Spatial Differences in Zooplankton Community Structure between Two Fluvial Lakes in the Middle and Lower Reaches of the Yangtze River: Effects of Land Use Patterns and Physicochemical Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Point Setting and Sampling Time
2.2. Sample Collection and Processing
3. Data Analyses
4. Results
4.1. Distribution of Land Use Types
4.2. The Water Quality Characteristics of Lake Chen Yao and Lake Feng Sha
4.3. Species Composition of Zooplankton
4.4. Species Diversity
4.5. Dominant Species of Zooplankton
4.6. Seasonal Distribution of Zooplankton Species
4.7. Zooplankton Density and Biomass
4.7.1. Time Distribution of Density and Biomass
4.7.2. Spatial Distribution of Density and Biomass
4.8. Relationship between Zooplankton Community Structure, and Environmental Factors
4.8.1. Correlation Analysis
4.8.2. Redundancy Analysis
5. Discussion
5.1. Effects of Water Quality and Land Use in Lake Chen Yao and Lake Feng Sha
5.2. Effects of Physical and Chemical Factors on the Community Structure of Zooplankton
5.3. Effect of Land Use on Zooplankton Community Structure
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carrasco Navas-Parejo, J.C.; Corzo, A.; Papaspyrou, S. Seasonal cycles of phytoplankton biomass and primary production in a tropical temporarily open-closed estuarine lagoon—The effect of an extreme climatic event. Sci. Total Environ. 2020, 723, 138014. [Google Scholar] [CrossRef] [PubMed]
- Muhid, P.; Davis, T.W.; Bunn, S.E.; Burford, M.A. Effects of inorganic nutrients in recycled water on freshwater phytoplankton biomass and composition. Water Res. 2013, 47, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Jiang, F.Y.; Chen, H.; Dibar, D.T.; Wu, Q.L.; Zhou, Z.Z. Temporal and spatial variations in zooplankton communities in relation to environmental factors in four floodplain lakes located in the middle reach of the Yangtze River, China. Environ. Pollut. 2019, 251, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Helland, I.P.; Freyhof, J.; Kasprzak, P.; Mehner, T. Temperature sensitivity of vertical distributions of zooplankton and planktivorous fish in a stratified lake. Oecologia 2007, 151, 322–330. [Google Scholar] [CrossRef]
- Banerjee, A.; Chakrabay, M.; Rakshit, N.; Bhowmick, A.R.; Ray, S. Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: Deep learning verus traditional regression approach. Ecol. Indic. 2018, 100, 99–117. [Google Scholar] [CrossRef]
- Wang, W.; Chen, F.; Gu, X.H. Community structures of zooplankton and its relation to environmental factors in five medium reservoirs in Nanjing city. J. Lake Sci. 2017, 29, 216–223. [Google Scholar]
- Mamun, A.A.; Didarul, A.M.; Aysha, A.; Xu, H.L.; Shafiqul, I.M.; Hena, M.K.A.; Muslem, U.M.; Wahidul, A.M. Annual pattern of zooplankton communities and their environmental response in a subtropical maritime channel system in the northern Bay of Bengal, Bangladesh. Acta Ecol. Sin. 2018, 37, 65–73. [Google Scholar]
- Auer, M.T.; Storey, M.L.; Effler, S.W.; Auer, N.A.; Sze, P. Zooplankton impacts on chlorophyll and transparency in Onondaga Lake, New York, USA. Hydrobiologia 1990, 200, 603–617. [Google Scholar] [CrossRef]
