelmore, C.L.; He, K.; Gonsior, M.; Hain, E.; Heyes, A.; Clark, C.; Younger, R.; Schmitt-Kopplin, P.; Feerick, A.; Conway, A.; et al. Occurrence and distribution of UV-filters and other anthropogenic contaminants in coastal surface water, sediment, and coral tissue from Hawaii. Sci. Total Environ. 2019, 670, 398–410. [Google Scholar] [CrossRef]
- Brausch, J.M.; Rand, G.M. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 2011, 82, 1518–1532. [Google Scholar] [CrossRef]
- Downs, C.A.; Kramarsky-Winter, E.; Segal, R.; Fauth, J.; Knutson, S.; Bronstein, O.; Ciner, F.R.; Jeger, R.; Lichtenfeld, Y.; Woodley, C.M.; et al. Toxicopathological Effects of the Sunscreen UV Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary Cells and Its Environmental Contamination in Hawaii and the U.S. Virgin Islands. Arch. Environ. Contam. Toxicol. 2016, 70, 265–288. [Google Scholar] [CrossRef]
- Corinaldesi, C.; Marcellini, F.; Nepote, E.; Damiani, E.; Danovaro, R. Impact of inorganic UV filters contained in sunscreen products on tropical stony corals (Acropora spp.). Sci. Total Environ. 2018, 637–638, 1279–1285. [Google Scholar] [CrossRef]
- Fel, J.P.; Lacherez, C.; Bensetra, A.; Mezzache, S.; Béraud, E.; Léonard, M.; Allemand, D.; Ferrier-Pagès, C. Photochemical response of the scleractinian coral Stylophora pistillata to some sunscreen ingredients. Coral Reefs 2019, 38, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Levine, A. Sunscreen use and awareness of chemical toxicity among beach goers in Hawaii prior to a ban on the sale of sunscreens containing ingredients found to be toxic to coral reef ecosystems. Mar. Policy 2020, 103875. [Google Scholar] [CrossRef]
- Sirois, J. Examine all available evidence before making decisions on sunscreen ingredient bans. Sci. Total Environ. 2019, 674, 211–212. [Google Scholar] [CrossRef] [PubMed]
- Corinaldesi, C.; Damiani, E.; Marcellini, F.; Falugi, C.; Tiano, L.; Brugè, F.; Danovaro, R. Sunscreen products impair the early developmental stages of the sea urchin Paracentrotus lividus. Sci. Rep. 2017, 7, 7815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
UV Filter(s) | Organism(s) | Exposure Conditions | Effects | Reference |
---|---|---|---|---|
4-MBC BP-3 BP-4 EHMC | Mediterranean mussel (Mytilus galloprovincialis), sea urchin (Paracentrotus lividus) | EC50 | EHMC and 4-MBC toxicity assessed from 4–5 mg/L, followed by BP-3 and finally BP-4 | [43] |
n-TiO2 | Mediterranean mussel (Mytilus galloprovincialis) | From 0.05 to 5 mg/L for 24 h | Cellular damage NRR in hemocytes and digestive glands; stimulated glutathione-S-transferase (GST) | [44] |
n-TiO2 | Mediterranean mussel (Mytillus galloprovincialis) | From 2.8 to 280 µg/L for 24 h | Adaptive response in gills at 28 µg/L; oxidative stress and neurotoxicity over 280 µg/L | [45] |
n-TiO2 | Marine abalone (Haliotis diversicolor supertexta) | Acute toxicity stress: from 0.1 to 10 mg/L for 96 h | Oxidative stress: SOD increased (1 mg/L), GSH decreased (1 mg/L), LPO dose-dependent increase | [46] |
n-TiO2 | Lungworm (Arenicola marina) | Sub-lethal OECD/ASTM 1990 acute toxicity test | Decrease in casting rate; increase in cellular damage (NRR); DNA damage in coelomocytes | [47] |
n-ZnO | Sea urchin (Paracentrotus lividus) | 21-day exposure via food to reach 10 mg Zn/kg food | Damages to immune cells (33% of damaged nucleus); transmissible effects to offspring (75.5% of malformed larvae) | [48] |
