Strong Decline in Breeding-Bird Community Abundance Throughout Habitats in the Azov Region (Southeastern Ukraine) Linked to Land-Use Intensification and Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Types of Ecosystems Investigated
2.2. Field Data Collection
2.3. Statistical Analysis
2.4. Climatic Features
3. Results
4. Discussion
4.1. General Trends in the Diversity and Abundance of Bird Species in the Area Studied
4.2. Temporal Turnover of Bird Communities in Various Biotopes
4.3. Identification of Bird Species with the Highest Rates of Contribution to Community Turnover
4.4. Main Drivers of Bird Community Turnover in the Molochna River Valley
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Biotope | Length, m | Area, km2 |
---|---|---|
Agricultural lands | 6000 | 4.95 |
Forest plantation | 2000 | 0.58 |
Forest shelterbelts | 7000 | 0.90 |
Meadows | 4000 | 2.67 |
Reed beds | 4000 | 2.30 |
Rural areas | 6000 | 6.87 |
Salt marsh | 3000 | 2.56 |
Steppe | 4000 | 2.06 |
Total | 36,000 | 23 |
Taxons | Biotope * | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Parvclass Galloanserae | ||||||||
Ordo Anseriformes | ||||||||
Family Anatidae | ||||||||
Anas clypeata Linnaeus, 1758 | − | − | − | + | − | − | − | − |
Anas platyrhynchos Linnaeus, 1758 | − | − | − | + | − | − | − | − |
Anas querquedula Linnaeus, 1758 | − | − | − | + | − | − | − | − |
Anas strepera Linnaeus, 1758 | − | − | − | + | − | − | − | − |
Anser anser (Linnaeus, 1758) | − | − | − | + | − | − | − | − |
Aythya ferina (Linnaeus, 1758) | − | − | − | + | − | − | − | − |
Cygnus olor (Gmelin, 1803) | − | − | − | + | − | − | − | − |
Ordo Galliformes | ||||||||
Family Phasianidae | ||||||||
Coturnix coturnix (Linnaeus, 1758) | + | − | + | − | − | − | − | − |
Perdix perdix (Linnaeus, 1758) | − | + | − | − | − | − | + | − |
Phasianus colchicus Linnaeus, 1758 | + | + | − | − | + | − | − | + |
Parvclass Passerae | ||||||||
Ordo Apodiformes | ||||||||
Family Apodidae | ||||||||
Apus apus (Linnaeus, 1758) | − | − | − | − | + | − | − | − |
Charadriiformes | ||||||||
Family Scolopacidae | ||||||||
Tringa totanus (Linnaeus, 1758) | − | − | + | − | − | − | − | − |
Family Charadriidae | ||||||||
Charadrius alexandrinus Linnaeus, 1758 | − | − | − | − | − | + | − | − |
Vanellus vanellus (Linnaeus, 1758) | − | − | − | − | − | + | − | − |
Family Recurvirostridae | ||||||||
Himantopus himantopus (Linnaeus, 1758) | − | − | − | − | − | + | − | − |
Family Scolopacidae | ||||||||
Limosa limosa (Linnaeus, 1758) | − | − | + | − | − | − | − | − |
Ordo Ciconiiformes | ||||||||
Family Podicipitidae | ||||||||
Podiceps cristatus (Linnaeus, 1758) | − | − | − | + | − | − | − | − |
Podiceps grisegena (Boddaert, 1783) | − | − | − | + | − | − | − | − |
Tachybaptus ruficollis (Pallas, 1764) | − | − | − | + | − | − | − | − |
Family Ardeidae | ||||||||
Ardea cinerea Linnaeus, 1758 | − | − | − | + | − | − | − | − |
Ardea purpurea Linnaeus, 1766 | − | − | − | + | − | − | − | − |
Ardeola ralloides (Scopoli, 1769) | − | − | − | + | − | − | − | − |
Botaurus stellaris (Linnaeus, 1758) | − | − | − | + | − | − | − | − |
Casmerodius albus (Linnaeus, 1758) | − | − | − | + | − | − | − | − |
Egretta garzetta (Linnaeus, 1758) | − | − | − | + | − | − | − | − |
Ixobrychus minutus (Linnaeus, 1766) | − | − | − | + | − | − | − | − |
Nycticorax nycticorax (Linnaeus, 1758) | − | − | − | + | − | − | − | − |
Family Ciconiidae | ||||||||
Ciconia ciconia (Linnaeus, 1758) | − | − | − | − | + | − | − | − |
Ordo Columbiformes | ||||||||
Family Columbidae | ||||||||
Columba oenas Linnaeus, 1758 | − | + | − | − | − | − | − | − |
Streptopelia decaocto (Frivaldszky, 1838) | − | − | − | − | + | − | − | − |
Streptopelia turtur (Linnaeus, 1758) | − | + | − | − | − | − | − | + |
Ordo Cuculiformes | ||||||||
Family Cuculidae | ||||||||
Cuculus canorus Linnaeus, 1758 | − | + | − | + | − | − | − | − |
Ordo Falconiformes | ||||||||
Family Accipitridae | ||||||||
Circus aeruginosus (Linnaeus, 1758) | − | − | − | + | − | − | − | − |
Circus cyaneus (Linnaeus, 1758) | − | − | + | − | − | − | − | − |
Family Falconidae | ||||||||
Falco tinnunculus Linnaeus, 1758 | − | + | − | − | − | − | − | − |
Falco vespertinus Linnaeus, 1766 | − | + | − | − | − | − | − | − |
Family Motacillidae | ||||||||
Motacilla alba Linnaeus, 1758 | − | − | − | − | + | − | − | − |
Motacilla citreola Pallas, 1776 | − | − | + | − | − | − | − | − |
Motacilla feldegg Michahelles, 1830 | − | − | + | − | − | − | − | − |
Motacilla flava Linnaeus, 1758 | − | − | + | − | − | − | − | − |
Ordo Gruiformes | ||||||||
Family Rallidae | ||||||||
Crex crex (Linnaeus, 1758) | − | − | + | − | − | − | − | − |
Fulica atra Linnaeus, 1758 | − | − | − | + | − | − | − | − |
Gallinula chloropus (Linnaeus, 1758) | − | − | − | + | − | − | − | − |
Porzana parva (Scopoli, 1769) | − | − | − | + | − | − | − | − |
Rallus aquaticus Linnaeus, 1758 | − | − | − | + | − | − | − | − |
Ordo Passeriformes | ||||||||
Family Saxicolidae | ||||||||
Luscinia megarhynchos C. L. Brehm, 1831 | − | + | − | − | − | − | − | − |
Luscinia svecica (Linnaeus, 1758) | − | − | − | + | − | − | − | − |
Phoenicurus ochruros (S. G. Gmelin, 1774) | − | − | − | − | + | − | − | − |
Saxicola rubetra (Linnaeus, 1758) | − | − | + | − | − | − | + | − |
Saxicola torquatus (Linnaeus, 1766) | − | − | + | − | − | − | − | − |
Family Alaudidae | ||||||||
Alauda arvensis Linnaeus, 1758 | + | − | + | − | − | − | + | − |
Family Corvidae | ||||||||
Corvus corax Linnaeus, 1758 | − | + | − | − | − | − | − | − |
Corvus cornix Linnaeus, 1758 | − | + | − | − | − | − | − | − |
Garrulus glandarius (Linnaeus, 1758) | − | − | + | − | − | − | − | − |
Pica pica (Linnaeus, 1758) | − | + | − | + | − | − | − | + |
Family Emberizidae | ||||||||
Emberiza calandra Linnaeus, 1758 | + | − | + | − | − | − | + | − |
Emberiza hortulana Linnaeus, 1758 | + | + | − | − | − | − | − | − |
Emberiza schoeniclus (Linnaeus, 1758) | − | − | − | + | − | − | − | − |
Family Fringillidae | ||||||||
Carduelis cannabina (Linnaeus, 1758) | − | − | + | − | + | − | − | − |
Chloris chloris (Linnaeus, 1758) | − | − | − | − | + | − | − | + |
Family Hirundinidae | ||||||||
Hirundo rustica Linnaeus, 1758 | − | − | − | − | + | − | − | − |