- Liberoff, A.L.; Flaherty, S.; Hualde, P.; García Asorey, M.I.; Fogel, M.L.; Pascual, M.A. Assessing land use and land cover influence on surface water quality using a parametric weighted distance function. Limnologica 2019, 74, 28–37. [Google Scholar] [CrossRef]
- Pratt, B.; Chang, H. Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales. J. Hazard. Mater. 2012, 209–210, 48–58. [Google Scholar] [CrossRef]
- Mello, K.D.; Valente, R.A.; Randhir, T.O.; Alves dos Santos, A.C.; Vettorazzi, C.A. Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: Watershed versus riparian zone. Catena 2018, 167, 130–138. [Google Scholar] [CrossRef]
- Dhanasekaran, M.; Bhavam, P.S.; Manickam, N.; Kalpana, R. Physico-chemical characteristics and zooplankton diversity in a perennial lake at Dharmapuri (Tamil Nadu, India). J. Entomol. Zool. Stud. 2017, 5, 285–292. [Google Scholar]
- Sun, G.; Lang, Y.; Fang, Y. Characteristics of the post-zooplankton community in the aquatic ecosystem of South Lake Changchun. J. Jilin Univ. Sci. 2006, 44, 663–667. [Google Scholar]
- Xie, P.; Yang, Y. Long-term changes of Copepoda community (1957–1996) in a subtropical Chinese lake stocked densely with planktivorous filter-feeding silver and bighead carp. J. Plankton Res. 2000, 22, 1757–1778. [Google Scholar] [CrossRef]
- Jeppesen, E.; Jensen, J.P.; Sondergard, M.; Lauridsen, T.; Pedersen, L.J.; Jensen, T. Top-down control in freshwater lakes: The role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 1997, 342–343, 151–164. [Google Scholar] [CrossRef]
- Turner, J.T. Zooplankton community grazing impact on a bloom of Alexandrium fundyense in the Gulf of Maine. Harmful Algae 2010, 9, 578–589. [Google Scholar] [CrossRef]
- Paerl, H.W.; Paul, V.J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef] [PubMed]
- Reichwaldt, E.S.; Ghadouani, A. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: Between simplistic scenarios and complex dynamics. Water Res. 2012, 46, 1372–1393. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.B. Estimation of return period of flood in Chenyao Lake Basin of Anhui Province in 2016. Harnessing Huaihe River 2016, 12, 57. [Google Scholar]
- Zhang, H. Practice and discussion of wetland restoration technology in Lake Chen Yao. Anhui Agron. Bull. 2021, 27, 166–168. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Zhao, W.Q.; Guo, W.L.; Zhou, Z.Z. Effects of zonal mowing experiment of gorgonians on the community structure of post-zooplankton in Chen Yao Lake. J. Ecol. 2022, 42, 400–409. [Google Scholar]
- Shang, N.X.; Zhang, K.; Yuan, S.Q.; Meng, S.; Zhou, Z.Z. Community structure and environmental impact factors of post-zooplankton in Shengjin Lake after the removal of seine nets. J. Water Ecol. 2022, 43, 86–94. [Google Scholar] [CrossRef]
- Li, X.R. Study on Influencing Factors of determination of chlorophyll a in water by acetone extraction spectrophotometry. Chin. Soc. Environ. Sci. 2015, 1, 1300–1307. [Google Scholar]
- Wu, S.H.; Wu, C.H.; Xue, W.C. Determination of total phosphorus by ammonium molybdate spectrophotometry. Guangzhou Chem. Ind. 2020, 48, 96–97. [Google Scholar]
- Gu, D.J.; Liu, Q. Determination of total nitrogen in water by Ultraviolet Spectrophotometry with alkaline potassium persulfate digestion. Shandong Chem. Ind. 2020, 49, 103–105. [Google Scholar]