4-MBC | Senegalese sole (Solea senegalensis) | Mortality and growth assessment 96 h egg exposure from 0.235 to 0.935 mg/L; biochemical markers from 0.068 to 0.360 mg/L | Induced mortality and malformations in a dose-response manner; reduced growth with increasing concentrations; increased activity of AChE on larvae exposed to 0.085 mg/L; significantly lower LDH activity (p b 0.05); swimming behavior was affected by 4-MBC at low concentrations. | [49] |
BP-1 BP-2 BP-3 BP-4 BP-7 BP-8 | Marine bacterium (Photobacterium phosphoreum) and planktonic crustacean (Daphnia magna) | EC50 protocol and QSAR modelling | Toxicity evaluated for both species | [50] |
PBSA | Rainbow trout (Oncorhynchus mykiss) | 21 and 42 days; from 1 to 1000 µg/L | Increased activity of P450 cytochromes | [51] |
4-MBC BP-3 BMDBM EHMC OCR HMS | Ciliate (Tetrahymena thermophila) | IC50 | 4-MBC, BP-3 and BMDBM could significantly inhibit the activity of the MXR system, IC50 values of 4-MBC, BP-3, and BMDBM were 23.54, 40.59, and 26.37 lM | [52] |
BP 2-HBP BP-3 BP-4 | Bioluminescent bacterium (Vibrio fischeri) in vitro and zebrafish (Danio rerio) larvae in vitro | EC50, SOS/umu assay and yeast estrogen screen assay (YES assay) | Luminescent bacteria toxicity, expressed as logEC50, increased with the lipophilicity (logKow) of BP-derived UV filters; estrogenic activity in dose-effect relationship. V. fischeri toxicity order is BP-3 > 2-HBP > BP > BP-4 | [53] |
BP-1 BP-3 | Green alga (Chlamydomonas reinhardtii) | Response surface methodologies (RSM) | Exposure to the combined BP-1 and BP-3 negatively affected cell growth and pigments production, with dose-dependent inhibition, affecting the photosynthesis process | [54] |
BP-1 BP-2 3-BC Et-PABA | Fathead minnow (Pimephales promelas) | 14-day BP-1 from 8.9 to 4919.4 µg/L; BP-2 from 10.3 to 8782.9 µg/L; 3BC from 8.7 to 952.5 µg/L e Et-PABA from 6.9 to 4394 µg/L | Induction of vitellogenin: 3-BC from 3 µg/L and BP-2 from 1.2 mg/L caused feminization in male fish, alteration of gonads in male and female fish, and decrease in fertility and reproduction | [55] |
BP-3 | Zebrafish (Danio rerio) | Fish and embryos were exposed for 14 days and 120 h post-fertilization, respectively, to 2.4–312 μg/L and 8.2–438 μg/L BP-3. | BP-3 was partly transformed to BP-1 and both compounds were accumulated in adult fish; BP-3 exposure led to similar alterations of gene expression in both adult fish and eleuthero embryos with antiandrogenic activity | [56] |
BP-3 | Japanese medaka (Oryzias latipes) | 14 days from 0 to 90 μg/L. First generation eggs (F1) reproduced were counted and further exposed up to 30 μg/L of BP-3 | After 14 days, plasma concentrations of testosterone (T) significantly increased in male fish. The 17-β-estradiol (E2) to T (E2/T) ratio showed significant decreases in both male and female fish during 28 day exposure; daily average egg reproduction per female was significantly reduced at 26 μg/L of BP-3; hatchability of F1 eggs was not affected | [57] |
BP-3 EHMC IAMC OD-PABA OCR 4-MBC | Green alga (Scenedesmus vacuolatus) | EC50 | BP-3 showed 43-fold higher toxicity than theoretically predicted. BP-3 and IAMC seem to have a more specific mode of action on algal cells | [40] |