Family Laniidae | ||||||||
Lanius collurio Linnaeus, 1758 | − | + | − | − | − | − | − | − |
Lanius minor Gmelin, 1788 | − | + | − | − | + | − | − | + |
Family Motacillidae | ||||||||
Anthus campestris (Linnaeus, 1758) | − | − | − | − | − | − | + | − |
Family Oriolidae | ||||||||
Oriolus oriolus (Linnaeus, 1758) | − | + | − | − | + | − | − | − |
Family Paridae | ||||||||
Parus major Linnaeus, 1758 | − | + | − | − | + | − | − | − |
Family Passeridae | ||||||||
Passer domesticus (Linnaeus, 1758) | − | − | − | − | + | − | − | − |
Passer montanus (Linnaeus, 1758) | − | − | − | − | + | − | − | − |
Family Sturnidae | ||||||||
Sturnus vulgaris Linnaeus, 1758 | − | − | − | − | + | − | − | − |
Family Sylviidae | ||||||||
Acrocephalus agricola (Jerdon, 1845) | − | − | − | + | − | − | − | − |
Acrocephalus arundinaceus (Linnaeus, 1758) | − | − | − | + | − | − | − | − |
Acrocephalus schoenobaenus (Linnaeus, 1758) | − | − | − | + | − | − | − | − |
Acrocephalus scirpaceus (Hermann, 1804) | − | − | − | + | − | − | − | − |
Locustella luscinioides (Savi, 1824) | − | − | − | + | − | − | − | − |
Panurus biarmicus (Linnaeus, 1758) | − | − | − | + | − | − | − | − |
Sylvia communis Latham, 1787 | − | + | − | − | − | − | − | − |
Ordo Picimorphes | ||||||||
Family Picidae | ||||||||
Dendrocopos syriacus (Hemprich & Ehrenberg, 1833) | − | + | − | − | + | − | − | − |
Ordo Strigiformes | ||||||||
Family Strigidae | ||||||||
Asio otus (Linnaeus, 1758) | − | + | − | − | − | − | − | + |
Athene noctua (Scopoli, 1769) | − | − | − | − | + | − | − | − |
Otus scops (Linnaeus, 1758) | − | + | − | − | − | − | − | − |
Ordo Upupiformes | ||||||||
Family Upupidae | ||||||||
Upupa epops Linnaeus, 1758 | − | + | − | − | + | − | − | − |
Biotope | Total for All Periods | Mean ± St.Error | Minimum | Maximum | Median |
---|---|---|---|---|---|
Agricultural lands | 5 | 4.55 ± 0.09 | 4 | 5 | 5 |
Forest shelterbelts | 21 | 9.77 ± 0.37 | 7 | 17 | 9 |
Meadows | 14 | 8.77 ± 0.14 | 7 | 11 | 9 |
Reed beds | 33 | 30.32 ± 0.20 | 28 | 32 | 31 |
Rural areas | 18 | 15.71 ± 0.19 | 14 | 18 | 16 |
Solonchaks (salt marsh) | 3 | 3.00 ± 0.00 | 3 | 3 | 3 |
Steppe | 5 | 4.19 ± 0.13 | 3 | 5 | 4 |
Artificial forests (plantations) | 6 | 5.84 ± 0.07 | 4 | 6 | 6 |
The entire landscape system | 81 | 80.45 ± 3.88 | 39 | 79 | 59 |
Species | Slope ± St.Error | p-Value | Trend Interpretation (Meaning) | World Population Trend * |
---|---|---|---|---|
Acrocephalus agricola (Jerdon, 1845) | −0.014 ± 0.005 | 0.018 | Moderate decrease (p < 0.05) | Decreasing |
Acrocephalus arundinaceus (Linnaeus, 1758) | −0.016 ± 0.004 | <0.001 | Moderate decrease (p < 0.01) | Decreasing |
Acrocephalus schoenobaenus (Linnaeus, 1758) | 0.005 ± 0.008 | 0.510 | Stable | Stable |
Acrocephalus scirpaceus (Hermann, 1804) | 0.016 ± 0.006 | 0.022 | Moderate increase (p < 0.05) | Stable |
Alauda arvensis Linnaeus, 1758 | −0.001 ± 0.003 | 0.635 | Stable | Decreasing |
Anas clypeata Linnaeus, 1758 | 0.000 ± 0.006 | 0.965 | Stable | Decreasing |
Anas platyrhynchos Linnaeus, 1758 | −0.046 ± 0.004 | <0.001 | Moderate decrease | Increasing |
Anas querquedula Linnaeus, 1758 | −0.018 ± 0.006 | 0.005 | Moderate decrease (p < 0.05) | Decreasing |
Anas strepera Linnaeus, 1758 | −0.003 ± 0.007 | 0.678 | Stable | Increasing |
Anser anser (Linnaeus, 1758) | −0.045 ± 0.006 | <0.001 | Moderate decrease | Increasing |
Anthus campestris (Linnaeus, 1758) | −0.005 ± 0.006 | 0.407 | Stable | Stable |
Apus apus (Linnaeus, 1758) | −0.011 ± 0.006 | 0.090 | Stable | Stable |
Ardea cinerea Linnaeus, 1758 | −0.039 ± 0.005 | <0.001 | Moderate decrease (p < 0.01) | Unknown |
Ardea purpurea Linnaeus, 1766 | −0.055 ± 0.005 | <0.001 | Moderate decrease | Decreasing |
Ardeola ralloides (Scopoli, 1769) | −0.048 ± 0.006 | <0.001 | Moderate decrease (p < 0.01) | Unknown |
Asio otus (Linnaeus, 1758) | −0.006 ± 0.006 | 0.339 | Stable | Decreasing |
Athene noctua (Scopoli, 1769) | −0.007 ± 0.006 | 0.262 | Stable | Stable |
Aythya ferina (Linnaeus, 1758) | −0.035 ± 0.005 | <0.001 | Moderate decrease (p < 0.01) | Decreasing |
Botaurus stellaris (Linnaeus, 1758) | −0.001 ± 0.005 | 0.836 | Stable | Decreasing |
Carduelis cannabina (Linnaeus, 1758) | −0.004 ± 0.005 | 0.428 | Stable | Decreasing |
Casmerodius albus (Linnaeus, 1758) | −0.014 ± 0.006 | 0.026 | Moderate decrease (p < 0.05) | Unknown |
Charadrius alexandrinus Linnaeus, 1758 | 0.001 ± 0.006 | 0.843 | Stable | Decreasing |
Chloris chloris (Linnaeus, 1758) | −0.005 ± 0.005 | 0.352 | Stable | Stable |
Ciconia ciconia (Linnaeus, 1758) | 0.000 ± 0.005 | 0.943 | Stable | Increasing |
Circus aeruginosus (Linnaeus, 1758) | −0.004 ± 0.005 | 0.456 | Stable | Stable |
Circus cyaneus (Linnaeus, 1758) | −0.002 ± 0.007 | 0.809 | Stable | Decreasing |
Columba oenas Linnaeus, 1758 | −0.002 ± 0.007 | 0.809 | Stable | Decreasing |
Corvus corax Linnaeus, 1758 | −0.006 ± 0.006 | 0.321 | Stable | Increasing |
Corvus cornix Linnaeus, 1758 | −0.003 ± 0.006 | 0.564 | Stable | Stable |
Coturnix coturnix (Linnaeus, 1758) | 0.005 ± 0.006 | 0.404 | Stable | Decreasing |
Crex crex (Linnaeus, 1758) | −0.011 ± 0.006 | 0.093 | Stable | Stable |
Cuculus canorus Linnaeus, 1758 | 0.008 ± 0.006 | 0.181 | Stable | Decreasing |
Cygnus olor (Gmelin, 1803) | −0.008 ± 0.006 | 0.161 | Stable | Increasing |
Dendrocopos syriacus (Hemprich & Ehrenberg, 1833) | −0.005 ± 0.006 | 0.420 | Stable | Stable |
Egretta garzetta (Linnaeus, 1758) | −0.040 ± 0.005 | <0.001 | Moderate decrease (p < 0.01) | Increasing |
Emberiza calandra Linnaeus, 1758 | −0.006 ± 0.004 | 0.172 | Stable | Decreasing |
Emberiza hortulana Linnaeus, 1758 | 0.004 ± 0.006 | 0.507 | Stable | Decreasing |
Emberiza schoeniclus (Linnaeus, 1758) | 0.038 ± 0.008 | <0.001 | Moderate increase (p < 0.01) | Decreasing |
Falco tinnunculus Linnaeus, 1758 | −0.002 ± 0.006 | 0.713 | Stable | Decreasing |
Falco vespertinus Linnaeus, 1766 | 0.001 ± 0.007 | 0.843 | Stable | Decreasing |
Fulica atra Linnaeus, 1758 | −0.034 ± 0.001 | <0.001 | Moderate decrease | Increasing |
Gallinula chloropus (Linnaeus, 1758) | −0.034 ± 0.001 | <0.001 | Moderate decrease (p < 0.01) | Stable |
Glareola pratincola (Linnaeus, 1766) | −0.041 ± 0.002 | <0.001 | Moderate decrease (p < 0.01) | Decreasing |