- Chen, Z.Q. Study on the determination of ammonia nitrogen in water samples by spectrophotometric method with nano reagent. Sci. Technol. Innov. 2020, 11, 34–35. [Google Scholar]
- Dong, Z.H.; Zhang, J. Interference and rapid removal of iron ions from nitrate nitrogen determined by UV spectrophotometry. Chem. Anal. Metrol. 2021, 30, 17–20. [Google Scholar]
- Chen, S.Z. Collection and counting methods of freshwater plankton. Bull. Biol. 1955, 6, 52–55. [Google Scholar]
- Wu, C.; Zhang, Q.G. Progress of freshwater plankton diversity and quantitative analysis methods. Anhui Agric. Bull. 2009, 15, 41–42. [Google Scholar]
- Zhao, F.; Yu, H.X.; Ma, C.X.; Junlin, S. Assessment of water quality in Zhalong Nature Reserve Zone by zooplankton communities. Chin. J. Fish. 2013, 26, 41–45. [Google Scholar]
- Chen, Q.; Cheng, G.P.; Li, Y.H.; Ji, Y.J.; Sang, M.Y.; Zuo, T.; Zhao, T.L. Characteristics of plankton population structure in cage culture area of Yongjiang River in Nanning. Oceanol. Limnol. Sin. 2013, 44, 49–55. [Google Scholar]
- Li, Z.F.; Xie, J.; Zhang, X.K.; Wang, G.J.; Lian, Y.X.; Yu, D.G.; Wang, C.C.; Yu, E.M.; Zhang, K. Community characteristics of zooplankton and assessment of water quality in high yield aquaculture ponds of the Pearl River Delta Acta Hydrobiol. Sin. 2017, 41, 1071–1079. [Google Scholar]
- Jin, C.; Zhang, W.T.; Sun, Z. Discussion on evaluation method and grading standard of lake and reservoir eutrophication. Guizhou Water Power 2011, 25, 4–6. [Google Scholar]
- Wang, M.C.; Liu, X.Q.; Zhang, J.H. Evaluation method and classification standard of lake eutrophication. Environ. Monit. China 2002, 5, 47–49. [Google Scholar]
- Wang, T.T.; Yi, Q.T.; Hu, Y.B.; Yan, J.P.; Yu, H.J.; Dong, X.L. Simulation experiment on eutrophication and nitrogen and phosphorus limitation of water body in coal mining subsidence area of Huaibei and Huaihe River. J. Lake Sci. 2013, 25, 916–926. [Google Scholar]
- Chu, Y.F.; Zhao, S.S.; Li, G.G.; Jin, T.X.; Ma, J.M. Plankton Community Structure and Evaluation of Water Quality in Chenqiao East Lake Wetland J. Yangtze River Sci. Res. Inst. 2019, 36, 23–29. [Google Scholar]
- He, M. Study on the Effect of Climate Warming and Water Eutrophication on Zooplankton Community Structure in Shallow Lakes. Master’s Thesis, Zhongnan University for Nationalities, Wuhan, China, 2016. [Google Scholar]
- Lv, Z.W.; Chen, Y.Q.; Peng, J.H.; Wu, Y.M.; Tang, Y.J.; Chen, X.P.; Su, H.Y.; Zeng, L.R. Evaluation of zooplankton diversity and water quality biology in Nansha wetland, Guangzhou. Green Technol. 2021, 23, 31–35+40. [Google Scholar] [CrossRef]
- García-Chicote, J.; Armengol, X.; Rojo, C. Zooplankton species as indicators of trophic state in reservoirs from Mediterranean river basins. Inland Waters 2019, 9, 113–123. [Google Scholar] [CrossRef]
- Bai, H.F.; Zhao, N.X.; Yin, X.W.; Lu, Y.Y.; Wu, W.; Xu, Z.X. Community structure of zooplankton in the Weihe River Basin and its relationship with environmental factors. J. Dalian Ocean Univ. 2014, 29, 260–266. [Google Scholar]
- Leira, M.; Cantonati, M. Effects of water-level fluctuations on lakes: An annotated bibliography. Hydrobiologia 2008, 613, 171–184. [Google Scholar] [CrossRef]
- Sanchez, E.; Colmenarejo, M.F.; Vicente, J.; Rubio, A.; Gancia, M.G.; Tranvieso, L.; Borja, R. Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecol. Indic. 2007, 7, 315–328. [Google Scholar] [CrossRef]