BMDBM EHMC OCR | Non-biting midge (Chironomus riparius), oligochaete (Lumbriculus variegatus), and snails (Melanoides tuberculata and Potamopyrgus antipodarum). | 56 days (L. variegatus) or 28 days (Chironomus riparius, M. tuberculata, P. antipodarum) sediment test | EHMC caused a toxic effect on reproduction in both snails with lowest observed effect concentrations (LOEC) of 0.4 mg/kg (Potamopyrgus antipodarum) and 10 mg/kg (Melanoides tuberculata). BDMDM and OCR showed no effects on any of the tested organisms | [58] |
EHMC OCR BMDBM | Planktonic crustacean (Daphnia magna) | EC10, EC25, and EC50 EHMC up to 80.0 μg/mL; OCR and BMDBM up to 640.0 μg/mL; | EHMC, OCR, and BMDBM highly toxic at low concentration (>1 μg/mL) and resulted in immobilization higher than 25%; immobilization reached more than 90% at concentrations of 40 μg/mL; EC50 values for EHMC, OCR, and BMDBM were 2.73, 3.18, and 1.95 μg/mL, respectively, indicating that OCR had the lowest toxic effect on Daphnia; reduction of toxic effects in the mixtures of the three UV-filters, caused by antagonistic action of the components | [59] |
n-TiO2 | Cyanobacterium (Anabaena variabilis) | 24 h to 6 days from 0.5 to 250 mg/L | Reduced N fixation activity, growth rate, toxicity time, and dose-dependency | [60] |
n-TiO2 | Fathead minnow (Pimephales promelas) | Exposed to 2 ng/g and 10 mg/g body weight. Challenged with fish bacterial pathogens, Aeromonas hydrophila or Edwardsiella ictaluri | Fish mortality during bacterial challenge with Aeromonas hydrophila and Edwardsiella ictalurid; reduced neutrophil phagocytosis of A. hydrophila; significant histopathological alterations | [61] |
n-TiO2 | European sea bass (Dicentrarchus labrax) | 7 days, 1 mg/L | Chromosomal alteration | [62] |
n-TiO2 | Marine scallop (Chlamys farreri) | 14 days, 1 mg/L | Elevated superoxide dismutase (SOD), catalase (CAT) activities, and malondialdehyde (MDA) contents, increased acetylcholinesterase (AChE) activities; histopathological alterations in gills and digestive gland (dysplastic and necrosis) | [63] |
n-TiO2 n- ZnO | Diatoms (Skeletonema marinoi, Thalassiosira pseudonana), green alga (Dunaniella tertiolecta), and Haptophyta alga (Isochrysis galbana) | 24 and 96 h from 0.10 to 1000 µg/L | n-TiO2 did not affect the growing rate, n-ZnO depressed growth in all species | [64] |
n-ZnO | Diatoms (Thalassiosira pseudonana, Chaetocerus gracilis, Phaedacttylum tricornutum) | 72 h, from 10 to 80 mg/L | Growth stopped in T. pseudonana and C. gracilis; growth rate inversely proportional to NP concentration in P. tricornutum; Zn bioaccumulation killed T. pseudonana | [65] |
n-ZnO | Diatoms (Skeletonema costatum and Thalassiosia pseudonana), crustaceans (Tigriopus japonicus and Elasmopus rapax), and medaka fish (Oryzias melastigma) | IC50 | n-ZnO toxic towards algae; ZnO toxic towards crustaceans; up-regulation of SOD and MT. Toxicity attributed mainly to dissolved Zn ions | [66] |
n-ZnO | Green alga (Dunaliella tertiolecta), bioluminescent bacterium (Vibrio fischeri), brine shrimp (Artemia salina) | V. fischeri bioluminescence test for 5, to 30 min from 0.3 to 40 mg/L; D. tertiolecta algal growth test 24, 48 and 72 h from 0.1 to 10 mg/L; A. salina acute toxicity at 24–96 h from 10 to 100 mg/L, A. salina chronic exposure for 14 days from 0.03 to 0.5 mg/L | ZnO 14-day chronic exposure of A. salina significant inhibition of vitality and body length (EC50 14d 0.02 mg Zn/L). ZnO NPs were more toxic towards algae (EC50 2.2 mg Zn/L), but relatively less toxic towards bacteria (EC50 17 mg Zn/L) and crustaceans (EC50 96 h 58 mg Zn/L) | [67] |