Garrulus glandarius (Linnaeus, 1758) | −0.010 ± 0.005 | 0.052 | Stable | Stable |
Himantopus himantopus (Linnaeus, 1758) | −0.010 ± 0.005 | 0.052 | Stable | Increasing |
Hirundo rustica Linnaeus, 1758 | −0.035 ± 0.003 | <0.001 | Moderate decrease (p < 0.01) | Decreasing |
Ixobrychus minutus (Linnaeus, 1766) | 0.002 ± 0.007 | 0.770 | Stable | Decreasing |
Lanius collurio Linnaeus, 1758 | −0.008 ± 0.005 | 0.123 | Stable | Stable |
Lanius minor Gmelin, 1788 | −0.001 ± 0.007 | 0.930 | Stable | Decreasing |
Limosa limosa (Linnaeus, 1758) | −0.007 ± 0.004 | 0.125 | Stable | Decreasing |
Locustella luscinioides (Savi, 1824) | 0.013 ± 0.006 | 0.047 | Moderate increase (p < 0.05) | Stable |
Luscinia megarhynchos C. L. Brehm, 1831 | 0.024 ± 0.006 | 0.001 | Moderate increase (p < 0.01) | Stable |
Luscinia svecica (Linnaeus, 1758) | 0.002 ± 0.006 | 0.728 | Stable | Stable |
Motacilla alba Linnaeus, 1758 | 0.024 ± 0.006 | 0.001 | Moderate increase (p < 0.01) | Stable |
Motacilla citreola Pallas, 1776 | 0.052 ± 0.008 | <0.001 | Moderate increase (p < 0.01) | Increasing |
Motacilla feldegg Michahelles, 1830 | 0.034 ± 0.005 | <0.001 | Moderate increase (p < 0.01) | Decreasing |
Motacilla flava Linnaeus, 1758 | −0.119 ± 0.004 | <0.001 | Strong decrease (p < 0.01) | Decreasing |
Nycticorax nycticorax (Linnaeus, 1758) | −0.001 ± 0.005 | 0.780 | Stable | Decreasing |
Oriolus oriolus (Linnaeus, 1758) | 0.001 ± 0.007 | 0.924 | Stable | Stable |
Otus scops (Linnaeus, 1758) | −0.003 ± 0.008 | 0.723 | Stable | Decreasing |
Panurus biarmicus (Linnaeus, 1758) | −0.006 ± 0.006 | 0.285 | Stable | Unknown |
Parus major Linnaeus, 1758 | 0.001 ± 0.003 | 0.718 | Stable | Increasing |
Passer domesticus (Linnaeus, 1758) | 0.005 ± 0.003 | 0.130 | Stable | Decreasing |
Passer montanus (Linnaeus, 1758) | −0.006 ± 0.005 | 0.264 | Stable | Decreasing |
Perdix perdix (Linnaeus, 1758) | −0.003 ± 0.005 | 0.506 | Stable | Decreasing |
Phasianus colchicus Linnaeus, 1758 | 0.000 ± 0.007 | 1.000 | Stable | Decreasing |
Phoenicurus ochruros (S. G. Gmelin, 1774) | −0.017 ± 0.004 | <0.001 | Moderate decrease (p < 0.01) | Increasing |
Pica pica (Linnaeus, 1758) | −0.054 ± 0.005 | <0.001 | Moderate decrease (p < 0.01) | Stable |
Podiceps cristatus (Linnaeus, 1758) | −0.039 ± 0.005 | <0.001 | Moderate decrease (p < 0.01) | Unknown |
Podiceps grisegena (Boddaert, 1783) | −0.043 ± 0.003 | <0.001 | Moderate decrease (p < 0.01) | Decreasing |
Porzana parva (Scopoli, 1769) | −0.070 ± 0.005 | <0.001 | Strong decrease (p < 0.01) | Stable |
Rallus aquaticus Linnaeus, 1758 | 0.003 ± 0.005 | 0.648 | Stable | Decreasing |
Saxicola rubetra (Linnaeus, 1758) | 0.001 ± 0.007 | 0.856 | Stable | Decreasing |
Saxicola torquatus (Linnaeus, 1766) | −0.005 ± 0.003 | 0.160 | Stable | Stable |
Streptopelia decaocto (Frivaldszky, 1838) | 0.003 ± 0.006 | 0.657 | Stable | Increasing |
Streptopelia turtur (Linnaeus, 1758) | −0.078 ± 0.003 | <0.001 | Strong decrease (p < 0.01) | Decreasing |
Sturnus vulgaris Linnaeus, 1758 | 0.032 ± 0.006 | <0.001 | Moderate increase (p < 0.01) | Decreasing |
Sylvia communis Latham, 1787 | 0.002 ± 0.007 | 0.836 | Stable | Increasing |
Tachybaptus ruficollis (Pallas, 1764) | −0.038 ± 0.005 | <0.001 | Moderate decrease (p < 0.01) | Decreasing |
Tringa totanus (Linnaeus, 1758) | −0.001 ± 0.006 | 0.842 | Stable | Unknown |
Upupa epops Linnaeus, 1758 | −0.027 ± 0.003 | <0.001 | Moderate decrease (p < 0.01) | Decreasing |
Vanellus vanellus (Linnaeus, 1758) | −0.014 ± 0.005 | 0.018 | Moderate decrease (p < 0.05) | Decreasing |
References
- Anderson, M.J.; Crist, T.O.; Chase, J.M.; Vellend, M.; Inouye, B.D.; Freestone, A.L.; Sanders, N.J.; Cornell, H.V.; Comita, L.S.; Davies, K.F.; et al. Navigating the Multiple Meanings of β Diversity: A Roadmap for the Practicing Ecologist. Ecol. Lett. 2011, 14, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, S.; Terlizzi, A. Nestedness and Turnover Unveil Inverse Spatial Patterns of Compositional and Functional β-Diversity at Varying Depth in Marine Benthos. Divers. Distrib. 2020, 26, 743–757. [Google Scholar] [CrossRef]
- Jabot, F.; Laroche, F.; Massol, F.; Arthaud, F.; Crabot, J.; Dubart, M.; Blanchet, S.; Munoz, F.; David, P.; Datry, T. Assessing Metacommunity Processes through Signatures in Spatiotemporal Turnover of Community Composition. Ecol. Lett. 2020, 23, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Stegen, J.C.; Freestone, A.L.; Crist, T.O.; Anderson, M.J.; Chase, J.M.; Comita, L.S.; Cornell, H.V.; Davies, K.F.; Harrison, S.P.; Hurlbert, A.H.; et al. Stochastic and Deterministic Drivers of Spatial and Temporal Turnover in Breeding Bird Communities. Glob. Ecol. Biogeogr. 2013, 22, 202–212. [Google Scholar] [CrossRef]
- Si, X.; Baselga, A.; Leprieur, F.; Song, X.; Ding, P. Selective Extinction Drives Taxonomic and Functional Alpha and Beta Diversities in Island Bird Assemblages. J. Anim. Ecol. 2016, 85, 409–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, A.; Descamps-Julien, B. Population and Community Variability in Randomly Fluctuating Environments. Oikos 2004, 106, 105–116. [Google Scholar] [CrossRef]
- Márquez-Luna, U.; Lara, C.; Corcuera, P.; Valverde, P.L. Factors Affecting the Dominance Hierarchy Dynamics in a Hummingbird Assemblage. Curr. Zool. 2019, 65, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Lyons, M.B.; Roelfsema, C.M.; Phinn, S.R. Towards Understanding Temporal and Spatial Dynamics of Seagrass Landscapes Using Time-Series Remote Sensing. Estuar. Coast. Shelf Sci. 2013, 120, 42–53. [Google Scholar] [CrossRef]
- O’Sullivan, J.D.; Terry, J.C.D.; Rossberg, A.G. Intrinsic Ecological Dynamics Drive Biodiversity Turnover in Model Metacommunities. Nat. Commun. 2021, 12, 3627. [Google Scholar] [CrossRef]
- La Sorte, F.A.; Boecklen, W.J. Temporal Turnover of Common Species in Avian Assemblages in North America. J. Biogeogr. 2005, 32, 1151–1160. [Google Scholar] [CrossRef]
- Butchart, S.H.M.; Walpole, M.; Collen, B.; van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global Biodiversity: Indicators of Recent Declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef]