- Katsiapi, M.; Mazaris, A.D.; Charalampous, E.; Mouataka-Gouni, M. Watershed land use types as drivers of freshwater phytoplankton structure. Hydrobiologia 2012, 698, 121–131. [Google Scholar] [CrossRef]
- Liao, J.Q.; Zhao, L.; Cao, X.F.; Sun, J.H.; Gao, Z.; Wang, J.; Jiang, D.; Fan, H.; Huang, Y. Cyanobacteria in lakes on Yungui Plateau, China are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use. Sci. Rep. 2016, 6, 36357. [Google Scholar] [CrossRef] [Green Version]
- Špoljar, M.; Tomljanović, T.; Dražina, T.; Lajtner, J.; Štulec, H.; Matulić, D.; Fressl, J. Zooplankton structure in two interconnected ponds: Similarities and differences. Croat. J. Fish. 2016, 74, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Wan, Y.; Xu, M.; Wang, C.C.; Wu, Q.L.; Zhou, Z.Z. Community structure of lacustrine post-larval zooplankton and its influencing factors in lakes in the coal mining subsidence area of Huainan Digou. Lake Sci. 2018, 30, 171–182. [Google Scholar]
- Akhurst, D.J.; Jones, G.B.; Clark, M.; Reichelt-Brushett, A. Effects of fish and macrophytes on phytoplankton and zooplankton community structure in a subtropical freshwater reservoir. Limnologica 2017, 62, 5–18. [Google Scholar] [CrossRef]
- Xu, M.; Wu, F.Y.; Liu, L.L.; Wang, B.; Sun, Q.Y.; Zhou, Z.Z. Seasonal dynamics of zooplankton crustacean community structure in Jiao Gang Lake. J. Ecol. 2016, 35, 1254–1262. [Google Scholar]
- Yang, L.J.; Lv, G.H.; Zhu, J.Q.; Xu, Z.; Jin, C.H. Structural characteristics of the post-zooplankton community and water quality evaluation in Heng Shan Reservoir. J. Aquat. Biol. 2014, 38, 720–728. [Google Scholar]
Physical and Chemical Factors | Lake Chen Yao | Lake Feng Sha | p |
---|---|---|---|
WT (℃) | 20.32 ± 0.56 (7.28~28.18) | 21.1 ± 0.35 (7.3~28) | ** |
pH | 6.61 ± 0.31 (4.48~8.61) | 7.2 ± 0.11 (5.31~9.5) | ** |
DO (mg/L) | 8.29 ± 1.03 (5.68~10.33) | 10.4 ± 0.37 (8.21~11.57) | - |
EC (μs/cm) | 212.08 ± 11.9 (131.52~278.8) | 232.52 ± 12.16 (101.5~335.8) | * |
SD (m) | 0.28 ± 0.03 (0.08~0.44) | 0.34 ± 0.04 (0.11~0.45) | - |
WD (m) | 1.58 ± 0.11 (0.46~2.44) | 2.32 ± 0.16 (0.89~3.32) | * |
Turb (NTU) | 32.59 ± 14.49 (20.24~76.94) | 40.86 ± 14.1 (7.05~110.98) | ** |
TN (mg/L) | 4.67 ± 0.45 (0.28~20.41) | 4.07 ± 0.16 (0.31~17.33) | ** |
TP (mg/L) | 0.68 ± 0.02 (0.02~0.41) | 0.69 ± 0.01 (0.08~2.12) | ** |
NH4+-N (mg/L) | 0.18 ± 0.10 (0.02~0.41) | 0.06 ± 0.04 (0.02~0.14) | - |
N03-N (mg/L) | 0.07 ± 0.004 (0.01~0.14) | 0.08 ± 0.005 (0.01~0.16) | ** |
Chl.a (μg/L) | 29.6 ± 10.3 (4.39~35.53) | 14.07 ± 7.74 (5.57~35.53) | ** |
Latin Name | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
Brachionus budapestinensis Daday | 0.13 | 0.11 | 0.21 | 0.05 |
Keratella cochlearis (Gosse) | 0.03 | 0.11 | 0.41 | 0.12 |
Schizocerca diversicornis Daday | - | - | 0.02 | - |
Diurella rousseleti (Voigt) | 0.03 | 0.13 | 0.09 | - |
Asplanchna priodonta Gosse | 0.09 | - | 0.10 | 0.04 |
Polyarthra trigla Ehrenberg | 0.29 | 0.22 | - | 0.49 |
Filinia maior (Colditz) | 0.03 | 0.04 | - | 0.17 |
Brachionus angularis Gosse | 0.06 | 0.05 | - | 0.04 |
Brachionus calyciflorus Pallas | - | - | - | 0.19 |
Trichocerca rattus (O.F.Muller) | 0.04 | - | - | - |
Nauplius | 0.03 | 0.03 | - | - |