OD-PABA OCR | Haptophyta alga (Isochrysis galbana), Mediterranean mussel (Mytilus galloprovincialis), and sea urchin (Paracentrotus lividus) in early stage | I. galbana 72 h to 2 and 90 ng/L, M. galloprovincialis and P. lividus 48 h EC50 | OCR was the more toxic compound for P. lividus; OD-PABA caused a severe negative effect on both M. galloprovincialis and I. galbana | [68] |
n-TiO2 | Mediterranean mussel (Mytilus galloprovincialis) | 96 h from 1 to 100 µg/L | Lysosomal and oxidative stress; decreased transcription of antioxidant and immune-related genes; decreased lysosomal membrane stability and phagocytosis; increased oxyradical production and transcription of antimicrobial peptides; pre-apoptotic processes | [69] |
Sunscreen containing BP-3, sunscreen containing TiO2 | Clownfish (Amphiprion ocellaris) | 97 h from 0 mg/L, 1 mg/L, 3 mg/L, 10 mg/L, 30 mg/L and 100 mg/L | Exposure level of 100 mg/L of BP-3 containing sunscreen led to 25% death and 100% disrupted swimming behavior by the end of the 97-h testing period. 100% of the animals failed to feed over the first 49 h of testing TiO2 sunscreen at 100 mg/L had 6.7% mortality, swimming behavior was disrupted during the first 25 h of testing (26.7% abnormal movement), animals recovered well over the remainder of the testing period (out to 97 h) | [70] |
4-MBC | Japanese clam (Ruditapes philippinarum) | 0, 1, 10, 100 μg/L over a 7-day period followed by a 3-day depuration period (total 10 days) | Assessed mortality reached up to 100 % at concentration of 100 μg/L. LC50 value of 7.71 μg/L-was derived | [71] |
4-MBC | Copepod (Tigriopus japonicus) | Exposed to three different salinity conditions (20, 30, and 40 ppt) prior to exposure to 0, 1, and 5 μg/L for multiple generations (F0–F3) | Environmentally relevant concentrations of 4-MBC had toxic effects on T. japonicus. Higher salinity levels increased the lethal, developmental, and reproductive toxicities of 4-MBC in T. japonicus | [72] |
BP-3 BEMT BMDBM MBBT OCS DHHB DBT EHT HMS OCR | Brine shrimp (Artemia salina) and green algae (Tetraselmis spp.) | A. salina 48 h exposure at 0, 0.02, 0.2, 2, 20, 200, and 2000 µg/L; Tetraselmis spp. 7-day exposure at 10, 100, and 1000 µg/L | HMS and OCR were the most toxic, followed by BMDBM, on A. salina at high concentrations (1 mg/L). OCS, BP3 and DHHB affected metabolic activity of green algae at 100 µg/L. BEMT, DBT, EHT, and MBBT had no effects, even at high concentrations (2 mg/L). | [73] |
UV Filter(s) | Organism(s) | Exposure Conditions | Effects | Reference |
---|---|---|---|---|
ZnO | Acropora spp. coral nubbins | 24 and 48 h, up to 6.3 mg/L | 67% coral nubbins surface bleached | [97] |
BMDBM 2% BP-3 6% EHMC 6% OCR 6% OCS 5% 4-MBC 3% Butylparaben 0.5% and commercial sunscreens | Acropora spp. coral nubbins, Stylophora pistillata and Millepora complanata | 18, 48 and 96 h, final concentrations of 10, 33, 50, and 100 μL/L | Sunscreen even in very low quantities (i.e., 10 μL/L) resulted in the release of large amounts of coral mucus (composed of zoo-xanthellae and coral tissue) within 18–48 h and complete bleaching of hard corals within 96 h | [13] |
BP-3 | Stylophora pistillata (larval form) | PB-3 EC50 and LC50, with different light exposure (8 h in the light, 8 h in the dark, a full diurnal cycle of 24 h, beginning at 08:00 in daylight and darkness from 18:00 in the evening until 08:00 h the next day, and a full 24 h in darkness), at 0.00001, 0.0001, 0.001, 0.01, 0.1 and 1 mM | BP-3 transformed planulae from a motile state to a deformed and sessile condition, showing genotoxicant, skeletal, and endocrine disruptor activity. BP-3 effects exacerbated in the light | [96] |