- Magurran, A.E.; Henderson, P.A. Temporal Turnover and the Maintenance of Diversity in Ecological Assemblages. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3611. [Google Scholar] [CrossRef] [Green Version]
- Cottingham, K.L.; Brown, B.L.; Lennon, J.T. Biodiversity May Regulate the Temporal Variability of Ecological Systems. Ecol. Lett. 2001, 4, 72–85. [Google Scholar] [CrossRef]
- Opdam, P.; Wascher, D. Climate Change Meets Habitat Fragmentation: Linking Landscape and Biogeographical Scale Levels in Research and Conservation. Biol. Conserv. 2004, 117, 285–297. [Google Scholar] [CrossRef]
- Kaarlejärvi, E.; Salemaa, M.; Tonteri, T.; Merilä, P.; Laine, A.L. Temporal Biodiversity Change Following Disturbance Varies along an Environmental Gradient. Glob. Ecol. Biogeogr. 2021, 30, 476–489. [Google Scholar] [CrossRef]
- Urban, M.C. Accelerating Extinction Risk from Climate Change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate Variability and Vulnerability to Climate Change: A Review. Glob. Change Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef] [Green Version]
- Pettorelli, N.; Graham, N.A.J.; Seddon, N.; Maria da Cunha Bustamante, M.; Lowton, M.J.; Sutherland, W.J.; Koldewey, H.J.; Prentice, H.C.; Barlow, J. Time to Integrate Global Climate Change and Biodiversity Science-Policy Agendas. J. Appl. Ecol. 2021, 58, 2384–2393. [Google Scholar] [CrossRef]
- Sala, O.E.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global Biodiversity Scenarios for the Year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Schlaepfer, D.R.; Braschler, B.; Rusterholz, H.P.; Baur, B. Genetic Effects of Anthropogenic Habitat Fragmentation on Remnant Animal and Plant Populations: A Meta-Analysis. Ecosphere 2018, 9, e02488. [Google Scholar] [CrossRef]
- Baur, B.; Erhardt, A. Habitat Fragmentation and Habitat Alterations: Principal Threats to Most Animal and Plant Species. GAIA Ecol. Perspect. Sci. Soc. 2017, 4, 221–226. [Google Scholar] [CrossRef]
- Zymaroieva, A.; Zhukov, O.; Fedoniuk, T.; Pinkina, T.; Hurelia, V. The Relationship between Landscape Diversity and Crops Productivity: Landscape Scale Study. J. Landsc. Ecol. 2021, 14, 39–58. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Pickett, S.T.A. Ecosystem Structure and Function along Urban-Rural Gradients: An Unexploited Opportunity for Ecology. Ecology 1990, 71, 1232–1237. [Google Scholar] [CrossRef]
- Pautasso, M.; Böhning-Gaese, K.; Clergeau, P.; Cueto, V.R.; Dinetti, M.; Fernández-Juricic, E.; Kaisanlahti-Jokimäki, M.L.; Jokimäki, J.; Mckinney, M.L.; Sodhi, N.S.; et al. Global Macroecology of Bird Assemblages in Urbanized and Semi-Natural Ecosystems. Glob. Ecol. Biogeogr. 2011, 20, 426–436. [Google Scholar] [CrossRef]
- Van Rensburg, B.J.; Peacock, D.S.; Robertson, M.P. Biotic Homogenization and Alien Bird Species along an Urban Gradient in South Africa. Landsc. Urban Plan. 2009, 92, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Anderson, C.J.; Wang, Y.; Lei, G. Waterbird Diversity and Abundance in Response to Variations in Climate in the Liaohe Estuary, China. Ecol. Indic. 2021, 132, 108286. [Google Scholar] [CrossRef]
- Coetzee, B.W.T.; Chown, S.L. Land-Use Change Promotes Avian Diversity at the Expense of Species with Unique Traits. Ecol. Evol. 2016, 6, 7610–7622. [Google Scholar] [CrossRef]
- Rodriguez, J.P. Range Contraction in Declining North American Bird Populations. Ecol. Appl. 2002, 12, 238. [Google Scholar] [CrossRef]
- Inger, R.; Gregory, R.; Duffy, J.P.; Stott, I.; Voříšek, P.; Gaston, K.J. Common European Birds Are Declining Rapidly While Less Abundant Species’ Numbers Are Rising. Ecol. Lett. 2015, 18, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Reif, J. Long-Term Trends in Bird Populations: A Review of Patterns and Potential Drivers in North America and Europe. Acta Ornithol. 2013, 48, 1–16. [Google Scholar] [CrossRef]
- Sanderson, F.J.; Pople, R.G.; Ieronymidou, C.; Burfield, I.J.; Gregory, R.D.; Willis, S.G.; Howard, C.; Stephens, P.A.; Beresford, A.E.; Donald, P.F. Assessing the Performance of EU Nature Legislation in Protecting Target Bird Species in an Era of Climate Change. Conserv. Lett. 2016, 9, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, K.V.; Dokter, A.M.; Blancher, P.J.; Sauer, J.R.; Smith, A.C.; Smith, P.A.; Stanton, J.C.; Panjabi, A.; Helft, L.; Parr, M.; et al. Decline of the North American Avifauna. Science 2019, 366, 120–124. [Google Scholar] [CrossRef]
- Burns, F.; Eaton, M.A.; Burfield, I.J.; Klvaňová, A.; Šilarová, E.; Staneva, A.; Gregory, R.D. Abundance Decline in the Avifauna of the European Union Reveals Cross-Continental Similarities in Biodiversity Change. Ecol. Evol. 2021, 11, 16647–16660. [Google Scholar] [CrossRef]
- Kleijn, D.; Kohler, F.; Báldi, A.; Batáry, P.; Concepción, E.D.; Clough, Y.; Díaz, M.; Gabriel, D.; Holzschuh, A.; Knop, E.; et al. On the Relationship between Farmland Biodiversity and Land-Use Intensity in Europe. Proc. R. Soc. B Biol. Sci. 2008, 276, 903–909. [Google Scholar] [CrossRef]
- Donald, P.F.; Sanderson, F.J.; Burfield, I.J.; van Bommel, F.P.J. Further Evidence of Continent-Wide Impacts of Agricultural Intensification on European Farmland Birds, 1990–2000. Agric. Ecosyst. Environ. 2006, 116, 189–196. [Google Scholar] [CrossRef]
- Stanton, R.L.; Morrissey, C.A.; Clark, R.G. Analysis of Trends and Agricultural Drivers of Farmland Bird Declines in North America: A Review. Agric. Ecosyst. Environ. 2018, 254, 244–254. [Google Scholar] [CrossRef]
- Siriwardena, G.M.; Baillie, S.R.; Buckland, S.T.; Fewster, R.M.; Marchant, J.H.; Wilson, J.D. Trends in the Abundance of Farmland Birds: A Quantitative Comparison of Smoothed Common Birds Census Indices. J. Appl. Ecol. 1998, 35, 24–43. [Google Scholar] [CrossRef]
- Jungandreas, A.; Roilo, S.; Strauch, M.; Václavík, T.; Volk, M.; Cord, A.F. Response of Endangered Bird Species to Land-Use Changes in an Agricultural Landscape in Germany. Reg. Environ. Change 2022, 22, 19. [Google Scholar] [CrossRef]
- Reif, J.; Voříšek, P.; Šťastný, K.; Bejček, V.; Petr, J. Agricultural Intensification and Farmland Birds: New Insights from a Central European Country. Ibis 2008, 150, 596–605. [Google Scholar] [CrossRef]