Brachionus urceus (Linnaeus) | 0.11 | 0.02 | - | - |
Monostyla elachis Harring and Myers | - | 0.02 | - | - |
Diurella stylata (Gosse) | - | 0.03 | - | - |
Latin Name | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
Brachionus budapestinensis Daday | - | 0.03 | 0.23 | 0.20 |
Brachionus angularis Gosse | - | 0.02 | 0.02 | 0.04 |
Keratella cochlearis (Gosse) | 0.14 | 0.10 | 0.17 | 0.18 |
Schizocerca diversicornis Daday | - | - | 0.03 | - |
Diurella rousseleti (Voigt) | - | 0.09 | 0.27 | - |
Trichocera cylindrica (Imhof) | - | - | 0.04 | - |
Polyarthra trigla Ehrenberg | 0.76 | 0.17 | - | 0.19 |
Filinia maior (Colditz) | - | 0.03 | - | - |
Keratella valga (Ehrenberg) | - | 0.04 | - | - |
Diurella stylata (Gosse) | - | 0.17 | - | - |
Asplanchna priodonta Gosse | - | - | - | 0.04 |
Thermocyclops hyalinus (Rehberg) | - | 0.04 | - | 0.04 |
Nauplius | - | 0.10 | - | 0.13 |
Trichocerca pusilla (Lauterborn) | - | 0.11 | - | - |
Correlation | Rotifer Density | Rotifer Biomass | Cladocera Density | Cladocera Biomass | Copepod Density | Copepod Biomass |
---|---|---|---|---|---|---|
WT | −0.598 | −0.958 * | 0.168 | 0.558 | −0.475 | −0.338 |
pH | −0.556 | 0.351 | −0.334 | −0.251 | −0.504 | −0.480 |
DO | 0.603 | 0.633 | 0.584 | 0.244 | 0.760 | 0.719 |
EC | 0.840 | 0.133 | 0.581 | 0.296 | 0.876 | 0.822 |
SD | −0.712 | −0.643 | 0.285 | 0.626 | −0.476 | −0.323 |
WD | −0.891 * | −0.670 | −0.006 | −0.495 | −0.571 | −0.408 |
Turb | −0.112 | 0.647 | −0.609 | −0.452 | 0.181 | 0.151 |
TN | −0.798 | −0.644 | −0.032 | 0.665 | −0.121 | 0.067 |
TP | 0.135 | −0.062 | −0.427 | −0.687 | −0.522 | −0.631 |
NH4+-N | 0.964 ** | 0.637 | 0.213 | −0.409 | 0.534 | 0.307 |
NO3−-N | 0.016 | −0.676 | 0.243 | 0.642 | 0.465 | 0.562 |
Chl.a | −0.783 | −0.379 | −0.254 | −0.061 | −0.935 * | −0.865 |
Sorting Axis | Eigenvalues | Species–Environment Correlation Coefficient | Species Variation Percentage |
---|---|---|---|
1 | 0.693 | 1.000 | 69.34 |
2 | 0.166 | 1.000 | 85.97 |
3 | 0.097 | 1.000 | 95.72 |
4 | 0.043 | 1.000 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Lu, W.; Zhou, Z.; Chen, W. Spatial Differences in Zooplankton Community Structure between Two Fluvial Lakes in the Middle and Lower Reaches of the Yangtze River: Effects of Land Use Patterns and Physicochemical Factors. Diversity 2022, 14, 908. https://doi.org/10.3390/d14110908
Zhang S, Lu W, Zhou Z, Chen W. Spatial Differences in Zooplankton Community Structure between Two Fluvial Lakes in the Middle and Lower Reaches of the Yangtze River: Effects of Land Use Patterns and Physicochemical Factors. Diversity. 2022; 14(11):908. https://doi.org/10.3390/d14110908
Chicago/Turabian StyleZhang, Siyong, Wenqin Lu, Zhongze Zhou, and Wenwen Chen. 2022. "Spatial Differences in Zooplankton Community Structure between Two Fluvial Lakes in the Middle and Lower Reaches of the Yangtze River: Effects of Land Use Patterns and Physicochemical Factors" Diversity 14, no. 11: 908. https://doi.org/10.3390/d14110908
APA StyleZhang, S., Lu, W., Zhou, Z., & Chen, W. (2022). Spatial Differences in Zooplankton Community Structure between Two Fluvial Lakes in the Middle and Lower Reaches of the Yangtze River: Effects of Land Use Patterns and Physicochemical Factors. Diversity, 14(11), 908. https://doi.org/10.3390/d14110908