ZnO Ethylparaben Butylparaben TDSA DTS EHT BMDBM OCR | Stylophora pistillata | 35 days: ZnO from 10 to 1000 µg/L, UV filters from 10 to 5000 µg/L, preservatives (Ethylparaben and Butylparaben) from 0.1 a 1000 µg/L | ZnO reduced photosynthetic efficiency Fv/Fm by 38%, no adverse effects on the other UV filters tested up to the concentration corresponding to their water solubility limit. Butylparaben decreased the Fv/Fm by 25% at the highest concentration of 100 µg/L | [98] |
BP-1 BP-3 BP-4 BP-8 | Pocillopora damicornis, Seriatopora caliendrum | 7–12 days from 0.1 to 1000 μg/L. <1000 μg/L (S. caliendrum nubbins) | No bleaching was observed in the P. damicornis larval tests, while bleaching was observed in the P. damicornis nubbin tests. Overall, BP-1 and BP-8 were more toxic to the two tested species than BP-3 and BP-4, which matches the relative bioaccumulation potential of the four BPs (BP-8 > BP-1 ≈ BP-3 > BP-4) | [92] |
HMS 13% BP-3 6% OCR 5% OCS 5% BMDBM 3% | Flatworm (Convolutriloba macropyga); pulse corals (Xenia sp.); glass anemones (Aiptasia spp.); Diatoms (Nitzschia spp.) | Flatworms: 72 h from 0.1 to 1 mL/L; pulse corals: 72 h, 1 mL in 3.8 L seawater; glass anemones: 7 days from 0.1 to 1 mL/L; diatoms: 72 h 1 mL on 3.8 L seawater | Flatworm populations exposed to sunscreen showed a highly reduced growing rate. Pulse corals showed effects on growing rate, with a drastic decrease during the first week of treatment and partially recovering in the following period, and polyp pulses per minute, slowed down after about 10 min of exposition. All anemones exposed to sunscreen were categorized as unhealthy since pedal disks were weakly or not attached to the container walls, tentacles or body columns were not extended, individuals did not clearly respond to touch and appeared dark brown to black. Diatoms were less green with the average green fluorescent content showing a decrease | [36] |
BP-3 HMS OCS OCR | Concentrations in water, sediment, and coral tissue (Ka’a’awa, Waikiki Beach, Kaneohe Bay in October 2017) | Total mass concentrations of all UV-filters detected in seawater were <750 ng/L, in sediment < 70 ng/g and in coral tissue < 995 ng/g dry weight (dw). UV-filter concentrations generally varied as follows: Water: HMS > OCS > BP-3 > OCR, concentrations in surface seawater highest at Waikiki beach; Sediment: HMS > OCS > OCR > BP-3; Coral: OCS ≈ HMS > OCR ≈ BP-3 | [94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caloni, S.; Durazzano, T.; Franci, G.; Marsili, L. Sunscreens’ UV Filters Risk for Coastal Marine Environment Biodiversity: A Review. Diversity 2021, 13, 374. https://doi.org/10.3390/d13080374
Caloni S, Durazzano T, Franci G, Marsili L. Sunscreens’ UV Filters Risk for Coastal Marine Environment Biodiversity: A Review. Diversity. 2021; 13(8):374. https://doi.org/10.3390/d13080374
Chicago/Turabian StyleCaloni, Samuele, Tiziana Durazzano, Giada Franci, and Letizia Marsili. 2021. "Sunscreens’ UV Filters Risk for Coastal Marine Environment Biodiversity: A Review" Diversity 13, no. 8: 374. https://doi.org/10.3390/d13080374
APA StyleCaloni, S., Durazzano, T., Franci, G., & Marsili, L. (2021). Sunscreens’ UV Filters Risk for Coastal Marine Environment Biodiversity: A Review. Diversity, 13(8), 374. https://doi.org/10.3390/d13080374