- Demchenko, V.A.; Chernichko, R.N.; Chernichko, I.I.; Diadiacheva, E.A.; Koshelev, A.I.; Demchenko, N.A. Current Status of Molochnyi Lyman as a Wetland of Global Importance. Nat. Reserv. Ukr. 2012, 18, 115–119. [Google Scholar]
- Chernichko, J.I.; Kostiushyn, V.A.; Vinokurova, S.V. The Amount and Distribution of the Red Data Book Bird Wetland Species in the Azov-Black Sea Region of Ukraine According to the Results of August Counts 2004–2015. Vestn. Zool. 2018, 52, 145–154. [Google Scholar] [CrossRef]
- Koshelev, O.; Koshelev, V.; Fedushko, M.; Zhukov, O. Annual Course of Temperature and Precipitation as Proximal Predictors of Birds’ Responses to Climatic Changes on the Species and Community Level. Folia Oecologica 2021, 48, 118–135. [Google Scholar] [CrossRef]
- Arabadzhi, L.I.; Solonenko, A.M.; Bren, O.G.; Holubev, M.I. Cyanoprocaryota of Tubalskyi Estuary (Azov Sea Basin). Bogdan Chmelnitskiy Melitopol State Pedagog. Univ. 2016, 6, 414–418. [Google Scholar] [CrossRef]
- Domnich, V.I.; Domnich, A.V.; Zhukov, O.V. Phytoindication Approach for Assessing Factors Determining the Habitat Preferences of Red Deer (Cervus elaphus). Biosyst. Divers. 2021, 29, 3–13. [Google Scholar] [CrossRef]
- Yakovenko, V.; Zhukov, O. Zoogenic Structure Aggregation in Steppe and Forest Soils. In Soils Under Stress; Dmytruk, Y., Dent, D., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 111–127. ISBN 978-3-030-68394-8. [Google Scholar]
- Zhukov, O.V.; Pelina, T.O.; Demchuk, O.M.; Demchuk, N.I.; Koberniuk, S.O. Agroecological and Agroeconomic Aspects of the Grain and Grain Legumes (Pulses) Yield Dynamic within the Dnipropetrovsk Region (Period 1966–2016). Biosyst. Divers. 2018, 26, 170–176. [Google Scholar] [CrossRef]
- Järvinen, O.; Väisänen, R.A.; Jarvinen, O.; Vaisanen, R.A. Estimating Relative Densities of Breeding Birds by the Line Transect Method. Oikos 1975, 26, 316. [Google Scholar] [CrossRef]
- Koshelev, O.I.; Koshelev, V.O.; Fedushko, M.P.; Zhukov, O.V. The Bird Communities Diversity and Indicator Groups of Natural and Anthropogenic Landscapes of the South and South-East of Ukraine. Agrology 2019, 2, 229–240. [Google Scholar] [CrossRef]
- Stegman, B.K. Basics of the Ornithogeographic Division of the Palaearctic. In Fauna of the USSR: Birds; Zernov, S.A., Ed.; Academy of Sciences of the USSR: Moscow, Russia, 1938. [Google Scholar]
- Bogaart, P.; van der Loo, M.; Pannekoek, J. Rtrim: Trends and Indices for Monitoring Data, R Package version 2.1.1; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Pannekoek, J.; van Strien, A. TRIM 3 Manual (TRends & Indices for Monitoring Data); Statistics Netherlands: Voorburg, The Netherlands, 2005.
- BirdLife. Data Zone. Available online: http://datazone.birdlife.org/species/search (accessed on 14 November 2022).
- Durbin, J.; Watson, G.S. Testing for Serial Correlation in Least Squares Regression: I. Biometrika 1950, 37, 409. [Google Scholar] [CrossRef]
- Zeileis, A.; Hothorn, T. Diagnostic Checking in Regression Relationships. R News 2002, 2, 7–10. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Liboschik, T.; Kerschke, P.; Fokianos, K.; Fried, R. Modelling Interventions in INGARCH Processes. Int. J. Comput. Math. 2016, 93, 640–657. [Google Scholar] [CrossRef] [Green Version]
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Selected Papers of Hirotugu Akaike; Springer: Berlin/Heidelberg, Germany, 1973; pp. 267–281. [Google Scholar]
- McCullagh, P.; Nelder, J. Generalized Linear Models, 2nd ed.; Chapman and Hall/CRC: London, UK, 1989. [Google Scholar]
- StatSoft Inc. STATISTICA Data Analysis Software System, version 12.0; StatSoft Inc.: Tulsa, OK, USA, 2014; pp. 1984–2014. [Google Scholar]
- Shimadzu, H.; Dornelas, M.; Magurran, A.E. Measuring Temporal Turnover in Ecological Communities. Methods Ecol. Evol. 2015, 6, 1384–1394. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, S. Rnoaa: “NOAA” Weather Data from R, R Package version 1.2.0; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Imai, H.; Nakashizuka, T.; Oguro, M. Environmental Factors Affecting the Composition and Diversity of the Avian Community in Igune, a Traditional Agricultural Landscape in Northern Japan. J. Ecol. Environ. 2017, 41, 8. [Google Scholar] [CrossRef]
- Spivak, A.C.; Canuel, E.A.; Duffy, J.E.; Richardson, J.P. Nutrient Enrichment and Food Web Composition Affect Ecosystem Metabolism in an Experimental Seagrass Habitat. PLoS ONE 2009, 4, e7473. [Google Scholar] [CrossRef] [Green Version]
- Ward, M.P.; Stodola, K.W.; Walk, J.W.; Benson, T.J.; Deppe, J.L.; Brawn, J.D. Changes in Bird Distributions in Illinois, USA, over the 20th Century Were Driven by Use of Alternative Rather than Primary Habitats. Condor 2018, 120, 622–631. [Google Scholar] [CrossRef]
- Isbell, F.; Gonzalez, A.; Loreau, M.; Cowles, J.; Díaz, S.; Hector, A.; MacE, G.M.; Wardle, D.A.; O’Connor, M.I.; Duffy, J.E.; et al. Linking the Influence and Dependence of People on Biodiversity across Scales. Nature 2017, 546, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Bowler, D.E.; Bjorkman, A.D.; Dornelas, M.; Myers-Smith, I.H.; Navarro, L.M.; Niamir, A.; Supp, S.R.; Waldock, C.; Winter, M.; Vellend, M.; et al. Mapping Human Pressures on Biodiversity across the Planet Uncovers Anthropogenic Threat Complexes. People Nat. 2020, 2, 380–394. [Google Scholar] [CrossRef] [Green Version]
- Zimaroeva, A.A.; Zhukov, O.V.; Ponomarenko, O.L. Determining Spatial Parameters of the Ecological Niche of Parus major (Passeriformes, Paridae) on the Base of Remote Sensing Data. Vestn. Zool. 2016, 50, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Lavrov, V.; Miroshnyk, N.; Grabovska, T.; Shupova, T. Forest Shelter Belts in Organic Agricultural Landscape: Structure of Biodiversity and Their Ecological Role. Folia For. Pol. Ser. A 2021, 63, 48–64. [Google Scholar] [CrossRef]
- Bennett, E.M.; Baird, J.; Baulch, H.; Chaplin-Kramer, R.; Fraser, E.; Loring, P.; Morrison, P.; Parrott, L.; Sherren, K.; Winkler, K.J.; et al. Ecosystem Services and the Resilience of Agricultural Landscapes. Adv. Ecol. Res. 2021, 64, 1–43. [Google Scholar] [CrossRef]
- IUCN. Red List of Threatened Species. Available online: https://www.iucnredlist.org/ (accessed on 3 August 2022).
- Marais, Z.E.; Baker, T.P.; Hunt, M.A.; Mendham, D. Shelterbelt Species Composition and Age Determine Structure: Consequences for Ecosystem Services. Agric. Ecosyst. Environ. 2022, 329, 107884. [Google Scholar] [CrossRef]
- Koshelev, V.O.; Matrukhan, T.I. Meadow Avifauna Community of the Northern Azov Region and Factors Determining Their Structure. In Proceedings of the Zoocenosis—2009, Dnipro, Ukraine, 16 October 2009; pp. 302–304. [Google Scholar]
- Gaberščik, A.; Zelnik, I. Hydrology-Shaped Plant Communities: Diversity and Ecological Function. Water 2021, 13, 3525. [Google Scholar] [CrossRef]
- Matruhan, T.I. Formation Bird Complexes of Valley Habitats in the Northern Pryazovia. Ekosystemy 2015, 1, 74–84. [Google Scholar]
- Murphy, M.T. Avian Population Trends Within the Evolving Agricultural Landscape of Eastern and Central United States. Auk 2003, 120, 20–34. [Google Scholar] [CrossRef]
- Matsyura, A.V.; Zimaroyeva, A.A. Spatial Distribution of Corvidae in Transformed Landscapes of Zhytomyr Region. Biosyst. Divers. 2016, 24, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Gregory, R.D.; Marchant, J.H. Population Trends of Jays, Magpies, Jackdaws and Carrion Crows in the United Kingdom. Bird Study 2010, 43, 28–37. [Google Scholar] [CrossRef]
- Allen, D.C.; Bateman, H.L.; Warren, P.S.; Suzart de Albuquerque, F.; Arnett-Romero, S.; Harding, B.; Bateman, H.L.; Warren, P.S.; Albuquerque, F.S.; Arnett-Romero, S.; et al. Long-Term Effects of Land-Use Change on Bird Communities Depend on Spatial Scale and Land-Use Type. Ecosphere 2019, 10, e02952. [Google Scholar] [CrossRef] [Green Version]
- Beissinger, S.R.; Osborne, D.R. Effects of Urbanization on Avian Community Organization. Condor 1982, 84, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Carvajal-Castro, J.D.; Ana María Ospina, L.; Toro-López, Y.; Anny Pulido, G.; Cabrera-Casas, L.X.; Guerrero-Peláez, S.; García-Merchán, V.H.; Vargas-Salinas, F. Birds vs. Bricks: Patterns of Species Diversity in Response to Urbanization in a Neotropical Andean City. PLoS ONE 2019, 14, e0218775. [Google Scholar] [CrossRef] [Green Version]
- Magurran, A.E. Species Abundance Distributions over Time. Ecol. Lett. 2007, 10, 347–354. [Google Scholar] [CrossRef]
- Helden, A.J. Core and Occasional Species: A New Way Forward. Ecol. Evol. 2021, 11, 10547–10565. [Google Scholar] [CrossRef]
- Hanski, I. Dynamics of Regional Distribution: The Core and Satellite Species Hypothesis. Oikos 1982, 38, 210. [Google Scholar] [CrossRef]
- Qian, H.; Badgley, C.; Fox, D.L. The Latitudinal Gradient of Beta Diversity in Relation to Climate and Topography for Mammals in North America. Glob. Ecol. Biogeogr. 2009, 18, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Buckland, S.T.; Harrison, P.J.; Foss, S.; Johnston, A. Using Species Proportions to Quantify Turnover in Biodiversity. J. Agric. Biol. Environ. Stat. 2016, 21, 363–381. [Google Scholar] [CrossRef]
- Whittaker, R.J.; Willis, K.J.; Field, R. Scale and Species Richness: Towards a General, Hierarchical Theory of Species Diversity. J. Biogeogr. 2001, 28, 453–470. [Google Scholar] [CrossRef] [Green Version]
- Nekola, J.C.; White, P.S. The Distance Decay of Similarity in Biogeography and Ecology. J. Biogeogr. 1999, 26, 867–878. [Google Scholar] [CrossRef] [Green Version]
- Fedonyuk, T.P.; Fedoniuk, R.H.; Zymaroieva, A.A.; Pazych, V.M.; Aristarkhova, E.O. Phytocenological Approach in Biomonitoring of the State of Aquatic Ecosystems in Ukrainian Polesie. J. Water Land Dev. 2020, 44, 65–74. [Google Scholar] [CrossRef]
- Delacour, J. The Pheasants of the World; Spur Publications for the World Pheasant Association: Hindhead, UK, 1965; ISBN 9780904558371. [Google Scholar]
- Koshelev, V. Raritetal Types in Ornitocomplexes of Saline Sands and Their Contributions in the Support of Biodiversity (North-West Azov Sea Region). Biol. Ecol. 2018, 4, 86–95. [Google Scholar] [CrossRef]
- Oparin, M.L.; Oparina, O.S. Transformation of Bird and Mammal Faunas in Steppe Ecosystems under the Impact of Plowing: The Example of Saratov Steppes. Biol. Bull. 2012, 39, 816–822. [Google Scholar] [CrossRef]
- Amundson, R.; Jenny, H. Thinking of Biology: On a State Factor Model of Ecosystems. Bioscience 1997, 47, 536–543. [Google Scholar] [CrossRef] [Green Version]
- Zymaroieva, A.; Zhukov, O.; Romanchuck, L. The Spatial Patterns of Long-Term Temporal Trends in Yields of Soybean (Glycine Max (l.) Merril) in the Central European Mixed Forests (Polissya) and East European Forest Steppe Ecoregions within Ukraine. J. Cent. Eur. Agric. 2020, 21, 320–332. [Google Scholar] [CrossRef]
- Kamp, J.; Urazaliev, R.; Donald, P.F.; Hölzel, N. Post-Soviet Agricultural Change Predicts Future Declines after Recent Recovery in Eurasian Steppe Bird Populations. Biol. Conserv. 2011, 144, 2607–2614. [Google Scholar] [CrossRef]
- Lesiv, M.; Schepaschenko, D.; Moltchanova, E.; Bun, R.; Dürauer, M.; Prishchepov, A.V.; Schierhorn, F.; Estel, S.; Kuemmerle, T.; Alcántara, C.; et al. Spatial Distribution of Arable and Abandoned Land across Former Soviet Union Countries. Sci. Data 2018, 5, 180056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamp, J.; Reinhard, A.; Frenzel, M.; Kämpfer, S.; Trappe, J.; Hölzel, N. Farmland Bird Responses to Land Abandonment in Western Siberia. Agric. Ecosyst. Environ. 2018, 268, 61–69. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Schierhorn, F.; Prishchepov, A.V.; Müller, D.; Kuemmerle, T. Drivers, Constraints and Trade-Offs Associated with Recultivating Abandoned Cropland in Russia, Ukraine and Kazakhstan. Glob. Environ. Change 2016, 37, 1–15. [Google Scholar] [CrossRef]
- State Statistics Service of Ukraine. Available online: https://www.ukrstat.gov.ua/ (accessed on 1 October 2022).
- Donald, P.F.; Green, R.E.; Heath, M.F. Agricultural Intensification and the Collapse of Europe’s Farmland Bird Populations. Proc. Biol. Sci. 2001, 268, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuns, B. Beyond Coping: Smallholder Intensification in Southern Ukraine. Sociol. Ruralis 2017, 57, 481–506. [Google Scholar] [CrossRef]
- Zymaroieva, A. Spatio-Temporal Patterns of Maize Yield Variation within Ukraine. Sci. Horizons 2019, 2, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Di Cecco, G.J.; Hurlbert, A.H. Anthropogenic Drivers of Avian Community Turnover from Local to Regional Scales. Glob. Change Biol. 2022, 28, 770–781. [Google Scholar] [CrossRef]
- Yakovenko, V.M.; Zhukov, O.V. Zoogenic Aspect of the Aggregate Structure Forming of the Steppe and Forest Soils. In Soils Under Stress; Dmytruk, Y., Dent, D., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Reddy, K.R. Temperature Effects in Treatment Wetlands. Water Environ. Res. 2001, 73, 543–557. [Google Scholar] [CrossRef]
- Salimi, S.; Almuktar, S.A.A.A.N.; Scholz, M. Impact of Climate Change on Wetland Ecosystems: A Critical Review of Experimental Wetlands. J. Environ. Manag. 2021, 286, 112160. [Google Scholar] [CrossRef]
- Malhi, Y.; Lander, T.; Le Roux, E.; Stevens, N.; Macias-Fauria, M.; Wedding, L.; Girardin, C.; Kristensen, J.A.; Sandom, C.J.; Evans, T.D.; et al. The Role of Large Wild Animals in Climate Change Mitigation and Adaptation. Curr. Biol. 2022, 32, R181–R196. [Google Scholar] [CrossRef]
- Sleeter, B.; Loveland, T.R.; Domke, G.M.; Herold, N.; Wickham, J.; Wood, N.J. Chapter 5: Land Cover and Land Use Change. In Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2018; Volume 2. [Google Scholar] [CrossRef]
Predictor | AL | AFB | AF | M | RB | RA | SM | S |
---|---|---|---|---|---|---|---|---|
DW for initial variable | 2.4, p = 0.80 | 1.9, p = 0.35 | 2.0, p = 0.43 | 0.9, p ≤ 0.001 | 1.4, p = 0.03 | 2.1, p = 0.50 | – | 1.7, p = 0.16 |
GLM without taking into account the autocorrelation | ||||||||
DW for model residual | 2.3, p = 0.75 | 1.9, p = 0.38 | 2.0, p = 0.47 | 0.9, p ≤ 0.001 | 1.2, p = 0.003 | 2.0, p = 0.45 | – | 1.6, p = 0.08 |
Intercept | −4.49 ± 21.37 | −30.6 ± 14.3 | 0.5 ± 18.9 | −2.2 ± 15.4 | 11.1 ± 8.3 | 10.8 ± 11.6 | – | 19.1 ± 22.6 |
Year | 0.003 ± 0.011 | 0.017 ± 0.007 | 0.001 ± 0.010 | 0.002 ± 0.008 | −0.004 ± 0.004 | −0.004 ± 0.006 | – | −0.009 ± 0.012 |
Temp | −0.05 ± 0.09 | −0.018 ± 0.065 | 0.013 ± 0.083 | −0.013 ± 0.068 | 0.008 ± 0.036 | −0.021 ± 0.051 | – | 0.013 ± 0.097 |
Prec | 0.000 ± 0.002 | 0.000 ± 0.002 | 0.000 ± 0.002 | 0.000 ± 0.002 | 0.000 ± 0.001 | 0.000 ± 0.001 | – | 0.000 ± 0.002 |
AIC | 114.3 | 142.0 | 121.2 | 134.7 | 171.2 | 151.8 | – | 113.2 |
GLM taking into account the autocorrelation | ||||||||
Lag | 4 | 1, 2, 6 | 2 | 1 | 1, 2, 7 | 3 | – | 1 |
DW for model residual | 2.2, p = 0.65 | 2.2, p = 0.59 | 2.2, p = 0.59 | 2.1, p = 0.49 | 2.1, p = 0.52 | 1.9, p = 0.27 | – | 1.9, p = 0.34 |
Intercept | 1.65 ± 22.44 | −38.5 ± 17.3 | 1.3 ± 19.0 | 1.47 ± 15.72 | 10.8 ± 9.3 | 2.86 ± 15.95 | – | 1.8 ± 24.8 |
Beta1 | −0.25 ± 0.62 | −0.004 ± 0.002 | 0.339 ± 1.209 | 0.47 ± 0.52 | 0.001 ± 0.037 | 0.135 ± 0.385 | – | |
Beta2 | – | 0.003 ± 0.002 | – | – | 0.030 ± 0.027 | – | – | 0.266 ± 0.505 |
Beta2 | – | −0.002 ± 0.001 | – | – | −0.021 ± 0.008 | – | – | – |
Year | 0.000 ± 0.012 | 0.020 ± 0.009 | 0.000 ± 0.010 | 0.000 ± 0.008 | −0.004 ± 0.005 | 0.000 ± 0.008 | – | 0.000 ± 0.012 |
Temp | −0.03 ± 0.09 | −0.014 ± 0.065 | 0.018 ± 0.083 | 0.004 ± 0.068 | 0.007 ± 0.038 | −0.027 ± 0.051 | – | 0.005 ± 0.098 |
Prec | 0.001 ± 0.002 | 0.000 ± 0.002 | 0.000 ± 0.002 | 0.000 ± 0.002 | 0.000 ± 0.001 | 0.000 ± 0.001 | – | 0.000 ± 0.002 |
AIC | 116.2 | 143.4 | 123.1 | 135.1 | 175.2 | 154.0 | – | 115.4 |
Effect | Coefficient ± Standard Error | Lower CL | Upper CL | Wald Statistic | p-Level |
---|---|---|---|---|---|
Intercept | 3.91 ± 4.23 | −4.37 | 12.20 | 0.9 | 0.355 |
Year | −0.00093 ± 0.00211 | −0.00506 | 0.00321 | 0.2 | 0.661 |
Agricultural lands × Year | −0.00027 ± 0.00004 | −0.00035 | −0.00020 | 49.0 | <0.001 |
Forest shelterbelts × Year | 0.00011 ± 0.00003 | 0.00006 | 0.00016 | 15.5 | <0.001 |
Meadows × Year | 0.00006 ± 0.00003 | 0.00000 | 0.00011 | 3.6 | 0.05 |
Reed beds × Year | 0.00067 ± 0.00002 | 0.00064 | 0.00071 | 1319.6 | <0.001 |
Rural areas × Year | 0.00035 ± 0.00002 | 0.00030 | 0.00039 | 223.4 | <0.001 |
Salt marshes × Year | −0.00048 ± 0.00005 | −0.00057 | −0.00039 | 103.7 | <0.001 |
Steppe × Year | −0.00031 ± 0.00004 | −0.00039 | −0.00023 | 60.1 | <0.001 |
Forest plantations × Year | −0.00015 ± 0.00003 | −0.00022 | −0.00008 | 18.0 | <0.001 |
Predictor | AL | AFB | AF | M | RB | RA | SM | S |
---|---|---|---|---|---|---|---|---|
DW for initial variable | 1.4, p = 0.02 | 1.6, p = 0.10 | 1.5, p = 0.05 | 1.7, p = 0.15 | 2.0, p = 0.41 | 1.1, p ≤ 0.001 | 1.9, p = 0.34 | 1.8, p = 0.28 |
GLM without taking into account the autocorrelation | ||||||||
DW for model residual | 1.5, p = 0.05 | 1.5, p = 0.07 | 1.5, p = 0.06 | 1.9, p = 0.27 | 1.9, p = 0.31 | 1.4, p = 0.03 | 2.0, p = 0.37 | 1.8, p = 0.25 |
Intercept | 21.27 ± 13.92 | −8.11 ± 9.65 | 19.2 ± 13.2 | −4.38 ± 5.66 | 89.4 ± 1.9 | 108 ± 2.9 | 49.2 ± 9.1 | 34.7 ± 16.2 |
Year | −0.009 ± 0.007 | 0.005 ± 0.005 | −0.008 ± 0.007 | 0.004 ± 0.003 | −0.042 ± 0.001 | −0.052 ± 0.001 | −0.022 ± 0.005 | −0.016 ± 0.008 |
Temp | 0.043 ± 0.060 | −0.024 ± 0.042 | 0.005 ± 0.057 | −0.021 ± 0.024 | 0.111 ± 0.007 | 0.053 ± 0.011 | −0.073 ± 0.039 | −0.020 ± 0.069 |
Prec | −0.001 ± 0.001 | 0.002 ± 0.001 | 0.000 ± 0.001 | 0.003 ± 0.001 | 0.002 ± 0.000 | 0.000 ± 0.001 | −0.001 ± 0.001 | 0.001 ± 0.002 |
AIC | 158.1 | 194.8 | 154.7 | 437.7 | 4676.6 | 743.7 | 218.8 | 138.6 |
GLM taking into account the autocorrelation | ||||||||
Lag | 1 | 1 | 1 | 4 | 1 | 1, 2, 3 | 1, 3, 4, 5 | 1, 2, 3 |
DW for model residual | 2.1, p = 0.50 | 2.0, p = 0.42 | 1.9, p = 0.27 | 2.1, p = 0.49 | 2.0, p = 0.37 | 1.8, p = 0.21 | 1.6, p = 0.10 | 1.9, p = 0.34 |
Intercept | 2.5 ± 15.6 | 1.63 ± 10.2 | 2.64 ± 13.8 | 0.82 ± 7.06 | 95.3 ± 2.0 | 5.63 ± 4.66 | 3.28 ± 17.6 | 2.5 ± 21.9 |
Beta1 | 0.284 ± 0.200 | 0.20 ± 0.15 | 0.21 ± 0.27 | 0.033 ± 0.027 | −0.004 ± 0.000 | 0.129 ± 0.025 | 0.053 ± 0.116 | 0.090 ± 0.278 |
Beta2 | – | – | – | – | – | 0.079 ± 0.022 | 0.141 ± 0.106 | −0.092 ± 0.290 |
Beta3 | – | – | – | – | – | 0.131 ± 0.020 | 0.003 ± 0.117 | 0.289 ± 0.251 |
Beta4 | – | – | – | – | – | – | 0.103 ± 0.109 | – |
Year | 0.000 ± 0.008 | 0.000 ± 0.005 | 0.000 ± 0.007 | 0.001 ± 0.004 | −0.045 ± 0.001 | −0.001 ± 0.002 | 0.000 ± 0.009 | 0.000 ± 0.011 |
Temp | 0.036 ± 0.061 | −0.038 ± 0.045 | 0.003 ± 0.062 | −0.021 ± 0.024 | 0.090 ± 0.008 | 0.009 ± 0.012 | −0.085 ± 0.040 | −0.051 ± 0.074 |
Prec | −0.001 ± 0.001 | 0.003 ± 0.001 | 0.000 ± 0.001 | 0.003 ± 0.001 | 0.003 ± 0.000 | −0.002 ± 0.000 | −0.001 ± 0.001 | 0.001 ± 0.002 |
AIC | 159.1 | 195.8 | 157.5 | 438.1 | 4701.3 | 1169.3 | 236.0 | 144.4 |
Effect | Coefficient ± Standard Error | Lower CL | Upper CL | Wald Statistic | p-Level |
---|---|---|---|---|---|
Intercept | 52.82 ± 2.97 | 47.00 | 58.63 | 316.8 | <0.001 |
Year | −0.025 ± 0.001 | −0.028 | −0.022 | 284.6 | <0.001 |
Temp | 0.079 ± 0.005 | 0.069 | 0.090 | 219.9 | <0.001 |
Prec | 0.002 ± 0.000 | 0.001 | 0.002 | 133.0 | <0.001 |
Agricultural lands | −18.19 ± 11.31 | −40.35 | 3.97 | 2.6 | 0.11 |
Forest shelterbelts | −53.56 ± 8.12 | −69.49 | −37.64 | 43.5 | <0.001 |
Meadows | −53.24 ± 5.28 | −63.59 | −42.89 | 101.6 | <0.001 |
Reed beds | 30.70 ± 3.20 | 24.44 | 36.97 | 92.3 | <0.001 |
Rural areas | 64.40 ± 3.59 | 57.36 | 71.44 | 321.2 | <0.001 |
Salt marshes | 22.75 ± 7.61 | 7.84 | 37.67 | 8.9 | <0.001 |
Steppe | −3.95 ± 12.83 | −29.09 | 21.19 | 0.1 | 0.76 |
Forests plantations | −19.33 ± 10.75 | −40.39 | 1.73 | 3.2 | 0.07 |
Agricultural lands × Year | 0.008 ± 0.006 | −0.003 | 0.019 | 2.2 | 0.14 |
Forest shelterbelts × Year | 0.026 ± 0.004 | 0.018 | 0.034 | 42.3 | <0.001 |
Meadows × Year | 0.027 ± 0.003 | 0.022 | 0.032 | 103.0 | <0.001 |
Reed beds × Year | −0.014 ± 0.002 | −0.017 | −0.011 | 76.8 | <0.001 |
Rural areas × Year | −0.031 ± 0.002 | −0.035 | −0.028 | 303.0 | <0.001 |
Salt marshes × Year | −0.012 ± 0.004 | −0.019 | −0.004 | 9.4 | <0.001 |
Steppe × Year | 0.001 ± 0.006 | −0.011 | 0.014 | 0.03 | 0.86 |
Forest Plantations × Year | 0.009 ± 0.005 | −0.002 | 0.019 | 2.8 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zymaroieva, A.; Zhukov, O.; Fedoniuk, T.; Svenning, J.-C. Strong Decline in Breeding-Bird Community Abundance Throughout Habitats in the Azov Region (Southeastern Ukraine) Linked to Land-Use Intensification and Climate. Diversity 2022, 14, 1028. https://doi.org/10.3390/d14121028
Zymaroieva A, Zhukov O, Fedoniuk T, Svenning J-C. Strong Decline in Breeding-Bird Community Abundance Throughout Habitats in the Azov Region (Southeastern Ukraine) Linked to Land-Use Intensification and Climate. Diversity. 2022; 14(12):1028. https://doi.org/10.3390/d14121028
Chicago/Turabian StyleZymaroieva, Anastasiia, Oleksandr Zhukov, Tetiana Fedoniuk, and Jens-Christian Svenning. 2022. "Strong Decline in Breeding-Bird Community Abundance Throughout Habitats in the Azov Region (Southeastern Ukraine) Linked to Land-Use Intensification and Climate" Diversity 14, no. 12: 1028. https://doi.org/10.3390/d14121028
APA StyleZymaroieva, A., Zhukov, O., Fedoniuk, T., & Svenning, J. -C. (2022). Strong Decline in Breeding-Bird Community Abundance Throughout Habitats in the Azov Region (Southeastern Ukraine) Linked to Land-Use Intensification and Climate. Diversity, 14(12), 1028. https://doi.org/10.3390/d14121028